Water Resources Data Alaska Water Year 2001

By D.F. Meyer, G.L. Solin, M.L. Apgar, D.L. Hess, and W.A. Swenson

Water-Data Report AK-01-1

CALENDAR FOR WATER YEAR 2001

2000

		00	тов	ER					N0	VEM	BER					DE	СЕМ	BER		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
1	2	3	4	5	6	7				1	2	3	4						1	2
8	9	10	11	12	13	14	5	6	7	8	9	10	11	3	4	5	6	7	8	9
15	16	17	18	19	20	21	12	13	14	15	16	17	18	10	11	12	13	14	15	16
22	23	24	25	26	27	28	19	20	21	22	23	24	25	17	18	19	20	21	22	23
29	30	31					26	27	28	29	30			24	25	26	27	28	29	30
														31						
										2001										
		JA	NUA	RY					FEI	BRUA	RY					N	/IARC	Н		
S	M	T	W	T	F	S	S	M	T	W	T	F	S	S	M	T	W	T	F	S
	1	2	3	4	5	6					1	2	3					1	2	3
7	8	9	10	11	12	13	4	5	6	7	8	9	10	4	5	6	7	8	9	10
14	15	16	17	18	19	20	11	12	13	14	15	16	17	11	12	13	14	15	16	17
21	22	23	24	25	26	27	18	19	20	21	22	23	24	18	19	20	21	22	23	24
28	29	30	31				25	26	27	28				25	26	27	28	29	30	31
			ווחח							мал							LINIE			
			APRIL							MAY							UNE			
S	M	T	W	Τ	F	S	S	M	T	W	Т	F	S	S	M	Т	W	Т	F	S
1	2	3	4	5	6	7			1	2	3	4	5						1	2
8	9	10	11	12	13	14	6	7	8	9	10	11	12	3	4	5	6	7	8	9
15	16	17	18	19	20	21	13	14	15	16	17	18	19	10	11	12	13	14	15	16
22		24	25	26	27	28	20	21		23			26	17		19		21	22	23
29	30						27	28	29	30	31			24	25	26	27	28	29	30
			JULY						٨١	JGUS	т					QED1	ГЕМВ	ED		
C	N				Б	C	C	N				Б	C	C					Б	C
S	M		W		F	S	S	M	1	W		F	S	S	M	1	W	1	F	S
1	2	3	4	5	6	7	_	_	_	1	2	3	4							1
8	9	10	11	12	13	14		6	7	8	9	10	11	2	3		5	6	7	8
15	16	17	18	19	20	21	12	13	14	15	16	17	18	9	10	11	12	13	14	15
22		24	25	26	27	28	19	20	21	22		24	25	16	17	18	19	20	21	22
29	30	31					26	27	28	29	30	31		23	24	25	26	27	28	29
														30						

UNITED STATES DEPARTMENT OF THE INTERIOR

GALE A. NORTON, Secretary

U.S. GEOLOGICAL SURVEY

Charles G. Groat, Director

For additional information write to:
Chief, Water Resources Office, Alaska Science Center
U.S. Geological Survey
4230 University Drive -- Suite 201
Anchorage, Alaska 99508 - 4664
Electronic mail: ak_dc@usgs.gov

See additional USGS information on water resources of Alaska on the World Wide Web at http://ak.water.usgs.gov

PREFACE

This volume of the annual hydrologic data report of Alaska is one of a series of annual reports that document hydrologic data gathered from the U.S. Geological Survey's surface- and ground-water data-collection networks in each state, Puerto Rico, and the Trust Territories. These records of streamflow, ground-water levels, and water quality provide the hydrologic information needed by state, local, and Federal agencies, and the private sector for developing and managing our Nation's land and water resources.

The report is the culmination of a concerted effort by dedicated personnel of the U.S. Geological Survey (USGS) who collected, compiled, analyzed, verified, and organized the data, and who revised, edited, typed, illustrated, and assembled the report. The authors had primary responsibility for assuring that the information contained herein is accurate, complete, and adheres to Geological Survey policy and established guidelines. Most of the data were collected, computed, and processed from field offices. Chiefs-in-charge of the field offices are:

Ronald Rickman, Anchorage Bruce Bigelow, Juneau Robert Burrows, Fairbanks

The data were collected, computed, and processed by the following personnel:

M.L. Apgar	D.M. Evetts	J.A. McIntire	F.W. Sondrud
P.K. Atkinson	S.A. Frenzel	D.F. Meyer	P.M. Strelakos
T.P. Brabets	R.L. Glass	E.H. Moran	N.D. Stucki**
J. Brinton	J.M. Goetz	Z.J. Munstermann	S. Swanner**
R.L. Burrows	L.L. Harris	R.P. Murray	W.C. Swanner
B.A. Carr**	D.L. Hess	E.G. Neal	W.A. Swenson
M.R. Carr	R.H. Host	N. Oehler	D.S. Thomas
M.E. Castor	G.R. Jackson	R.T. Ourso	D.C. Trabant
C.H. Coffeen	M.C. Kane	L.D. Patrick	B. Wang
J.S. Conaway	R.T. Kemnitz	J.A. Roberts	M.T. Walter**
C.S. Couvillion	B.W. Kennedy	C.W. Smith	M.S. Whitman
D.L. Curfew	E.L. Kletka	R.L. Snyder**	J.M. Wiles
J.H. Curran	D.E. Langley	M.F. Schellekens	
J.S. Drewel	D. Long	C.M. Severtson	
J.D. Eash	R.S. March	G.L. Solin	

^{**} Volunteer

This report was prepared in cooperation with the State of Alaska and with other agencies under the general supervision of Gordon L. Nelson, Chief, Water Resources Office, and William Sexton, Regional Hydrologist, Western Region.

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE October 2002	3. REPORT TYPE AND Annual October	DATES COVERED r 1, 2000 to September 30, 2001
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Water Resources Data for Alaska	, Water Year 2001		3. FUNDING NUMBERS
6. AUTHOR(S) D.F. Meyer, D.L. Hess, M.F. Scl Solin	nellekens, C.W. Smith, I	E.F. Snyder, and G.L.	
7. PERFORMING ORGANIZATION NAME(S) AN	ND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
U.S. Geological Survey, Water R 4230 University Drive, Suite 201 Anchorage, Alaska 99508-4664	esources Division		USGS-WRD-AK-01-1
9. SPONSORING / MONITORING AGENCY NA			10. SPONSORING / MONITORING AGENCY REPORT NUMBER
U.S. Geological Survey, Water R 4230 University Drive, Suite 201 Anchorage, Alaska 99508-4664	esources Division		USGS-WRD-AK-01-1
Prepared in cooperation with the analysis of the American Statement of the Prepared in Cooperation with the American Statement of the American State	ENT s report may be purchase	ed from National	12b. DISTRIBUTION CODE
Water-resources data for the 2001 streams; stages of lakes; and water water discharge at 112 gaging stations; and water levels for 30 obseditional water data were collected published as miscellaneous measing System operated by the U.S. George	r levels and water quality tions; stage or contents or rvation wells. Also included at various sites not invarients and analyses. T	of ground-water wells. only at 4 gaging stations ded are data for 51crest-olved in the systematic these data represent that	This volume contains records for s; water quality at 37 gaging stastage partial-record stations. Addata-collection program and are part of the National Water Data
14. SUBJECT TERMS *Alaska, *Hydrologic data, *Surf Gaging stations, Lakes, Chemical sites, Water levels, Water analyse 17. SECURITY CLASSIFICATION OF REPORT Unclassified	analyses, Sediments, W		oling 16. PRICE CODE Unclassified

CONTENTS

Pretace	111
List of surface-water stations, in downstream order, for which records are published in	
this volume	vi
List of ground-water wells, by subregion, for which records are published in this volume	xii
List of discontinued surface-water discharge or stage-only stations	xii
List of discontinued surface-water-quality stations	xxiv
Introduction	1
Cooperation	2
Acknowledgments	3
Summary of hydrologic conditions	4
Surface water	4
Ground water	5
Water quality	5
General overview	5
Remark codes	7
Dissolved trace-element concentrations	7
Water quality-control data	7
Water use	9
Special networks and programs	12
Explanation of the records	14
Station identification numbers	14
Downstream order system	14
Latitude-longitude system	15
Local number	15
Records of stage and water discharge	16
Data collection and computation	16
Methodology	16
Computation	16
Winter discharge measurements	17
Estimates for periods of no data	17
Data presentation	17
Station manuscript	18
Data table of daily mean values	20
Statistics of monthly mean data	20
Summary statistics	20
Identifying estimated daily discharge	23
Accuracy of the records	23
Other data available	23
Records of surface-water quality	24
Classification of records	24
Arrangement of records	24
On-site measurements and sample collection	24
Water temperature	26
Sediment	26

Laboratory measurements	26
Records of ground-water levels	27
Data collection and computation	27
Data presentation	27
Records of ground-water quality	29
Data collection and computation	29
Data presentation	29
Access to USGS water data	29
Definition of terms	30
Publications on Techniques of Water-Resources Investigations	43
Station records, surface water	50
$oldsymbol{c}$	358
C 1	358
	370
Analyses of samples collected at miscellaneous sites	387
Station records, ground water levels	417
Index	438
FIGURES	
Figure 1. Man showing locations of agains stations	48
Figure 1. Map showing locations of gaging stations	
	356
Figure 3. Map showing locations of ground-water wells	414
ILLUSTRATIONS	
Graph of monthly mean water withdrawal rate for public supply in the Anchorage,	
Fairbanks, and Juneau areas, 1990-2001	11
	106
	147
	158
	287
1 . 5 1	416
map showing locations of wens in the Mendellian valley	410

SURFACE-WATER STATIONS, IN DOWNSTREAM ORDER, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

Note--Data for partial-record stations and miscellaneous sites for both surfacewater quantity and quality are published in separate sections of the data report. See end of this list for page numbers for these sections.

[Letters after station name designate type of data: (d) discharge,

- (c) chemical, (i) intragravel-water temperature, (m) microbiological,
- (t) water temperature, (s) sediment, (e) elevation, gage height,
- (b) biological or contents]

Station number

SOUTHEAST ALASKA

MAINLAND STREAMS	
Tyee Lake Outlet near Wrangell (d)	50
Harding River near Wrangell (d)	52
Stikine River near Wrangell (d)	54
Dorothy Lake Outlet (head of Dorothy Creek) near Juneau (d) 15039900	55
Taku River near Juneau (d, t, c)	57
Gold Creek at Juneau (d)	63
Salmon Creek near Juneau (d)	65
Jordan Creek below Egan Drive near Auke Bay (d, t)	66
Mendenhall River	
Nugget Creek above Diversion near Auke Bay (d)	69
Mendenhall River near Auke Bay (d)	70
Montana Creek near Auke Bay (d)	72
Duck Creek below Nancy Street near Auke Bay (d)	73
Antler River below Antler Lake near Auke Bay (d)	74
Kakuhan Creek near Haines (d, t)	75
Kahtaheena River above Upper Falls near Gustavus (d, t)	78
Kahtaheena River near Gustavus (d, t)	81
STREAMS ON REVILLAGIGEDO ISLAND	
Swan Lake near Ketchikan (d, e)	85
Fish Creek near Ketchikan (d)	86
STREAMS ON PRINCE OF WALES ISLAND	
Staney Creek	
North Fork Staney Creek near Klawock (d, t)	88
Staney Creek near Klawock (d, t)	92
Threemile Creek near Klawock (d)	96
Halfmile Creek above diversion near Klawock (d)	97
Reynolds Creek below Lake Mellen near Hydaburg (d)	98
Old Tom Creek near Kasaan (d, t)	99
STREAMS ON WORONKOFSKI ISLAND	
Sunrise Lake Outlet near Wrangell (d, t)	103

SOUTHEAST ALASKA -- Continued

Indian River near Sitka (d, t, c, s)	107 114
Sawmill Creek near Sitka	121
Silver Bay Tributary at Bear Cove near Sitka (d)	121
STREAMS ON BARANOF ISLAND	
Green Lake near Sitka (d)	123
STREAMS ON ADMIRALTY ISLAND	
Greens Creek at Greens Creek Mine near Juneau (d)	124
STREAMS ON CHICHAGOF ISLAND	
Favorite Creek near Angoon (d)	126
Kadashan River above Hook Creek near Tenakee (d, t)	127
Middle Basin Creek near Tenakee (d, t)	131
STREAMS ON DOUGLAS ISLAND	
Peterson Creek below North Fork near Auke Bay (d, c)	135
MAINLAND STREAMS	
Alsek River near Yakutat (d)	139
Situk River near Yakutat (d, t)	140
Ophir Creek near Yakutat (d)	144
SOUTH-CENTRAL ALASKA	
MAINLAND STREAMS	
Copper River	
Gulkana River at Sourdough (d)	145
Nicolet Creek near Cordova (d)	146
Solomon Lake (head of Solomon Gulch) near Valdez (e)	148
Solomon Gulch tailrace near Valdez (d)	149
Solomon Gulch at top of falls near Valdez (d)	150
Solomon Gulch near Valdez (d)	150
Wolverine Creek near Lawing (d)	151
Resurrection River	133
Salmon Creek	
Lost Creek Crowse Creek et Crowse Loke Outlet near Seward (d) 15227720	155
Grouse Creek at Grouse Lake Outlet near Seward (d)	155
Spruce Creek near Seward (d)	156
Upper Nuka River near park boundary near Homer (d)	159
Battle Creek	1.61
Battle Creek diversion above Bradley Lake near Homer (d) 15238978	161
Bradley River	1.00
Upper Bradley River near Nuka Glacier near Homer (d)	163
Bradley River near Homer (d, e)	165
Bradley River below dam near Homer (d)	166
Middle Fork Bradley River near Homer (d)	167

SOUTH-CENTRAL ALASKA-Continued

Middle Fork Bradley River below North Fork Bradley River near		
Homer (d)	15239060	169
Bradley River near Tidewater near Homer (d)	15239070	170
Ninilchik River at Ninilchik (d, t, c, s, b)	15241600	172
Kenai River		
Snow River near Seward (d)	15243900	178
Kenai River at Cooper Landing (d)	15258000	179
Cooper Creek at mouth near Cooper Landing (d, t)	15261000	181
Kenai River below Skilak Lake Outlet near Sterling (d, c, t, s, b)	15266110	184
Kenai River below mouth of Killey River near Sterling (d)	15266150	190
Kenai River at Soldotna (d, c, t, s, b)	15266300	191
Sixmile Creek near Hope (d)	15271000	200
Portage Creek at Portage Lake outlet near Whittier (d)	15272280	202
Twentymile River below Glacier River near Portage (d)		204
Campbell Creek		
South Fork Campbell Creek near Anchorage (d, t, c, s, b, m)	15274000	205
Chester Creek at Arctic Boulevard at Anchorage (d, t, c, s, b, m)	15275100	212
Ship Creek near Anchorage (d)	15276000	222
Eklutna Lake (head of Eklutna River) near Palmer (e)	15278000	244
Matanuska River		
Knik River near Palmer (d)	15281000	245
Camp Creek near Sheep Mountain Lodge (d, t)	15281500	247
Moose Creek near Palmer (d, c)		250
Matanuska River near Palmer (d)	15284000	254
Little Susitna River near Palmer (d)	15290000	256
Susitna River at Gold Creek (d)	15292000	258
Talkeetna River near Talkeetna (d)	15292700	259
Willow Creek near Willow (d)	15294005	260
Deshka River near Willow (d, t, c, s, b)		262
Johnson River above Lateral Glacier near Tuxedni Bay (d, c)	15294700	269
STREAMS ON KODIAK ISLAND		
Terror River at mouth near Kodiak (d, t)	15295700	272
SOUTHWEST ALASKA		
MAINLAND STREAMS		
Russell Creek near Cold Bay (d, t)	15297610	277
Kvichak River	15257014	2,,
Iliamna River near Pedro Bay (d)	15300300	280
Kuskokwim River	10000000	200
Takotna River		
Tatalina River near Takotna (d, t)	15303700	281
Kuskokwim River at Liskys Crossing near Stony River (e)		284
Kuskokwim River at Crooked Creek (d)		285
Tubble and the crossed Crock (a)	1550 1000	200

SOUTHWEST ALASKA-Continued

Kuskokwim River at Aniak (e, t)	15304060	286
YUKON ALASKA		
Yukon River		
Fortymile River		
South Fork Fortymile River		
Walker Fork		
Wade Creek		
Wade Creek Tributary Near Chicken (d)	15320100	289
Yukon River at Eagle (d, c, s)		290
Porcupine River near International Boundary, Yukon Territory (d)		295
Yukon River near Stevens Village (d, c, s)		296
Tanana River	1545550d	270
Goodpaster River		
Liese Creek near Big Delta (d)	15477730	301
Goodpaster River near Big Delta (d)		302
Upper West Creek near Big Delta (d)		303
Central Creek	134///01	303
Sonora Creek above tributary near Big Delta (d)	15/177768	304
Sonora Creek near Big Delta (d)		306
Central Creek near Big Delta (d)		308
Delta River	13 4 ////u	300
Phelan Creek near Paxson (d)	15478040	309
Salcha River near Salchaket (d)		311
Tanana River at Fairbanks (d)		312
Chena River	15405500	312
Chena River near Two Rivers (d)	15493000	313
Little Chena River near Fairbanks (d)		314
Chena River at Fairbanks (d)		316
Tanana River at Nenana (d, c, s)		319
Nenana River		
Healy Creek at Suntrana near Healy (d, s)	15518020	325
Lignite Creek above mouth near Healy (d,s)		330
Koyukuk River		
Middle Fork Koyukuk River		
Slate Creek at Coldfoot (d, t)	15564879	333
Yukon River at Pilot Station (d,c,s)		336
NORTHWEST ALASKA		
Unalakleet River above Chiroskey River near Unalakleet (d, t)	15565700	340
Dahl Creek near Kobuk (d)	15743850	343
Kobuk River near Kiana (d)		344

NORTHWEST ALASKA-Continued

Wulik River above Ferric Creek near Kivalina (d)
\mathcal{E}
Wulik River below Tutak Creek near Kivalina (d)
ARCTIC SLOPE ALASKA
Nunavak Creek near Barrow (d)
Kuparuk River near Deadhorse (d)
Sagavanirktok River
Sagavanirktok River tributary near Pump Station 3 (d)
Sagavanirktok River near Pump Station 3 (d)
* * * * * * * * * * *
Discharge at partial-record stations and miscellaneous sites
Crest-stage partial-record stations
Miscellaneous sites
Analyses of samples collected at water-quality miscellaneous sites

GROUND-WATER WELLS, BY HYDROLOGIC SUBREGION, FOR WHICH RECORDS ARE PUBLISHED IN THIS VOLUME

GROUND-WATER LEVELS

SOUTHEAST ALASKA	
Juneau	
WELL 582125134342401. Local number, CD04006631DBAD1022	417
WELL 582131134343101. Local number, CD04006631ACDC2002	417
WELL 582136134344802. Local number, CD04006631ACBC1015	418
WELL 582146134351701. Local number, CD04006631BBDD1016	418
WELL 582147134351401. Local number, CD04006631BBDB1017	419
WELL 582150134344501. Local number, CD04006631BAAD1021	419
WELL 582154134350501. Local number, CD04006630CDCB1027	420
WELL 582156134351701. Local number, CD04006631BBBA1018	420
WELL 582158134344101. Local number, CD04006630DCCC1034	421
WELL 582158134352001. Local number, CD04006630CCCD2017	421
WELL 582203134351601. Local number, CD04006630CCDB1028	422
WELL 582203134351701. Local number, CD04006630CCBD3015	422
WELL 582203134351901. Local number, CD04006630CCBD2015	423
WELL 582206134351401. Local number, CD04006630CCAC1029	423
WELL 582208134351201. Local number, CD04006630CCAB1030	424
WELL 582208134352601. Local number, CD04006630CCBB1031	424
WELL 582215134350501. Local number, CD04006630CBAD1032	425
WELL 582240134344501. Local number, CD04006630BADA2033	426
WELL 582240134352901. Local number, CD04006630BBCB1036	427
WELL 582256134340401. Local number, CD04006619DDBD1054	428
WELL 582306134344001. Local number, CD04006619DBCB1056	429
WELL 582314134344801. Local number, CD04006619BDDD1055	430
WELL 582314134351201. Local number, CD04006619BCDD2020	431
WELL 582322134341001. Local number, CD04006619ACAB1050	432
WELL 582326134341901. Local number, CD04006619ADBA1011	432
WELL 582359134352103. Local number, CD04006618CBCA3019 85177	433
SOUTH-CENTRAL ALASKA	
Municipality of Anchorage	
WELL 611725149335401. Local number, SB01400223BCCD1003	434
WELL 011/23149353401. Local number, SB01400223BCCD1005	434
YUKON ALASKA	
Fairbanks North Star Borough	
WELL 644400147151501. Local number, FD00200224ABBB1001 51659	435
WELL 644528147131201. Local number, FD00200307ACBD1001 51660	436
WELL 645434147385101. Local number, FB00100113DDBC2001 50673	437

DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS

The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Alaska have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Those stations with an asterisk (*) after the station number are currently operated as crest-stage partial-record stations. Short-term, seasonal, and fragmented records for data collected at 190 sites in Alaska west of 141 degrees longitude during water years 1906-14 have not been entered into NWIS and are not included in this list. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[Letters after station name designate type of data collected: (d) discharge, (e) elevation (stage only)]

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTHEA	AST ALASKA		
Salmon River near Hyder (d)	15008000	a94	1963-73
Davis River near Hyder (d)	15010000	a80	1930-40
Red River near Metlakatla (d)	15011500	45.3	1963-78
White Creek near Ketchikan (d)	15011870	2.70	1977-84
Keta River near Ketchikan (d)	15011880	74.2	1977-84
Blossom River near Ketchikan (d)	15011894	68.1	1981-84
Winstanley Creek near Ketchikan (d)	15012000	15.5	1936-38 1947-75
Punchbowl Lake Outlet near Ketchikan (d)	15014000	a12	1924-30
Klahini River near Bell Island (d)	15015600	58.0	1967-73
Short Creek near Bell Island at Short Bay (d)	15016000	a20	1922-26
Shelokum Lake Outlet near Bell Island (d)	15018000	15.6	b1915-25
Tyee Creek near Wrangell (d)	15020000	ar15.2	c1922-27
Tyee Creek at Mouth near Wrangell (d)	15020100	16.1	1963-69
East Fork Bradfield River near Wrangell (d)	15020500	63.3	1979-81
Mill Creek near Wrangell (d)	15024000	a37	1915-17 c1923-28
Goat Creek near Wrangell (d)	15024750	17.3	1976-86
Cascade Creek near Petersburg (d)	15026000	23.0	1918-29 1947-73
Scenery Creek near Petersburg (d)	15028000	30.0	1949-52
Farragut River near Petersburg (d)	15028300	151	1977-93
Sweetheart Falls Creek near Juneau (d)	15030000	r36.3	b1915-27
Long Lake near Juneau (e)	15031700	30.2	1965-75
Long Lake Outlet near Juneau (d)	15032000	30.2	1913-16
Long River near Juneau (d)	15034000	32.5	1916-24 b1927-33 1952-68 R1969-73
Speel River near Juneau (d)	15036000	226	1916-18 1960-75
Crater Creek near Juneau (d)	15038000	11.4	b1913-21 c1923-24 1927-33

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTHEAST AL	ASKAContinued		
Dorothy Creek near Juneau (d)	15040000	15.2	1929-41 c1942-44 1945-67
Carlson Creek at Sunny Cove near Juneau (d)	15042000	22.3	c1914 b1916-21
Carlson Creek near Juneau (d)	15044000	24.3	1951-61
Grindstone Creek near Juneau (d)	15046000	r3.75	1916-21
Sheep Creek near Juneau (d)	15048000	4.57	1911-14 1916-21 1947-73
Gold Creek near Juneau (d)**	15049900	8.41	1984-97
Salmon Creek above Canyon Mouth near Juneau (d)	15051008	9.50	R1982-90
Lemon Creek near Juneau (d)	15052000	12.1	b1951-73
Lemon Creek near Mouth near Juneau (d)	15052009	22.9	1983-86
Montana Creek near Auke Bay (d)	15052800*	15.5	1965-75 1983-87
Lake Creek at Auke Bay (d)	15053800	2.50	1964-73
Auke Creek at Auke Bay (d)	15054000	3.96	1947-50 1962-75
Herbert River near Auke Bay (d)	15054200	56.9	1967-71
Bridget Cove Tributary near Auke Bay (d)	15054600	0.95	1971-73
Davies Creek near Auke Bay (d)	15054990	15.2	1970-72
Sherman Creek at Comet (d)	15056000	3.65	1914-17
Dayebas Creek near Haines (d)	15056070	9.33	1980-81
Goat Lake Outlet near Skagway (d)	15056095	2.92	1991-97
Skagway River at Skagway (d)	15056100	a145	1964-86
West Creek near Skagway (d)	15056200	43.2	1962-77
Taiya River near Skagway (d)	15056210	179	1970-78
Upper Chilkoot Lake Outlet near Haines (d)	15056280	4.59	1993-97
Chilkat River at Gorge near Klukwan (d)	15056400	a190	1962-68
Chilkat River near Klukwan (d)	15056500	a760	1959-61
Klehini River near Klukwan (d)	15056560	284	1982-93
Purple Lake Outlet near Metlakatla (d)	15058000	6.67	1947-56
Whipple Creek near Ward Cove (d)	15059500	5.29	1968-80
Perseverance Creek near Wacker (d)	15060000	2.81	b1932-39 1947-69
Ward Creek near Wacker (d)	15062000	14.0	1949-53 R1954-58
Ketchikan Creek at Ketchikan (d)	15064000	13.5	R1910-12 bR1915-20 R1965-67

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTHEAST ALASK	KAContinued		
Beaver Falls Creek near Ketchikan (d)	15066000	5.8	c1917 1920-26 1928-32
Upper Mahoney Lake Outlet near Ketchikan (d)	15067900	2.03	1977-89
Mahoney Creek near Ketchikan (d)	15068000	5.70	b1920-34 1948-58 1978-81
Swan Lake (Falls Creek) near Ketchikan (d)	15070000#	36.5	b1916-34 1947-59
Ella Creek near Ketchikan (d)	15074000	19.7	1928-38 1947-58
Manzanita Creek near Ketchikan (d)	15076000	33.9	1928-37 1947-67
Grace Creek near Ketchikan (d)	15078000	30.2	1928-37 1964-69
Orchard Creek near Bell Island (d)	15080000	a59	1915-27
Traitors River near Bell Island (d)	15080500	20.8	1964-68
Staney Creek near Craig (d)	15081500	51.6	1965-81
Bonnie Creek near Klawock (d)	15081510	2.72	1981
Black Bear Lake Outlet near Klawock (d)	15081580	1.82	1980-91
Klawak River near Klawock (d)	15081620	46.1	1977
North Branch Trocadero Creek near Hydaburg (d)	15081800	17.4	1967-73
Reynolds Creek near Hydaburg (d)	15082000	a5.7	1951-56
Perkins Creek near Metlakatla (d)	15083500	3.38	1976-93
Myrtle Creek at Niblack (d)	15084000		1917-21
Saltery Creek near Kasaan (d)	15085000	5.53	1962-64
Cabin Creek near Kasaan (d)	15085300	8.83	1962-64
Virginia Creek near Kasaan (d)	15085400	3.08	1962-64
Indian Creek near Hollis (d)	15085600	8.82	1949-64
Harris River near Hollis (d)	15085700	28.7	1949-64
Maybeso Creek at Hollis (d)	15085800	15.1	1949-63
Wolf Lake Outlet near Hollis (d)	15085900	1.64	1995-98
Karta River near Kasaan (d)	15086000	49.5	1915-23
Neck Creek near Point Baker (d)	15086500	17.0	1960-67
Big Creek near Point Baker (d)	15086600	11.2	1964-81
Mill Creek at Wrangell (d)	15087000	0.09	1965-67
Hammer Slough at Petersburg (d)	15087200	1.46	1965-67
Municipal Watershed Creek near Petersburg (d)	15087545	2.20	1979-88
No Name Creek near Petersburg (d)	15087560	3.17	1971-73
Hamilton Creek near Kake (d)	15087570	65.0	1977-86 1988-96

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTHEAST ALASKA	Continued		
Rocky Pass Creek near Point Baker (d)	15087590	2.72	1977-88
Nakwasina River near Sitka (d)	15087610	31.9	1977-82
Sawmill Creek near Sitka (d)	15088000	39.0	c1920-23 1928-42 1946-57
Green Lake (outlet) near Sitka (d)	15090000#	r22.8	1915-25
Maksoutof River near Port Alexander (d)	15092000	a26	1951-56
Betty Lake Outlet near Port Armstrong (d)	15093200	2.66	1978-81
Sashin Creek near Big Port Walter (d)	15093400	3.72	1965-73 1975-80
East Branch Lovers Cove Creek Diversion near Big Port Walter (d)	15093600		1965-71
Deer Lake Outlet near Port Alexander (d)	15094000	7.41	1951-68
Coal Creek near Baranof (d)	15096000	28.5	b1922-27
Baranof River at Baranof (d)	15098000	32.0	1915-28 1958-74
Takatz Creek near Baranof (d)	15100000	17.5	1951-69
Nichols Creek near Angoon (d)	15100500	a0.12	1981
Stephens Creek near Angoon (d)	15100510	a0.14	1981
Kalinin Bay Tributary near Sitka (d)	15101200	2.28	1976-80
Greens Creek near Juneau (d)	15101500	22.8	1979-92
Hasselborg Creek near Angoon (d)	15102000	56.2	1951-68
Porcupine River near Chichagof (d)	15104000	7.12	1918-20
Falls Creek near Chichagof (d)	15106000	6.48	1918-20
Black River near Pelican (d)	15106100	24.7	1978-82
Hook Creek above Tributary near Tenakee (d)	15106940	4.48	1967-80
Hook Creek near Tenakee (d)	15106960	8.00	1966-80
Tonalite Creek near Tenakee (d)	15106980	14.5	1968-88
Kadashan River near Tenakee (d)	15107000	37.7	1964-79
West Fork Indian River near Tenakee (d)	15107910	3.02	1979-81
Indian River near Tenakee (d)	15107920	12.9	1976-82
Pavlof River near Tenakee (d)	15108000	24.3	1957-81
Hilda Creek near Douglas (d)	15108600	2.62	1967-71
Lawson Creek at Douglas (d)	15108800	2.98	1967-71
Fish Creek near Auke Bay (d)	15109000	13.6	1959-78
SOUTH-CENTRAL A	ALASKA		
Dick Creek near Cordova (d)	15195000	7.95	1970-81
Gakona River at Gakona (d)	15200000	a620	c1970
Tazlina River near Glennallen (d)	15202000	a2670	1949-50 1952-72

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTH-CENTRAL ALAS	KAContinued		
Klutina River at Copper Center (d)	15206000	a880	c1913 1949-67 c1970
Little Tonsina River near Tonsina (d)	15207800	22.7	1972-78
Tonsina River at Tonsina (d)	15208000	a420	b1950-82
Squirrel Creek at Tonsina (d)	15208100	70.5	1965-75
West Fork Kennicott River at McCarthy (d)	15209700		c1992-95
East Fork Kennicott River at McCarthy (d)	15209800		c1991-92
Tebay River near Chitina (d)	15211500	a55.4	1962-65
Copper River near Chitina (d)	15212000	a20600	c1950 c1952-53 1956-90
Copper River at Million Dollar Bridge near Cordova (d)	15214000	24200	b1907-10 c1913 1988-95
Heney Creek at canyon mouth near Cordova (d)	15215992	1.53	1992-93
Power Creek near Cordova (d)	15216000	20.5	c1913 1947-95
Middle Arm Eyak Lake Tributory near Cordova (d)	15216003	2.90	1992-93
Murchison Creek near Cordova (d)	15216008	a0.37	1992-93
Humpback Creek near Cordova (d)	15216100	4.37	c1913 1974-75
West Fork Olsen Bay Creek near Cordova (d)	15219000	4.78	1964-81
Duck River at Silver Lake Outlet near Valdez (d)	15223900	25.1	1982-85
Duck River near Tidewater near Valdez (d)	15224000	26.7	c1913-14 1982-85
Solomon Gulch Bypass near Valdez (d)	15225998		c1986-94
Lowe River near Valdez (d)	15226500	201	1971-74
Lowe River in Keystone Canyon near Valdez (d)	15226600	222	1975-76
Hobo Creek near Whittier (d)	15236000	5.53	c1913 1990-2000
Nellie Juan River near Hunter (d)	15237000	133	1961-65
Main Bay Creek near Port Nellie Juan (d)	15237020	5.93	1981-84
San Juan River near Seward (d)	15237360	12.4	1986-96
Resurrection River at Seward (d)	15237700	169	1965-68
Bear Creek Tributary near Seward (d)	15237800	1.63	1967-68
Lost Creek near Seward (d)	15238000	8.42	1948-50
Lowell Creek above city wells at Seward (d)	1523849020	3.73	1993-95
Lowell Creek at Seward (d)	15238500	4.02	1965-68 1991-93
Nuka River near Tidewater near Homer (d)	15238653	a38	1984-85

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTH-CENTRAL ALA	ASKAContinued		
Seldovia River near Seldovia (d)	15238795	26.2	1979-80
Barabara Creek near Seldovia (d)	15238820	20.7	1972-92
Tutka Lagoon Creek near Homer (d)	15238860	10.8	1973-76
Battle Creek below Glacier near Homer (d)	15238982	g11.8	1991-93
South Fork Battle Creek near Homer (d)	15238984	a6.5	1991-93
Battle Creek near Tidewater near Homer (d)	15238985	ag21	1991-93
Fritz Creek near Homer (d)	15239500*	10.4	1967-70 1986-92
Twitter Creek near Homer (d)	15239880	16.1	1971-73
Anchor River near Anchor Point (d)	15239900*	137	1965-73 1979-86 1991-92
Anchor River at Anchor Point (d)	15240000	224	1953-66
Kasilof River near Kasilof (d)	15242000	738	1949-70
Snow River near Divide (d)	15243500	a99.8	1961-65
Ptarmigan Creek at Lawing (d)	15244000	32.6	1947-58
Grant Creek near Moose Pass (d)	15246000	44.2	1947-58
Trail River near Lawing (d,e)	15248000	181	d1947-74 e1975-77
Crescent Creek near Moose Pass (d)	15253000	21.4	1957-60
Crescent Creek near Cooper Landing (d)	15254000	31.7	1949-66
Cooper Creek near Cooper Landing (d)	15260000	31.8	1949-59
Stetson Creek near Cooper Landing (d)	15260500	a8.6	1958-63
Russian River near Cooper Landing (d)	15264000	61.8	1947-54
Beaver Creek near Kenai (d)	15266500	a51	1968-78
Bernice Lake near Kenai (e)	15266895		1977-79
Bishop Creek near Kenai (d)	15267000	a24.2	1977-79
Resurrection Creek near Hope (d)	15267900	149	1968-86
Resurrection Creek at Hope (d)	15268000	162	1950-51
Glacier Creek at Girdwood (d)	15272550	r58.2	1965-78
Rabbit Creek at Anchorage (d)	15273050	a15	1979-80 1984-85
Little Rabbit Creek above Goldenview Drive at Anchorage (d)	15273095	5.06	1981-85
Little Rabbit Creek at Anchorage (d)	15273102	5.94	1979-80
Rabbit Creek at New Seward Highway at Anchorage (d)	15273105	a24.5	1984-86
South Fork Campbell Creek at Canyon Mouth near Anchorage (d)	15273900	25.2	1967-79
North Fork Campbell Creek near Anchorage (d)	15274300	13.4	1974-84
Little Campbell Creek at Nathan Drive near Anchorage (d)	15274550	a15	c1981 1986-92
Campbell Creek near Spenard (d)	15274600	69.7	1966-93

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTH-CENTRAL ALASKAC	Continued		
Sand Lake near Spenard (e)	15274700		c1967-74
South Branch South Fork Chester Creek near East 20th Ave. at Anchorage (d)	15274798	9.39	1981-84
Chester Creek at Anchorage (d)	15275000	20.0	1958-76
Ship Creek at Elmendorf Air Force Base near Anchorage (d)	15276500	113	1963-71
Ship Creek below Power Plant at Elmendorf Air Force Base (d)	15276570	115	1971-81
Ditch on Elmendorf Air Force Base (d)	15276650	3.73	1973-75
Eagle River at Eagle River (d)	15277100	a192	1966-81
Peters Creek near Birchwood (d)	15277410	87.8	1973-83
East Fork Eklutna Creek near Palmer (d)	15277600	538.2	1960-62 1985-89
West Fork Eklutna Creek near Palmer (d)	15277800	25.4	1960-62 1985-89
Eklutna Creek near Palmer (d)	15280000	119	1947-54 R1955-62
Knik River near Palmer (d)	15281000	a1180	1960-88 1992
Caribou Creek near Sutton (d)	15282000	289	1955-78
Palmer Hayflat at railroad near Palmer (e)	15284500		1992-97
Cottonwood Creek near Wasilla (d)	15286000	28.5	1949-54 1998-2000
Susitna River near Denali (d)	15291000	a950	1957-66 1968-86
Maclaren River near Paxson (d)	15291200	a280	1958-86
Susitna River near Cantwell (d)	15291500	a4140	1961-72 1980-86
Chulitna River near Talkeetna (d)	15292400	a2570	1958-72 1980-86
Susitna River at Sunshine (d)	15292780	a11100	1981-86
Deception Creek near Willow (d)	15294010	48.0	1978-85
Skwentna River near Skwentna (d)	15294300	a2250	1960-82
Yentna River near Susitna Station (d)	15294345	a6180	1981-86
Susitna River at Susitna Station (d)	15294350	a19400	1975-93
Capps Creek below North Capps Creek near Tyonek (d)	15294410	10.5	1979-85
Chuitna River near Tyonek (d)	15294450	131	1976-86
Chakachatna River near Tyonek (d)	15294500	a1120	1959-72
Montana Bill Creek at pipeline near Kenai (d)	15294585		c1991-92
Paint River near Kamishak (d)	15294900	205	1983-85 1989 1991-95
Little Kitoi Creek near Afognak (d)	15295500	2.63	1960-61

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTH-CENTRAL A	ALASKAContinued		
Terror River near Kodiak (d)	15295600	15.0	1962-68 1978-82 R1983-86
Uganik River near Kodiak (d)	15296000	123	1951-78
Spiridon Lake Outlet near Larsen Bay (d)	15296300	23.3	1962-65
Larsen Bay Creek near Larsen Bay (d)	15296480	3.92	1980-84
Falls Creek near Larsen Bay (d)	15296500	5.67	1974-75
Canyon Creek near Larsen Bay (d)	15296520	8.82	1974-76
Upper Thumb River near Larsen Bay (d)	15296550	18.8	1974-82
Karluk River at Outlet near Larsen Bay (d)	15296600	100	1975-76 1979-82
Akalura Creek at Olga Bay (d)	15296950	18.4	1975-76
Dog Salmon Creek near Ayakulik (d)	15297000	72.9	1960-61
Hidden Basin Creek near Port Lions (d)	15297100	3.01	1982-84
Hidden Basin Creek near Mouth near Kodiak (d)	15297110	11.9	1983-84
Myrtle Creek near Kodiak (d)	15297200*	4.74	1963-86
Middle Fork Pillar Creek near Kodiak (d)	15297450	2.02	1969-70
Monashka Creek near Kodiak (d)	15297470	5.51	1972 R1973-76
Falls Creek near Port Lions (d)	15297482	a4.3	1981-83
Kizhuyak River near Port Lions (d)	15297485	42.5	1980-94
SOUTHWES	ST ALASKA		
Whiskey Bills Creek near Sand Point (d)	15297602	a0.30	1983-84
Humboldt Creek at Sand Point (d)	15297603	a5.2	1983-84
Sweeper Creek at Adak (d)	15297617	1.0	1992-96
Moffett Creek at Adak (d)	15297625	4.5	1993-96
Limpet Creek on Amchitka Island (d)	15297640	1.69	1968-72
Falls Creek on Amchitka Island (d)	15297650	0.86	1968-72
Clevenger Creek on Amchitka Island (d)	15297655	0.28	1968-74
Constantine Spring Creek on Amchitka Island (d)	15297660		1968-73
Bridge Creek on Amchitka Island (d)	15297680	3.03	1968-74
White Alice Creek on Amchitka Island (d)	15297690	0.79	1968-74
Lake Creek at Shemya Air Force Base (d)	15297767	a1.0	1971-73
Gallery Spring at Shemya Air Force Base (d)	15297771		1971-72
Gallery Creek at Shemya Air Force Base (d)	15297773	a1.0	1971-73
Eskimo Creek at King Salmon (d)	15297900	16.1	1973-76 1978-84
Tanalian River near Port Alsworth (d)	15298000	a200	1951-56
Tazimina River near Nondalton (d)	15299900	327	1981-86

Station name	Station number	Drainage area (mi ²)	Period of record
SOUTHWEST ALASI	KAContinued		
Newhalen River near Iliamna (d)	15300000	3478	1951-67 1982-86
Kvichak River at Igiugig (d)	15300500	a6500	1967-87
Allen River near Aleknagik (d)	15301500	278	1963-66
Nuyakuk River near Dillingham (d)	15302000	1490	1953-96
Nushagak River at Ekwok (d)	15302500	a9850	1978-93
Grant Lake Outlet near Aleknagik (d)	15302800	r34.3	1959-65
Elva Lake Outlet near Aleknagik (d)	15302840	9.00	1980-82
Wood River near Aleknagik (d)	15303000	a1110	1957-70
Silver Salmon Creek near Aleknagik (d)	15303010	4.46	1985-86 c1988-89
Wood River Tributary near Aleknagik (d)	15303011	3.35	c1990 c1992-93
East Creek near Dillingham (d)	15303100	2.12	1973-75
Snake River near Dillingham (d)	15303150	113	1973-83
Kuskokwim River at McGrath (d)	15303600	a11700	1963-73
Kisaralik River near Akiak (d)	15304200	265	1980-87
Browns Creek near Bethel (d)	15304293	4.79	c1985-94
Browns Creek at Bethel (d)	15304298	10.5	c1985
YUKON ALA	ASKA		
King Creek near Dome Creek (d)	15344000*	5.87	1983-90
Fortymile River near Steele Creek (d)	15348000	a5880	c1910-12 1976-82
Porcupine River at Old Crow, Yukon Territory, Canada (d)	15388950	a21400	f1980-89
Porcupine River near Fort Yukon (d)	15389000	a29500	1964-79
Chandalar River near Venetie (d)	15389500	a9330	1963-73
Boulder Creek near Central (d)	15439800*	31.3	1966-82 1984-86
Hess Creek near Livengood (d)	15457800	662	1970-78 1982-86
Yukon River at Rampart (d)	15468000	a199400	1955-67
Chisana River at Northway Junction (d)	15470000	a3280	1949-71
Tanana River near Tok Junction (d)	15472000	a6800	1950-53
Tok River near Tok Junction (d)	15474000	a930	1952-54
Tanana River near Tanacross (d)	15476000	a8550	1953-90
Berry Creek near Dot Lake (d)	15476300*	65.1	1971-81
Dry Creek near Dot Lake (d)	15476400	57.6	1966-69
Clearwater Creek near Delta Junction (d)	15477500	a360	1977-79
Tanana River at Big Delta (d)	15478000	a13500	1949-52 1954-57

Station name	Station number	Drainage area (mi ²)	Period of record
YUKON ALASKAC	ontinued		
Tanana River near Harding Lake (e)	15481000	17240	c1968-82
Moose Creek at Eielson Air Force Base (d)	15485000	136	1964-65
Garrison Slough at Eielson Air Force Base (d)	15485200	6.24	1964-65
Chena River near North Pole (d)	15493500	r1445	1972-80
Chena River below Moose Creek Dam (d)	15493700	1,460	1979-96
Wood River near Fairbanks (d)	15514500	855	1968-78
Seattle Creek near Cantwell (d)	15515800	36.2	1966-75
Nenana River near Windy (d)	15516000	a710	1950-56
Nenana River near Healy (d)	15518000	a1910	1951-79
Nenana River at Healy (d)	15518040	a2100	1990-91
Nenana River near Rex (d)	15518300	a2450	1965-68
Teklanika River near Lignite (d)	15518350	490	1965-74
Chatanika River above Poker Creek near Chatanika (d)	15534800	419	1996
Poker Creek near Chatanika (d)	15534900	23.1	1971-78
Caribou Creek near Chatanika (d)	15535000	9.19	1970-84
Long Creek at Long near Ruby	15564450	25.4	1995-97
Melozitna River near Ruby (d)	15564600	2693	1961-73
Yukon River at Ruby (d)	15564800	a259000	1957-78
Middle Fork Koyukuk River near Wiseman (d)	15564875	a1200	1970-78 1984-87
Wiseman Creek at Wiseman (d)	15564877	49.2	1970-78
Jim River near Bettles (d)	15564885	465	1970-77
Koyukuk River at Hughes (d)	15564900	a18400	1960-82
Yukon River near Kaltag (d)	15565200	a296000	1957-66
Ophir Creek near Takotna (d)	15565235	6.19	1975-80
Yukon River at Pilot Station (d)	15565447	321,000	1975-96
NORTHWEST ALA	ASKA		
Snake River near Nome (d)	15621000	85.7	1965-81 1982-91
Eldorado Creek near Teller (d)	15635000	5.83	1988-90 1992-98
Gold Run Creek near Teller (d)	15637000*	24.2	c1986-88
Crater Creek near Nome (d)	15668200	21.9	1975-85
Kuzitrin River near Nome (d)	15712000	a1720	c1908-10 1962-73
Humboldt Creek near Serpintine Hot Springs near Nome (d)	15716010	8.15	c1992-93
June Creek near Kotzebue (d)	15743000	10.9	1965-67
Kobuk River at Ambler (d)	15744000	a6570	1965-78
Noatak River at Noatak (d)	15746000	a12000	c1965-71

Station name	Station number	Drainage area (mi ²)	Period of record
NORTHWEST ALA	SKAContinued		
Ikalukrok Creek above Red Dog Creek near Noatak (d)	15746980	59.2	1991-92
Red Dog Mine clean water ditch near Noatak (d)	15746983	4.74	1991-92
North Fork Red Dog Creek near Kivalina (d)	15746988*	15.9	1991-92
Red Dog Creek above mouth near Noatak (d)	15746990	24.6	1991-92
Ogotoruk Creek near Point Hope (d)	15748000	a35	c1958-62
ARCTIC SLOP	E ALASKA		
Esatkuat Creek near Barrow (d)	15799000	a1.46	c1972-73
Esatkuat Lagoon Outlet at Barrow (d)	15799300	a3.52	c1972-73
Meade River at Atkasuk (d)	15803000	a1800	c1977
Teshekpuk Lake Outlet near Lonely (e)	15829995	a1400	c1977
Miguakiak River near Teshekpuk Lake near Lonely (d)	15830000	a1460	c1977
Colville River near Nuiqsut (d)	15880000	20670	c1977
Putuligayuk River near Deadhorse (d)	15896700	a176	1970-79 c1980 1982-86 c1987-95
Atigun River near Pump Station 4 (d)	15904800	48.7	1991-94
Atigun River Tributary near Pump Station 4 (d)	15904900*	32.6	1977-86
Sagavanirktok River near Sagwon (d)	15910000	2208	1970-78
Chamberlin Creek near Barter Island (d)	15975000	1.46	c1958
Neruokpukkoonga Creek near Barter Island (d)	15976000	123	c1958

Currently operated as a crest-stage partial-record station
Currently operated as a water-quality partial record station
Currently operated as a monthly discharge and reservoir elevation station
Approximately
Break in record
Fragmentary or seasonal
Additional record for water years 1961-79 available from discharge records of Water Survey of Canada
Prior to diversion upstream
Revised

Revised Regulated

DISCONTINUED SURFACE-WATER-QUALITY STATIONS

The following continuous-record surface-water-quality stations in Alaska have been discontinued. Daily records of temperature, specific conductance, or sediment were collected and published for the period of record shown for each station. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report.

[Type of record: Temp. (temperature), S.C. (specific conductance), Sed. (sediment)]

Discontinued continuous record surface-water-quality stations [Footnotes at end of table on p. xxviii]

Seta River near Ketchikan 15011880 74.2 Temp., S.C. 1978-81, 1983-84	Station name	Station number	Drainage area (mi ²)	Type of record	Period of record (water years)
Seta River near Ketchikan 15011880 74.2 Temp., S.C. 1978-81, 1983-84		SOUTHEAST ALASKA			
Select S	White Creek near Ketchikan	15011870	2.70	Temp., S.C.	1978-83
Stikine River near Wrangell 15024800 a19,920 Temp. 1976-82 Sed. 1982	Keta River near Ketchikan	15011880	74.2	Temp., S.C.	1978-81, 1983-84
Sed 1982 1982 1982 1982 1982 1982 1982 1982 1982 1983 1	Blossom River near Ketchikan	15011894	68.1	Temp., S.C.	1981-84
Dorothy Lake Outlet (head of Dorothy Creek) near Juneau 15039900 Juneau 11.0 Temp 1996-99 Juneau 20uck Creek below Nancy Street near Auke Bay 15053200 Temp 1997-99 Lake Creek at Auke Bay 15053800 2.50 Temp 1963-73 Auke Creek at Auke Bay 15053800 3.96 Temp 1962-75 Davies Creek at Auke Bay 15054000 3.96 Temp. 1962-75 Davies Creek near Auke Bay 15054990 15.2 Temp. 1969-72 Skagway River at Skagway 15056100 a145 Temp. 1979-82 S.C. 1980-82 Temp. 1971-74, 1977 Chilkat River at Gorge near Klukwan 15056210 149 Temp. 1971-74, 1977 Chilkat River at Gorge near Klukwan 150566400 a190 Temp. 1962-67 Chilkat River near Skagway 15056500 a760 Temp. 1965-69 Traitors River near Bell Island 15080500 20.8 Temp. 1965-69 Traitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Cerkins Creek near Kasaan 1508500 3.38 Temp. 1976-77 Perkins Creek near Kasaan 1508500 5.53 Temp. 1976-93 Saltery Creek near Kasaan 1508500 3.08 Temp. 1962-64 Cabin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Cabin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Cabin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Cabin Creek near Kasaan 1508500 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Cabin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Carembo Creek near Kasaan 15085400 3.08 Temp. 1962-64 Carembo Creek near Point Baker 15087110 1.27 Temp. 1978-80 Hamilton Creek near Point Baker 15087570 65.0 Temp. 1978-79, 1981-82 Nakwasina River near Slika 15087610 31.9 Temp. 1978-81 Setty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Stikine River near Wrangell	15024800	a19,920		
Duck Creek below Nancy Street near Auke Bay 15053200 Temp 1997-99	Speel River near Juneau	15036000	226	Temp., Sed.	1960
Lake Creek at Auke Bay 15053800 2.50 Temp 1963-73 Auke Creek at Auke Bay 15054000 3.96 Temp. 1962-75 Davies Creek near Auke Bay 15054990 15.2 Temp. 1969-72 Skagway River at Skagway 15056100 a145 Temp., 1979-82 S.C. 1980-82 Temp. 1971-74, 1977 Chilkat River at Gorge near Klukwan 15056210 149 Temp. 1971-74, 1977 Chilkat River near Skagway 15056500 a760 Temp., Sed., S.C. 1960 Grace Creek near Ketchikan 15078000 30.2 Temp. 1965-69 Traitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klukwala 15083500 3.38 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085300 3.83 Temp. 1962-64 Cabin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Labin Creek near Kasaan 15085400 3.08 Temp. 1962-64 Labin Creek near Point Baker 15086600 11.2 Temp. 1978-80 Hamilton Creek near Point Baker 15087570 65.0 Temp. 1978-81 Perkin Creek near Foint Baker 15087590 2.72 Temp. 1978-81 Perkin Creek. 1508-81 Perkin Creek near Foint Baker 15087590 2.76 Temp. 1978-81 Perkin Creek. Perkin Creek near Foint Baker 15087590 2.76 Temp. 1978-81 Perkin Creek. Perkin Creek near Foint Baker 15087590 2.76 Temp. 1978-81	Dorothy Lake Outlet (head of Dorothy Creek) near Juneau	15039900	11.0	Temp	1996-99
Auke Creek at Auke Bay 15054000 3.96 Temp. 1962-75 Davies Creek near Auke Bay 15054990 15.2 Temp. 1969-72 Skagway River at Skagway 15056100 a145 Temp., 1979-82 S.C. 1980-82 Taiya River near Skagway 15056210 149 Temp. 1971-74, 1977 Chilkat River at Gorge near Klukwan 15056400 a190 Temp. 1962-67 Chilkat River near Klukwan 15056500 a760 Temp., Sed., S.C. 1960 Grace Creek near Ketchikan 15078000 30.2 Temp. 1965-69 Traitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Rikawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085000 3.08 Temp. 1962-64 Cabin Creek near Kasaan 15085000 3.08 Temp. 1962-64 Cabin Creek near Kasaan 15085000 3.08 Temp. 1962-64 Cabin Creek near Point Baker 15086600 11.2 Temp. 1963-80 Larembo Creek near Point Baker 1508770 65.0 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 1508400 2.66 Temp. 1978-81	Duck Creek below Nancy Street near Auke Bay	15053200		Temp	1997-99
Davies Creek near Auke Bay Davies Creek near Auke Bay 15054990 15.2 Temp. 1969-72 Skagway River at Skagway 15056100 a145 Temp. 1979-82 S.C. 1980-82 Taiya River near Skagway 15056210 149 Temp. 1971-74, 1977 Chilkat River at Gorge near Klukwan 15056400 a190 Temp. 1962-67 Chilkat River near Klukwan 15056500 a760 Temp. 1962-67 Chilkat River near Klukwan 15078000 30.2 Temp. 1965-69 Traitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Temp. 1963-80 Earembo Creek near Point Baker 15087570 65.0 Temp. 1978-81 Perkins Creek near Point Baker 15087590 2.72 Temp. 1978-81 Perkins Creek near Point Baker 15087590 2.66 Temp. 1978-81	Lake Creek at Auke Bay	15053800	2.50	Temp	1963-73
Skagway River at Skagway 15056100 145 Temp. 1979-82 S.C. 1980-82	Auke Creek at Auke Bay	15054000	3.96	Temp.	1962-75
S.C. 1980-82 Taiya River near Skagway 15056210 149 Temp. 1971-74, 1977 Chilkat River at Gorge near Klukwan 15056400 a190 Temp. 1962-67 Chilkat River near Klukwan 15056500 a760 Temp., Sed., S.C. 1960 Grace Creek near Ketchikan 15078000 30.2 Temp. 1965-69 Traitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Foint Baker 15086600 11.2 Temp. 1963-80 Ezarembo Creek near Point Baker 15087110 1.27 Temp. 1978-80 Hamilton Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 1508200 2.66 Temp. 1978-81	Davies Creek near Auke Bay	15054990	15.2	Temp.	1969-72
Chilkat River at Gorge near Klukwan 15056400 a190 Temp. 1962-67 Chilkat River near Klukwan 15056500 a760 Temp., Sed., S.C. 1960 Grace Creek near Ketchikan 15078000 30.2 Temp. 1965-69 Fraitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085000 8.83 Temp. 1962-64 Wirginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Point Baker 15087570 65.0 Temp. 1978-79, 1981-82 Nakwasina River near Sitka	Skagway River at Skagway	15056100	a145	1 .	
Chilkat River near Klukwan 15056500 a760 Temp., Sed., S.C. 1960 Grace Creek near Ketchikan 15078000 30.2 Temp. 1965-69 Fraitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 1508500 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087610 31.9 Temp. 1976-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Taiya River near Skagway	15056210	149	Temp.	1971-74, 1977
Grace Creek near Ketchikan 15078000 30.2 Temp. 1965-69 Grace Creek near Rear Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Wirginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Chilkat River at Gorge near Klukwan	15056400	a190	Temp.	1962-67
Graitors River near Bell Island 15080500 20.8 Temp. 1965-68 Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Chilkat River near Klukwan	15056500	a760	Temp., Sed., S.C.	1960
Staney Creek near Craig 15081500 51.6 Temp. 1966-79 Klawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Grace Creek near Ketchikan	15078000	30.2	Temp.	1965-69
Sklawak River near Klawock 15081620 46.1 Temp. 1976-77 Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Wirginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Traitors River near Bell Island	15080500	20.8	Temp.	1965-68
Perkins Creek near Metlakatla 15083500 3.38 Temp. 1976-93 Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Staney Creek near Craig	15081500	51.6	Temp.	1966-79
Saltery Creek near Kasaan 15085000 5.53 Temp. 1962-64 Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Klawak River near Klawock	15081620	46.1	Temp.	1976-77
Cabin Creek near Kasaan 15085300 8.83 Temp. 1962-64 Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Perkins Creek near Metlakatla	15083500	3.38	Temp.	1976-93
Virginia Creek near Kasaan 15085400 3.08 Temp. 1962-64 Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Saltery Creek near Kasaan	15085000	5.53	Temp.	1962-64
Big Creek near Point Baker 15086600 11.2 Temp. 1963-80 Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Cabin Creek near Kasaan	15085300	8.83	Temp.	1962-64
Zarembo Creek near Point Baker 15087110 1.27 Temp. 1979-80 Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Virginia Creek near Kasaan	15085400	3.08	Temp.	1962-64
Hamilton Creek near Kake 15087570 65.0 Temp. 1982-86, 1989-96 Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Big Creek near Point Baker	15086600	11.2	Temp.	1963-80
Rocky Pass Creek near Point Baker 15087590 2.72 Temp. 1978-79, 1981-82 Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Zarembo Creek near Point Baker	15087110	1.27	Temp.	1979-80
Nakwasina River near Sitka 15087610 31.9 Temp. 1976-82 Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Hamilton Creek near Kake	15087570	65.0	Temp.	1982-86, 1989-96
Betty Lake outlet at Port Armstrong 15093200 2.66 Temp. 1978-81	Rocky Pass Creek near Point Baker	15087590	2.72	Temp.	1978-79, 1981-82
	Nakwasina River near Sitka	15087610	31.9	Temp.	1976-82
Sashin Creek near Big Port Walter 15093400 3.72 Temp. 1966-77	Betty Lake outlet at Port Armstrong	15093200	2.66	Temp.	1978-81
	Sashin Creek near Big Port Walter	15093400	3.72	Temp.	1966-77

Discontinued continuous record surface-water-quality stations--Continued [Footnotes at end of table on p. xxviii]

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record (water years)
SO	UTHEAST ALASKACon	tinued		
East Branch Lovers Cove Creek Diversion near Big Port Walter	15093600		Temp.	1965-71
Kalinin Bay tributary near Sitka	15101200	2.28	Temp.	1976-79
Greens Creek near Juneau	15101500	22.8	Temp. S.C.	1978-84 1979-85
Wheeler Creek near Douglas	15101600	57.1	Temp.	1970-73
North Arm Creek near Angoon	15102350	8.64	Temp.	1971-78
Hood Bay Creek near Angoon	15102400		Temp.	1970-71
Hook Creek above tributary near Tenakee	15106940	4.48	Temp.	1967-80
Hook Creek near Tenakee	15106960	8.00	Temp.	1966-78
Tonalite Creek near Tenakee	15106980	14.5	Temp. S.C., Sed.	1968-84, 1986-88 1972
Kadashan River near Tenakee	15107000	37.7	Temp.	1966-79
	SOUTH-CENTRAL ALAS	KA		
Dick Creek near Cordova	15195000	7.95	Temp.	1971-79
Gakona River at Gakona	15200000	a620	Temp., S.C.	1953-54
Gulkana River at Sourdough	15200280	1,770	Temp.	1972-78
Klutina River at Copper Center	15206000	a880	Temp, S.C.	1953
Little Tonsina River near Tonsina	15207800	22.7	Temp.	1973-78
Tonsina River at Tonsina	15208000	a420	Temp., S.C.	1953, 1959-66
Copper River near Chitina	15212000	a20,600	Temp Sed. S.C.	1957, 1964-65, 1979-81 1957, 1963-65 1957
Humpback Creek near Cordova	15216100	4.37	Temp.	1973-75
West Fork Olsen Bay Creek near Cordova	15219000	4.78	Temp.	1964-79
Duck River at Silver Lake outlet near Valdez	15223900	25.1	Temp.	1982-84
Duck River near tidewater near Valdez	15224000	26.7	Temp.	1982-84
Duck River above the Lagoon near Valdez	15224002		Temp.	1982-84
Lowe River in Keystone Canyon near Valdez	15226600	222	Temp.	1975-76
Tutka Lagoon Creek near Homer	15238860	10.8	Temp.	1973-76
Upper Bradley River near Homer	15238990	a10.0	Temp.	1979-90
Bradley River below dam near Homer	15239001	a66.0	Temp	1990-99
Bradley River near Tidewater near Homer	15239070		Temp	1986-99
Anchor River at Anchor Point	15240000	224	Temp., S.C.	1954, 1959-66
Ninilchik River at Ninilchik	15241600	131	Temp. Sed.	1963, 1965 1963-65
Trail River near Lawing	15248000	181	Temp.	1959-67
Kenai River at Cooper Landing	15258000	634	Temp., S.C.	1950

Discontinued continuous record surface-water-quality stations--Continued [Footnotes at end of table on p. xxviii]

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record (water years)
SOUTH-CI	ENTRAL ALASKAC	Continued		
Kenai River at Soldotna	15266300	2,010	Sed.	1979-80
Beaver Creek near Kenai	15266500	a51	Temp.	1970-75
Bishop Creek near Kenai	15267000	a24.2	S.C.	1977-79
Rabbit Creek at Anchorage	15273050	a15	Temp.	1984-86
Little Rabbit Creek above Goldenview Drive at Anchorage	15273095	5.06	Temp.	1983-86
Rabbit Creek at New Seward Highway at Anchorage	15273105	a24.5	Temp.	1984-86
Little Campbell Creek at Nathan Drive near Anchorage	15274550	a15.0	Temp. Sed.	1986-87 b1988-91
Campbell Creek near Spenard	15274600	69.7	Sed.	1986, 1988
Middle Fork Chester Creek at Nichols Street at Anchorage	611207149483600		Temp.	1982
Chester Creek at Anchorage	15275000	20.0	Temp.	1982
Chester Creek at Arctic Boulevard at Anchorage	15275100	27.2	Temp., S.C. Sed.	1981-86 b1988-91
Ship Creek near Anchorage	15276000	90.5	Temp.	1949-50
Ship Creek below powerplant at Elmendorf Air Force Base	15276570	115	Temp.	1970-80
Eagle River at Eagle River	15277100	a192	Temp. Sed., S.C.	1968-69, 1971 1967-69, 1971
East Fork Eklutna Creek near Palmer	15277600	38.2	Sed.	1985-87
West Fork Eklutna Creek near Palmer	15277800	25.4	Sed.	1985-87
Eklutna Creek near Palmer	15280000	119	Temp.	1950
Knik River near Palmer	15281000	a1,180	Temp. Sed. S.C.	1963, 1965 1962-66 1972
Chickaloon River near Sutton	15282800		Temp.	1953-54
Matanuska River at Palmer	15284000	a2,070	Temp. Sed. S.C.	1952-53, 1959-66 1953-54, 1959-66 1965-67, 1972
Susitna River near Denali	15291000	a950	Temp.	1974-82
Susitna River near Cantwell	15291500	a4,140	Temp.	1980, b1982-86
Susitna River at Gold Creek	15292000	a6,160	Temp. Sed.	1957, 1974-80, 1982-85 1952, 1957
Chulitna River near Talkeetna	15292400	a2,570	Temp.	b1982-86
Talkeetna River near Talkeetna	15292700	2,006	Temp.	1954
Susitna River at Sunshine	15292780	a11,100	Temp.	b1981-85
Willow Creek near Willow	15294005	166	Temp.	b1978-90
Deception Creek near Willow	15294010	48.0	Temp.	b1978-85
Yentna River near Susitna Station	15294345	a6,180	Temp.	b1981-86
Susitna River at Susitna Station	15294350	a19,400	Temp.	1975-80, b1983-86
Chuitna River near Tyonek	15294450	131	Temp.	1976-78
Falls Creek near Larsen Bay	15296500	5.67	Temp.	1974-75

Discontinued continuous record surface-water-quality stations--Continued [Footnotes at end of table on p. xxviii]

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record (water years)
SOUT	H-CENTRAL ALASKAC	Continued		
Canyon Creek near Larsen Bay	15296520	8.82	Temp.	1974-76
East Fork Upper Thumb River near Larsen Bay	15296545	8.99	Temp.	1979-82
Upper Thumb River near Larsen Bay	15296550	18.8	Temp.	1974-82
Thumb River near Larsen Bay	15296554	25.3	Temp.	1979-82
Karluk River at outlet near Larsen Bay	15296600	100	Temp.	1975-76, 1978-82
Akalura Creek at Olga Bay	15296950	18.4	Temp.	1975-76
Kizhuyak River near Port Lions	15297485	c42.5	Temp.	b1980-86, 1987-94
	SOUTHWEST ALASKA	A		
Tazimina River near Nondalton	15299900	327	Temp.	1982-86
Nushagak River at Ekwok	15302500	a9,850	Temp.	1979-80, 1982
East Creek near Dillingham	15303100	2.12	Temp.	1973-76
Snake River near Dillingham	15303150	113	Temp.	1974-80
Kuskokwim River at Medfra	630615154424500		Temp.	1954
Kuskokwim River at Crooked Creek	15304000	a31,100	Temp. S.C.	1957-67, 1977-79 1957-67
	YUKON ALASKA			
Yukon River at Eagle	15356000	a113,500	Temp.	1951-52, 1962-63, 1965-66 1962-66
Hass Creak man Livangand	15457900	662	Sed.	1971-72, 1976-77
Hess Creek near Livengood Valor Birgs et Romport	15457800 15468000	a199,400	Temp. S.C.	1954-56, 1961-64
Yukon River at Rampart Tanana River near Tok Junction	15472000	a6,800	Temp., S.C.	1951-53
Tanana River near Tanacross	15476000		Temp., S.C.	1954, 1957-66
Tanana River near Tanacross	134/0000	a8,550	Temp., S.C. Sed.	1734, 1737-00
Tanana River at Big Delta	15478000	13,500	Temp. S.C.	1949-51 1949-52
Chena River near North Pole	15493500	1,430	Temp.	1972-79
Little Chena River near Fairbanks	15511000	372	Temp.	1972-81
Chena River at Fairbanks	15514000	a1,980	Temp. Sed. S.C.	1953, 1962-66, 1969-71 1962-71 1968-71
Tanana River at Nenana	15515500	a25,600	Temp. S.C.	1954-56 1954-57
Nenana River near Healy	15518000	a1,910	Temp. Sed., S.C.	1957-66 1953-66
Nenana River at Healy	15518040	a2,100	Temp.	1949
Caribou Creek near Chatanika	15535000	9.19	Temp.	1972-73
Long Creek at Long near Ruby	15564450	25.4	Temp.	1995-97

WATER RESOURCES DATA FOR ALASKA, 2001

Discontinued continuous record surface-water-quality stations--Continued [Footnotes at end of table on p. xxviii]

Station name	Station number	Drainage area (mi ²)	Type of record	Period of record (water years)
	YUKON ALASKAConti	nued		
Yukon River at Ruby	15564800	a259,000	Temp. S.C.	1966-67, 1969-74 1966-74
Yukon River at Galena	15564860		Temp., S.C.	1954
Middle Fork Koyukuk River near Wiseman	15564875	a1,200	Temp.	1971-72, 1976-79
Wiseman Creek at Wiseman	15564877	49.2	Temp.	1973, 1976
Jim River near Bettles	15564885	11.7	Temp.	1971-76
Yukon River at Pilot Station	15565447	a321,000	Temp.	1976, 1978
	NORTHWEST ALASK	A		
Eldorado Creek near Teller	15635000	5.83	Temp.	1995-98
Kobuk River near Kiana	15744500	a9,520	Temp.	1978-81
Ogotoruk Creek near Hope	15748000	a35	Temp., Sed.	1959
	ARCTIC SLOPE ALASI	ΚA		
Kuparuk River near Deadhorse	15896000	3,130	Temp.	1971-72, 1976, 1978-79
Putligayuk River near Deadhorse	15896700	a176	Temp.	1976
Sagavanirktok River near Sagwon	15910000	229	Temp.	1971

Approximately Seasonal After diversion upstream beginning 1985 a b c

1

INTRODUCTION

The Water Resources Division of the U.S. Geological Survey, in cooperation with State and other agencies, obtains a large amount of data pertaining to the water resources of Alaska each water year. These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the Geological Survey, the data are published annually in this report series entitled "Water Resources Data - Alaska."

Water resources data for the 2001 water year for Alaska consist of records of stage, discharge, and water quality of streams; stages of lakes; and water levels and water quality of ground water. This volume contains records for water discharge at 112 gaging stations; stage or contents only at 4 gaging stations; water quality at 37 gaging stations; and water levels for 30 observation wells. Also included are data for 51 crest-stage partial-record stations. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Alaska.

Records of discharge and stage of streams, stage of lakes, chemical quality, water temperatures, and suspended sediment were first published in U.S. Geological Survey Water-Supply Papers. Through September 30, 1960, these data were published in seven Water-Supply Papers entitled "Quantity and Quality of Surface Waters of Alaska" (through 1950, 1951-53, 1954-56, 1957, 1958, 1959, 1960). Since 1960, streamflow records and related data were published in a five-year series of Water-Supply Papers for 1961-65 and 1966-70 entitled "Surface Water Supply of the United States." Water-quality records were published in a Water-Supply Paper entitled "Quality of Surface Waters of Alaska, 1961-63" and after then until 1970 in an annual series of Water-Supply Papers entitled "Quality of Surface Waters of the United States." Records of ground-water levels were published from 1949 to 1974 in a series of Water-Supply Papers entitled "Ground-Water Levels in the United States." Water-Supply Papers may be consulted in the libraries of the principal cities in the United States or may be purchased from U.S. Geological Survey, Branch of Information Services, Box 25286, Denver, CO 80225.

For water years 1961 through 1970, streamflow data were also released by the Geological Survey in annual reports on a State-boundary basis. Water-quality records for water years 1964 through 1970 were similarly released either in separate reports or in conjunction with streamflow records.

Beginning with the 1971 water year, water data for streamflow, water quality, and ground water are published in official Survey reports on a State-boundary basis. These official Survey reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this report is identified as "U.S. Geological Survey Water-Data Report AK-01-1." These water-data reports are for sale, in paper copy or in microfiche, by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on the back of the title page or by telephone (907) 786-7100.

The USGS is continually updating the availability of its information on the World Wide Web. Current streamflow conditions (via satellite) for Alaska and other Alaskan water resource information can be found at the following Universal Resource Locator (URL):http://ak.water.usgs.gov/. Nationwide information on water resources, including real-time and historic streamflow data, water-use data, publications and USGS program activities, can be found at URL: http://water.usgs.gov/.

COOPERATION

The U.S. Geological Survey and organizations of the State of Alaska have had cooperative agreements since 1958 for the systematic collection of streamflow records, water-quality records, and ground-water levels. Organizations that assisted in collecting data contained in this report through cooperative agreements with the USGS are:

Alaska Department of Community and Economic Development, Deborah B. Sedwick, Commissioner

Alaska Industrial Development and Export Authority, Alaska Energy Authority, Robert Poe, Jr., Executive Director

Alaska Department of Environmental Conservation, Michele Brown, Commissioner

Alaska Department of Fish and Game, Frank Rue, Commissioner

Alaska Department of Natural Resources, Division of Mining and Water Management, Pat Pourchot, Commissioner

Alaska Department of Transportation and Public Facilities, Joseph L. Perkins, Commissioner, in cooperation with the U.S. Department of Transportation, Federal Highway Administration

Central Council of Tlingit and Haida Indian Tribes of Alaska, Desiree Welch, Native Lands and Resources Manager

City and Borough of Juneau, Sally Smith, Mayor

City and Borough of Sitka, Valorie Nelson, Mayor

City and Borough of Yakutat, Tom Maloney, Mayor

City of Klawock, Donna Williams, Mayor

City of Wrangell, Fern Neimeyer, Mayor

Alaska Native Tribal Health Consortium, Paul Sherry, President/CEO

Haida Corporation, John Bruns, Resource Manager

Kenai Peninsula Borough, Dale Bagley, Mayor

Municipality of Anchorage, George Wuerch, Mayor

University of Alaska Southeast, John Pugh, Chancellor

The following Federal agencies assisted in the data-collection program by providing funds or services:

- U.S. Army Corps of Engineers
- U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory
- U.S. Department of Agriculture, Forest Service
- U.S. Department of the Interior, Bureau of Land Management
- U.S. Department of the Interior, National Park Service

ACKNOWLEDGMENTS

Assisting in the collection of the data were the following gage observers:

John Borg, Yukon River at Eagle

Rob Gieck, Sagavanirktok River Tributary near Pump Station 3

Sandy Hamilton, Nation and Kandik Rivers near Nation, and Kobuk River near Kiana

Vince Harkey, Ophir Creek near Yakutat

Dick Levitt, Kahtaheena River near Gustavus

John Martinisko, Ikalukrok River below Red Dog Creek near Kivalina

Brian Omann, Sawmill Creek and Blue Lake near Sitka

Steve Paustian, Kadashan River near Tenakee

Alan Peck, Moody Creek near Aleknagik

Lorry Schuerch, Kobuk River near Kiana

Eric Sundberg, Greens Creek at Greens Creek Mine near Juneau

Bob Walworth, Tatalina River near Takotna

Jennifer Williams, Indian River sites near Sitka

Ray Williams, Iliamna River near Pedro Bay

Organizations that supplied data are acknowledged in station descriptions.

SUMMARY OF HYDROLOGIC CONDITIONS

Surface Water

Alaska contains more than 40 percent of the Nation's surface-water resources. The highest runoff rates per unit area are in southeast Alaska and in other areas influenced by the maritime climate of the northern Pacific Ocean and the Gulf of Alaska. In the interior and northern parts of the State, runoff rates are markedly lower than in the maritime-influenced areas. Runoff generally increases with altitude throughout the State, and year-to-year runoff variability increases from south to north.

Seasonal runoff characteristics differ from southern to northern Alaska. Areas influenced by maritime climates usually have two periods with high runoff: a spring snowmelt period and a fall rainfall period. High water can occur throughout the year, but the highest instantaneous peak discharges are more prevalent in the fall months; low-water periods usually occur in late spring and mid-summer, prior to the rainy fall period. Farther north, most of the total runoff and floods occur in the period from May through September; low-flow periods usually occur during late winter, shortly before spring snowmelt.

Streamflow in Alaska was dominated more by temperatures during water year 2001 than by rainfall. No maximum peak-of-record streamflows were observed at any continuous or partial-record long-term (10 or more years) streamflow gaging station during water year 2001. However, higher than normal streamflows occurred from Wrangell to Deadhorse during the fall and winter of 2000-2001 when most of the state experienced significantly warmer temperatures. A cold spell in May and early June caused delayed snowmelt peaks, but warmer than average temperatures in mid June resulted in rapid melting and overall above average streamflow in June. Streamflow was generally above normal for the remainder of the water year throughout Alaska, though 13 continuous streamflow gaging stations recorded deficit flow (monthly mean streamflow equaled or exceeded more than 75 percent of the time) during July through September.

Record monthly mean streamflow that occurred during September 2000 (previous water year) continued during October at Yukon River at Eagle (station 15356000) and Tanana River at Nenana (station 15515500). Streamflow generally remained high through the fall. During January, average monthly temperatures were as much as 20 degrees Fahrenheit above normal, averaging 8.5 degrees above normal in Southeast, 12.6 degrees above normal in Cook Inlet, and 18.2 degrees above normal in the Yukon basin. More than 80 percent of the continuous streamflow gaging stations having 10 or more years of record recorded excessive monthly mean streamflows (streamflows equaled or exceeded less than 25 percent of the time). Yukon River at Eagle recorded the highest monthly mean streamflows of record (51 years) during October, December, and January. A few partial-record stations in Southcentral Alaska recorded annual peaks during winter. Fritz Creek near Homer (station 15239500) recorded an annual peak in January for the first time in 39 years of record.

Spring temperatures in Southeast Alaska were near or slightly below normal during April and May. Precipitation, generally snowfall at higher elevations, was below normal in April, above normal in May. Resulting streamflow was deficient at 10 of 19 stations in Southeast Alaska during April.

During May, cold temperatures throughout the state resulted in deficit streamflow at more than half the continuous streamflow gaging stations having 10 or more years of record. Rapid warming and

clear, sunny days in June resulted in 20 of 55 sites recording excessive streamflow, although precipitation was generally below normal. Three stations, Spruce Creek near Seward (station 15238600), Sixmile Creek near Hope (station 15271000), and Tatalina River near Takotna (station 15303700) recorded the highest June monthly mean streamflow of record.

Because most of the higher than normal flows occurred during winter, annual flows were mostly near average. Only Indian River near Sitka (station 15087690) recorded record low mean annual streamflow (Indian River at Sitka, station 15087700 is affected by diversions). Indian River appeared to be out of phase with most other streams in Southeast Alaska, recording deficit flows during 5 months, even when other streams in the region were recording excessive flows. Ophir Creek near Yakutat (station 15129600) was the only streamflow gaging station to record maximum annual mean streamflow for the period of record.

Ground Water

Alaska's vast area and small population preclude a comprehensive evaluation of its ground-water resources. Throughout much of the State, aquifers are poorly defined. In many areas, wells have not been drilled and little is known about seasonal and long-term changes in ground-water storage. During water year 2001, the long-term monitoring of water levels in one well in Juneau, one well in Anchorage, and three wells in Fairbanks continued. Water levels were also measured intermittently in 32 wells in Juneau for studies of the interaction between ground water and water in anadromous fish streams.

Water levels in the long-term monitoring wells in Juneau, Anchorage, and Fairbanks were within the range of historical values. Water levels in wells in the Duck and Jordan Creek watersheds in Juneau were closely related to the infiltration of rain and snowmelt and the level of water in nearby streams. Some of these wells are in stream channels or on flood plains and are intermittently flooded; most water levels in these wells were within 10 feet of land surface.

Water Quality

General Overview

Information on the concentration and composition of constituents in Alaska's surface water is markedly variable in coverage. Some subregions have had regular or periodic sampling for many years at many stream points and at a number of lakes. Information in other subregions consists of only a few miscellaneous samples. Although the chemical characteristics of water in the streams and lakes of Alaska seem variable, the ranges in concentration are not as great as those found in the conterminous United States. Most Alaskan streams above tidal reaches contain water of a calcium bicarbonate type, generally containing less than 200 mg/L dissolved solids. In these streams, the hardness generally increases with increased dissolved-solids content. The streams draining lowlands and intermontane basins usually contain harder water than the streams in the higher mountains. Some streams, especially those draining areas overlain by organic-rich deposits, can have excessive iron content.

In Alaska, the mineral content of water in lakes is more variable than that in rivers. The water in some mountain lakes is very low in dissolved-solids content and is little more concentrated than rainwater. Other lakes occupying lowlands near the sea, including many near the Arctic coastal plain, have become mineralized periodically by salts brought in from the sea either by overland flooding during storms or as ocean spray. The water in lakes in the lowlands remote from the sea is commonly very similar in chemical character to water in the larger rivers adjacent to them.

The character and distribution of suspended sediment are relatively complex in Alaska because glaciers contribute large amounts of very fine material (glacial flour) to many streams. In general, during the summer, suspended-sediment concentrations in nonglacial streams seldom exceed 100 mg/L, but can be greater than 2,000 mg/L for glacial streams. Nonglacial streams often transport the highest sediment loads during the spring breakup or during periods of high rainfall, whereas glacial streams transport the greatest sediment loads during periods of maximum glacial melting, usually in middle or late summer. The normal suspended-sediment concentration between January and April is usually less than 20 mg/L for most nonurban streams. Thus, less than 15 percent of the annual suspended-sediment load is carried during this period. The percentage of material finer than 0.062 millimeter (the silt-clay fraction as generally defined) transported by nonglacial streams is less than 50 percent in contrast to more than 50 percent for glacial streams.

Outside of the major urban areas, almost all ground water is obtained from unconsolidated aquifers. Most sampled water contains less than the State's recommended limit of 500 mg/L dissolved solids. Calcium and magnesium, which along with bicarbonate contribute to the hardness of water, are the major dissolved ions. In most wells, hardness concentrations are about 60 to 80 percent of dissolved-solids concentrations. Water of sodium bicarbonate or sodium chloride type is present in numerous community wells drilled near the coast.

Iron is present in high concentrations in a large number of shallow wells in most areas of the State. Concentrations in excess of 1.0 mg/L are common. Iron concentrations of more than about 0.3 mg/L can cause staining of laundry and plumbing fixtures and impart an unpleasant taste to the water.

The bedrock aquifers in most of Alaska are undeveloped and very little is known about their water quality. In general, the concentration of dissolved solids in water from bedrock aquifers is higher than that found in the unconsolidated aquifers and the chemical quality of water in bedrock aquifers is more variable.

Most of the State's ground-water resources have, for the present, been unaffected by humans. However, in the major urban areas and in some outlying villages, ground-water quality has been locally degraded, primarily from septic systems, landfills, and abandoned fuel storage tanks. Most ground-water contamination problems in Alaska are caused by petroleum products, primarily from leaky fuel tanks.

In 2001, the following sites were sampled for water quality as part of the National Water Quality Assessment Program (NAWQA): samples were collected at six stream-gaging stations in the Cook Inlet Basin nearly every month; and samples were collected at 4 sites on streams within the Municipality of Anchorage. As part of the Clean Water Action Plan, water-quality, and bed-material samples were collected at sites in Katmai, and Lake Clark National Parks and Preserves, and Sitka National Historical Park.

In 2001 sampling at 5 stations in the Yukon Basin started as part of the National Stream-Quality Assessment Program (NASQAN), the first year of a five year monitoring program. The Alaska District is also collecting samples for personnel from the National Research Program to help extend the normal NASQAN data.

Water-quality sampling is also done for projects throughout Alaska. The analyses for these samples are published in reports discussing these projects. For more information on reports published in 2001, contact the Chief, Water Resources Office (see p. ii) or the Alaska Water Resources Office webpage at http://ak.water.usgs.gov.

Remark Codes

The following remark codes may appear with the water-quality data in this section:

PRINTED OUTPUT REMARK

E	Value is estimated.
>	Actual value is known to be greater than the value shown.
<	Actual value is known to be less than the value shown.
M	Presence of material verified, but not quantified.
N	Presumptive evidence of presence of material.
U	Material specifically analyzed for, but not detected.
A	Value is an average.
V	Analyte was detected in both the environmental sample and
	the associated blanks.
S	Most probable value.

Dissolved Trace-Element Concentrations

Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter ($\mu g/L$) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's and 100's of nanograms per liter (ng/L). Present data above the $\mu g/L$ level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes. However, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at some stations in water year 1994. Full implementation of the protocols took place during the 1995 water year.

Quality-control data

Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated

with the sample data are unknown. The various types of QC samples collected by this District are described in the following section. Procedures have been established for the storage of water-quality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples.

BLANK SAMPLES – blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank samples for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this District are:

<u>Source solution blank</u> – a blank solution that is transferred to a sample bottle in an area of the office laboratory with an atmosphere that is relatively clean and protected with respect to target analytes.

<u>Ambient blank</u> – a blank solution that is put in the same type of bottle used for an environmental sample, kept with the set of sample bottles before sample collection, and opened at the site and exposed to the ambient conditions.

<u>Field blank</u> – a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample.

<u>Trip blank</u> – a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection.

<u>Equipment blank</u> – a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office.)

<u>Sampler blank</u> – a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample.

<u>Pump blank</u> – a blank solution that is processed through the same pump-and-tubing system used for an environmental sample.

<u>Standpipe blank</u> – a blank solution that is poured from the containment vessel (stand-pipe) before the pump is inserted to obtain the pump blank.

<u>Filter blank</u> – a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample.

<u>Splitter blank</u> - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample.

<u>Preservation blank</u> – a blank solution that is treated with the sampler preservatives used for an environmental sample.

<u>Canister blank</u> – a blank solution that is taken directly from a stainless steel canister just before the VOC sampler is submerged to obtain a field blank sample.

REFERENCE SAMPLES – Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties.

REPLICATE SAMPLES—Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which a duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are:

<u>Concurrent sample</u> – a type of replicate sample in which the samples are collected simultaneously with two or more samplers or by using one sampler and alternating collection of samples into two or more compositing containers.

<u>Sequential sample</u> – a type of replicate sample in which the samples are collected one after the other, typically over a short time.

<u>Split sample</u> – a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space.

SPIKE SAMPLES – Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis.

<u>Concurrent sample</u> – a type of spike sample that is collected at the same time with the same sampling and compositing devices then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

<u>Split sample</u> – a type of spike sample in which a sample is split into subsamples contemporaneous in time and space then spiked with the same spike solution containing laboratory-certified concentrations of selected analytes.

Water Use

Water use in the broad sense deals with man's interaction with and influence on the hydrologic cycle. In a technical sense, water use refers to water that is actually used for a specific purpose, such as domestic use, commercial needs, or industrial processing. The water use for the state of Alaska was estimated for 1995. An estimate of water use for 2000 is underway.

Industry is the largest user of fresh water in Alaska. In 1995, it accounted for about 38 percent of all offstream withdrawals. In 1995, water used instream for hydroelectric power generation was nine times more than that used offstream by man.

Another probable large instream use is for fish and wildlife resources. Approximately 15,000 water bodies have been identified by the Alaska Department of Fish and Game as producing anadromous fish. The Alaska Water Use Act was amended in 1980 to include instream flow as a use. The amendments provide the opportunity for private individuals, and local, State, and Federal governments to legally acquire instream flow water rights. Either one or a combination of the four following types of uses can be acquired: 1) protection of fish and wildlife habitat, migration, and propagation; 2) recreation and parks; 3) navigation and transportation; and 4) sanitation and water quality. Eleven instream flow rights applications have been granted.

From 1990-2001, Alaska's population increased 15 percent, which was one of the Nation's larger percentage increases. In 2001, Alaska's population increased by 1 percent. In 2001, about 60 percent of the State's population lived in the Anchorage, Fairbanks, and Juneau areas.

Because of the population increase, public-supply use of water is also increasing. In 1995, public-supply use accounted for 33 percent of all offstream withdrawal and 63 percent of the State's population received their water from a public-supply utility; the remainder supplied their own water. The main use of public-supply water was for domestic use of about 57 percent; the rest was primarily for commercial and industrial uses which has dropped since 1990 due to timber processing plants closing in southeast Alaska and changes in the fish processing industry.

In 1995, the water utilities in the Anchorage, Fairbanks, and Juneau areas used 60 percent of all water withdrawn in the State for public supply. The monthly mean rate of water withdrawn by the principal public-supply utilities servicing these three areas from January 1990 to September 2001 is shown in figure 1. (Data are from Municipality of Anchorage, Fort Richardson, City of Fairbanks, and City and Borough of Juneau.) The higher usage shown during the summer months in Anchorage and Fairbanks is probably due to tourism and other commercial activity, increased industrial activity, and seasonal climatic effects.

The State's 1995 average use from public supply was 172 gallons per day per person, while the nation's average is 184 gallons per day. One of the nation's lowest per capita use of all public-supply customers of 10 gallons per day has been reported on the North Slope.

Surface water is the source for around 60 percent of the 2001 State's public-water supply in these three cities, while ground water is the source for the remainder. Anchorage receives 81 percent of its water from surface-water sources. Surface water became the primary source when water from Eklutna Lake was brought into production in 1988. Juneau obtained 72 percent of public-supply water from ground-water sources in 2001. Juneau has reduced using its surface-water source because of cost to meet water-quality regulations. Fairbanks obtains 100 percent of public-supply water from ground-water sources. Of the water withdrawn in Fairbanks, about two-thirds is treated to be suitable for domestic use, and the other one-third is for thermoelectric power use.

Monthly mean water withdrawal rate for public supply in the Anchorage, Fairbanks, and Juneau area, 1990 to 2001.

SPECIAL NETWORKS AND PROGRAMS

Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the affects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at http://water.usgs.gov/hbn/.

<u>International Gaging Station Network</u> is a network of stations located on the boundary waters between Canada or Mexico and the United States. The stations are officially designated as "International" by joint action of the two countries to provide data pursuant to an international agreement, understanding, or other mutually agreed purposes. Operation of the gaging stations may be by water monitoring agencies of either country, or jointly. Data must be collected and analyzed in a mutually satisfactory manner according to agreed procedures and be available to users in both countries.

National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations were operated in the Mississippi, Columbia, Colorado, and Rio Grande. From 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and re-mobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at http://water.usgs.gov/nasqan/.

The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found at http://bqs.usgs.gov/acidrain/.

The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide

an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies.

Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at

http://water.usgs.gov/nawqa/nawqa_home.html.

EXPLANATION OF THE RECORDS

The surface-water and ground-water records published in this report are for the 2001 water year that began October 1, 2000, and ended September 30, 2001. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, water-quality data for surface and ground water, and ground-water-level data. The locations of the stations and wells where the data were collected are shown in figures 1, 2 and 3. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.

Station Identification Numbers

Each data station, whether stream site, lake, reservoir, spring, or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The systems used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water well sites differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitude-longitude" system is used for wells, lakes, reservoirs, springs, and for surface-water stations where only miscellaneous measurements and/or water-quality samples are collected.

Downstream Order System

Since October 1, 1950, the order of listing hydrologic-station records in USGS reports is in a down-stream direction along the main stream. All stations on a tributary entering upstream from a main-stream station are listed before that station. A station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary with respect to the stream to which it is immediately tributary is indicated by an indentation in the "List of Stations" in the front of this report. Each indentation represents one rank. This downstream order and system of indentation show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. Stations located on islands in Alaska are in downstream order starting at the most westerly point on the island and moving around the island in a counterclockwise direction (stations on Kodiak Island start at the most northerly point).

The station-identification number is assigned according to downstream order. In assigning station numbers, no distinction is made between regular stations and partial-record stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Water-quality stations located at or near regular stations or partial-record stations have the same number as the regular or partial-record station. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete eight-digit number for each station, such as 15303600, which appears just to the left of the station name, includes the two-digit Part number "15" plus the six-digit downstream order number "303600." The Part number designates the State of Alaska. Occasionally, the downstream order number consists of eight digits.

Latitude-Longitude System

The identification numbers for miscellaneous surface-water sites, wells, springs, lakes, and reservoirs are assigned according to the grid system of latitude and longitude. The number consists of 15 digits. The first six digits denote the degrees, minutes, and seconds of latitude, the next seven digits denote degrees, minutes, and seconds of longitude, and the last two digits (assigned sequentially) identify the wells or other sites within a 1-second grid. This site-identification number, once assigned, is a pure number, and has no locational significance. In the rare instance where the initial determination of latitude and longitude are found to be in error, the station will retain its initial identification number; however, its true latitude and longitude will be listed in the LOCATION paragraph of the station description and also stored in the computerized data base files. See the accompanying diagram.

Local Number

The local number, which is assigned to well and spring sites, is derived in part from the rectangular subdivision of public lands and is used in Alaska as the site name. The first two letters indicate the principal meridian and the quadrant formed by the intersection of the base line and the principal meridian. The first three digits indicate the township in which the well or spring is located, the next three digits the range, and the last two digits the section. The letters following the section number indicate the quarter section, the quarter-quarter section, and so forth to the fourth order subdivision. Each of these subdivisions is lettered counter-clockwise, from the northeast corner. Each site within the smallest order of subdivision is then given a sequential number. Finally, each well within a section is assigned a sequential map number indicated by the last three digits. Thus, SB00601115BCAD1 001 denotes the Seward meridian (S), the northwest quadrant (B), township 6 north, range 11 west, section 15; and the site is in the SE\(^1\)4 of NE\(^1\)4 of the SW\(^1\)4 of the NW\(^1\)4 (BCAD) of the section. It was the first site in the 2.5 acre "D" subdivision assigned a sequential number (1). The next space is left blank. The next three digits, 001, indicate the sequence in which a site was located on a map. Thus, 001 indicates the first site plotted in the one-square-mile section. The next space is left blank. The last five digits, such as 00114, are the Alaska (AK) register number. Therefore, the local number is SB00601115BCAD1 001 00114. The local number for springs

is the same, except for the last three digits and the Alaska (AK) register number, as indicated by the following example: SB00601115BCAD1S 4065S. Note: Public-land surveys have not been completed for a large portion of Alaska, therefore, some "local numbers" reflect this in an abbreviated form, e.g., SB00601115.

Records of Stage and Water Discharge

Records of stage and water discharge may be complete or partial. Complete records of discharge are those at which daily mean discharges can be computed or estimated with reasonable accuracy from the supporting data and information. Because the daily mean discharges commonly are published, the stations are referred to as "daily stations."

By contrast, partial records are obtained through discrete measurements and pertain only to a few flow characteristics, or perhaps only one. The nature of the partial record is indicated by table titles such as "Crest-stage partial records" or "Low-flow partial records." Records of miscellaneous discharge measurements or from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Periodic lake-level measurements are also presented separately. Locations of all complete-record and crest-stage partial record stations for which data are given in this report are shown in figures 2 and 3, respectively.

Data Collection and Computation

Methodology

The base data collected at gaging stations consist of stage records and discharge measurements of streams, and stage of lakes. In addition, observations of factors affecting the stage-discharge relation, weather records, and other information are used to supplement base data in determining the daily flow. Records of stage are obtained from direct readings on a nonrecording gage or from a water-stage recorder that gives either a continuous graph of the fluctuations, a tape punched at selected time intervals, or an electronic data logger. Measurements of discharge are made with a current meter, using the general methods adopted by the U.S. Geological Survey. These methods are described in standard textbooks, in U.S. Geological Survey Water-Supply Paper 2175, and in U.S. Geological Survey Techniques of Water Resources Investigations, Book 3, Chapter A6.

Computation

In computing discharge records, results of individual measurements are plotted against the corresponding stages, and stage-discharge relation curves are then constructed. From these curves, rating tables indicating the approximate discharge for any stage within the range of the measurements are prepared. If it is necessary to define extremes of discharge outside the range of the current-meter measurements, the curves are extended using: (1) logarithmic plotting; (2) results of indirect measurements of peak discharge, such as slope-area or flow-through-culvert measurements and computations of flow-over-dams or weirs; (3) step-backwater techniques; or (4) velocity-area studies.

Daily mean discharges are computed by applying the daily mean stages (gage heights) to the stage-discharge curves or tables. If the stage-discharge relation is subject to change because of frequent

or continual change in the physical features that form the control, the daily mean discharge is determined by shifting control method, in which correction factors based on the individual discharge measurements and notes of the person who made the measurement are added (or subtracted) to the gage heights before the discharges are determined from the curves or tables. This shifting-control method also is used if the stage-discharge relation is changed temporarily because of debris or aquatic growth on the control.

In computing records of reservoir contents, it is necessary to have curves or tables defining the relation of stage and contents (from prior survey and computations). The application of stage to stage-content curves or tables gives the contents from which daily, monthly, or yearly changes can be determined. Discharges over lake or reservoir spillways are computed from stage-discharge relations much as other stream discharges are computed. Discharge through hydro-power plants can be calculated indirectly by using the theoretical relation of flow-rates with the amount of power being generated by each turbine, the reservoir level, and the estimated efficiency of each turbine. It is necessary to have tables, curves, or formulas relating the above variables (usually supplied by the manufacturer of the turbine). It is also necessary to have records of reservoir elevation, either from periodic observations or continuous records, and power-generation records (usually furnished by the operators of the power plant).

Winter discharge measurements

At most stream-gaging stations in Alaska, the stage-discharge relation is affected by ice in the winter, and it becomes impossible to compute the discharge in the usual manner. Discharge for periods of ice effect is computed or estimated on the basis of the available gage-height record and occasional winter discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrographers, and comparable records of discharge for other stations in the same or nearby basins. Determinations of 0.0 or no flow may indicate a lack of distinguishable velocity, but do not necessarily describe a dewatered channel.

Estimates for periods of no data

For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge. This happens when the recorder is stopped for the winter or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods, the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations in the same or nearby basins. Information explaining how estimated daily-discharge values are identified in station records is included in the next two sections, "Data Presentation" ("REMARKS" paragraph) and "Identifying Estimated Daily Discharge."

Data Presentation

Streamflow data in this report are presented in a format that is considerably different from the format in data reports prior to the 1991 water year. The major changes are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent

the results of a pilot program to reformat the annual water-data report to meet current user needs and data presentation.

The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts: the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimum, and flow duration. Occasionally, data for other than the current year are published, usually to present unpublished data.

Station manuscript

The manuscript provides, under various headings, descriptive information, such as location of station; drainage area; period of record; record accuracy; and other remarks pertinent to station operation and regulation. For some stations, historical extremes outside the period of record and peak discharges greater than base discharge for the station are given. The following information, as appropriate, is provided with each continuous record of discharge, stage, or reservoir contents. Comments to clarify information presented under the various headings of the station description follow:

LOCATION.--Information on locations is obtained from the most accurate maps available. The USGS topographic map showing the location of the station is included in parentheses for many sites, e.g. (Livengood E-1). The location of the gage with respect to the cultural and physical features nearby and to the reference place mentioned in the station name is given.

DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another or because of difficulties in determining drainage boundaries, the accuracy of drainage-area determinations likewise varies. As appropriate, some drainage-area figures are qualified by "approximately." Drainage areas are updated as better maps become available.

PERIOD OF RECORD.--This indicates the period for which published records are available for the station or for an equivalent station. An equivalent station is one that was in operation at a time the present station was not, and whose location was such that records from it can be considered reasonably equivalent with records from the current station. Some daily stations were previously operated as partial-record stations or had only monthly discharge records published. These periods are included in the paragraph.

REVISED RECORDS.--Published records occasionally are found to be incorrect, usually because of new information, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual discharge figures, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given.

GAGE.--The type of gage in current use, the datum of the current gage referred to sea level (see "Definition of Terms"), and a condensed history of the types, locations, and datums of previous gages are given under this heading.

REMARKS.--Periods of estimated daily discharge will be identified by date in this paragraph for selected stations. For all stations, estimated daily discharge will be flagged in the daily discharge table. (See next section "Identifying Estimated Daily Discharge.") If a REMARKS paragraph is used to identify estimated record, this information would be the first entry. This paragraph is also used to present information relative to the accuracy of the records, to the special methods of computation, to conditions that affect natural flow at the station, and to other pertinent items. For reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose (use) of the reservoir.

COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here. Also, if data or information are supplied which aid in the computation of the record, the agency providing the information is named.

EXTREMES FOR PERIOD OF RECORD.--This paragraph is included in the station manuscript for stations for which tabular summary statistics are not appropriate because they have short records, seasonal records, or regulated flow.

EXTREMES OUTSIDE PERIOD OF RECORD.--Information about floods or unusually low flows that have occurred outside the stated period of record is included. The information may or may not have been obtained by the U.S. Geological Survey.

EXTREMES FOR CURRENT YEAR or EXTREMES FOR CURRENT PERIOD.--This paragraph is included in the station manuscript for selected sites where peaks above base discharge are published and for stations for which tabular summary statistics are not appropriate because they have short records, seasonal records, or regulated flow. For records that meet certain criteria, all peak discharges and stages greater than a selected base discharge during the water year are given. The peaks greater than the base discharge, excluding the highest one, are called secondary peaks. The time that the peak occurred is expressed in 24-hour local standard time; for example, 12:30 a.m. is 0030 and 1:30 p.m. is 1330. Except for stations for which tabular summary statistics are not appropriate, the maximum and minimum for the current water year appears below the daily values table in the tabular summaries.

REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error.

Although rare, occasionally the records of a discontinued gaging station may need revision. For these stations, there may be no current or, possibly, future station manuscript published to document the revision in a "Revised Records" entry; users of data for these stations who obtained the record for previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. If the data for a discontinued station were obtained by computer

retrieval, the data would be current because any previously published data are automatically accompanied by revision of the corresponding data in computer storage.

Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "Remarks" and in the inclusion of a skeleton stage-capacity table when daily contents are given.

Headings that appeared in reports before water year 1991 for AVERAGE DISCHARGE, EXTREMES FOR PERIOD OF RECORD, and EXTREMES FOR CURRENT YEAR have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the EXTREMES FOR CURRENT YEAR paragraph, is now presented in the tabular summaries following the discharge table or in the REMARKS paragraph, as appropriate, except for stations for which tabular summary statistics are not appropriate. No changes have been made to the data presentation of lake contents.

Data table of daily mean values

The daily table of discharge records for stream-gaging stations gives the mean discharge for each day of the water year. In the monthly summary for the daily table, the line headed "TOTAL" gives the sum of the daily figures for each month; the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also may be expressed in acre-feet (line headed "AC-FT"), in cubic feet per second per square mile (line headed "CFSM"), or in inches (line headed "IN"). Figures for cubic feet per second per square mile and runoff in inches are omitted if there is extensive regulation or diversion, if the contributing drainage area or boundaries are unknown, or if the flow is mostly from a spring. At some stations, monthly and (or) yearly discharges are adjusted for diversions or changes in reservoir contents.

Statistics of monthly mean data

A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR WATER YEARS ______, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the PERIOD OF RECORD paragraph in the station manuscript. It will consist of all the station records within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript.

Summary statistics

A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year but also for the previous calendar year and for a designation of the current water year and year

The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the REMARKS paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the REMARKS paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin.

The following summary statistics data, as appropriate, are provided with each continuous record of discharge. The comments clarify information presented under the various line headings of the summary statistics table.

ANNUAL TOTAL.--The sum of the daily mean values of discharge for the year. At some stations, the annual total discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. At some stations, the annual mean discharge is adjusted for reservoir storage or diversion. The adjusted figures are identified by a symbol and corresponding footnotes.

HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period.

LOWEST ANNUAL MEAN.--The minimum annual mean discharge occurring for the designated period.

HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period.

LOWEST DAILY MEAN.--The minimum daily mean discharge for the year or for the designated period.

ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 - March 31). The date shown in the summary statistics table is the initial

date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

MAXIMUM PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Note that secondary instantaneous peak discharges above a selected base discharge are stored in District computer files for stations meeting certain criteria. Those discharge values may be obtained by contacting the District Office. (See address on the back of the title page.)

MAXIMUM PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, footnotes may be used to provide further information. (For Alaska, a second line heading, INSTANTANEOUS PEAK STAGE, is used for stations where the peak stage was from a backwater condition and had a different date from the peak discharge.)

INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period.

ANNUAL RUNOFF.--Indicates the total quantity of water in runoff for a drainage area for the year. Data reports may use any of the following units of measurement in presenting annual runoff data:

Acre-foot (AC-FT) is the quantity of water required to cover 1 acre to a depth of 1 foot and is equal to 43,560 cubic feet or about 326,000 gallons or 1,233 cubic meters.

Cubic feet per second per square mile (CFSM) is the average number of cubic feet of water flowing per second from each square mile area drained, assuming the runoff is distributed uniformly in time and area.

Inches (INCHES) indicates the depth to which the drainage area would be covered if all of the runoff for a given time period were uniformly distributed on it.

10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period.

50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period.

90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period.

Data collected at partial-record stations follow the information for continuous-record sites. In prior years, data for low-flow partial-record stations have been published, but no stations were in operation in the current water year. Data are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage partial-record stations. The second is a table of discharge measurements made at crest-stage partial-record stations and miscellaneous sites. Occasionally, a series of discharge measurements are made within a short time period to investigate the seepage

gains or losses along a reach of a stream or to determine the low-flow characteristics of an area. Such measurements are given in special tables following the listing of miscellaneous measurements. Lake-level data collected at miscellaneous selected lakes are included. The data are being collected at these selected lakes to define lake-level changes in response to seasonal variations, the effects of man, droughts, and changes in the ground-water system. The lake-level data follow the water-quality data tables for miscellaneous sites.

Identifying Estimated Daily Discharge

Estimated daily-discharge values in the current annual data report are identified by the "e" notation next to each mean daily discharge in the daily values tables. Prior to the report for the 1985 water year, estimated daily-discharge values were not specifically identified.

Accuracy of the Records

The accuracy of streamflow data depends primarily on: (1) the stability of the stage-discharge relation or, if the control is unstable, the frequency of discharge measurements; and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records.

The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent of the true value; "good" within 10 percent; and "fair" within 15 percent. Records are rated as "poor" when they do not meet the criteria above. Different accuracies may be attributed to different parts of a given record.

Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharges of less than 1 ft³/s; to the nearest tenth between 1.0 and 10 ft³/s; to whole numbers between 10 and 1,000 ft³/s; and to 3 significant figures above 1,000 ft³/s. The number of significant figures used is based solely on the magnitude of the discharge value. The same rounding rules apply to discharges listed for partial-record stations and miscellaneous measurement sites.

Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, flow from springs, or to other factors. For such stations, figures of cubic feet per second per square mile and of runoff in inches are not published unless satisfactory adjustments can be made for diversions or for other factors that might affect the flows. At those stations where adjustments are made, large errors in computed runoff may occur if adjustments are large in comparison to observed discharge. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents.

Other Data Available

Information of a more detailed nature than that published for most of the gaging stations such as observations of water temperatures, discharge measurements, gage-height records, and rating tables, is filed in the field offices at Anchorage, Fairbanks, and Juneau for their areas of responsibility. Also, most of the daily mean discharges are in computer files and can be retrieved for statistical analyses. Information on the availability of unpublished data or statistical analyses may be obtained from the District Office in Anchorage.

Records of Surface-Water Quality

Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always requires corresponding discharge data. Records of surface-water quality in this report involve a variety of types of data and measurement frequencies.

Classification of Records

Water-quality data for surface-water sites are grouped into one of three classifications. A <u>continuing-record station</u> is a site where data are collected on a regularly scheduled basis. Frequency may be once or more times daily, weekly, monthly, or quarterly. A <u>partial-record station</u> is a site where water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A <u>miscellaneous</u> sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin.

A distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values recorded at short intervals. Some records of water quality, such as temperature and specific conductance, may be obtained by continuous recordings; however, because of costs, most data are obtained only monthly or less frequently.

Arrangement of Records

Water-quality records collected at a surface-water daily record station are published immediately following that record, regardless of the frequency of sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surface-water station, the continuing water-quality record is published with its own station number and name in the regular downstream-order sequence. Water-quality data for partial-record stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites.

On-Site Measurements and Sample Collection

To assure the data obtained represent the *in situ* quality of the water, certain measurements, such as water temperature, pH, alkalinity, and dissolved oxygen, are made onsite when the samples are collected. To assure that measurements made in the laboratory also represent the *in situ* water, prescribed procedures are followed in collecting, treating, and shipping the samples to prevent changes in quality pending analysis in the laboratory. These procedures are given in U.S. Geological Survey Techniques of Water-Resources Investigations, Book 1, Chapter D2; Book 3, Chapter C2; Book 5, Chapters A1, A3, and A4.

One sample can adequately define the water quality at a given time if the mixture of solutes throughout the stream cross section is homogeneous. However, the concentration of solutes at different locations in the cross section may vary widely with different rates of water discharge, de-

pending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. For the tables of surface-water quality that are published in this report, parameter code 82398 (SAMPLING METHOD, CODES) lists a numeric value which corresponds to the following explanation:

```
10 - Equal width increment (EWI)
```

- 20 Equal discharge increment (EDI)
- 25 Timed sampling interval
- 30 Single vertical
- 40 Multiple verticals
- 50 Point sample
- 60 Weighted bottle
- 70 Grab sample (dip)
- 80 Discharge integrated, equal transit rate (ETR)
- 90 Discharge integrated, centroid
- 100 Van Dorn sampler
- 110 Sewage sampler
- 120 Velocity integrated

8010 - Other

To better define the sample, parameter code 84164 (SAMPLER TYPE) lists a numeric value which corresponds to the following explanation:

100 - Van Dorn sampler 110 - Sewage sampler	3045 - US DH -81 with Teflon cap and nozzle 3050 - Collpsible Teflon Bag in Frame Sampler
3001 - Sampler, US DH-48	3053 - US D-95 Teflon bottle
3002 - Sampler, US DH-59	3054 - US D-95 Teflon bottle
3003 - Sampler, US DH-75P	3055 - US D-96 Teflon bag
3004 - Sampler, US DH-75Q	3060 - Weighted Bottle Sampler
3007 - Sampler, US D-49	3070 - Grab Sampler
3009 - Sampler, US D-74	4020 - Open top bailer
3011 - Sampler, US D-77	4025 - Double valve bailer
3015 - Sampler, US P-63	4041 - Submersible Helical Rotor Pump
3016 - Sampler, US P-72	4080 - Peristaltic pump
3042 - Sampler, US P-61	4100 - Flowing Well
3044 - US DH-81	8010 - Other

For further explanation on sampling methods, see Techniques of Water-Resources Investigations, Book 3, Chapter C2, "Field Methods for Measurement of Fluvial Sediment."

Chemical-quality data published in this report are considered to be the most representative values available for the stations listed. The values reported represent water-quality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. In the rare case where an apparent inconsistency exists between a reported pH value and the relative abundance of carbon dioxide species (carbonate and bicarbonate), the inconsistency is

the result of a slight uptake of carbon dioxide from the air by the sample between measurement of pH in the field and determination of carbonate and bicarbonate in the laboratory.

Water Temperature

Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are sometimes taken at the time of discharge measurements at water-discharge stations. Large streams have a small daily temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges.

At stations where temperature recording instruments are used, maximum and minimum temperatures for each day are published. Mean temperatures are published when diurnal variations are greater than 2.0 °C more than 5 percent of the water year. Water temperatures measured at the time of water-discharge measurements are on file in the District field offices.

Sediment

Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections.

During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations observed immediately before and after the periods, and suspended-sediment loads for other periods of similar discharge.

At other stations, suspended-sediment samples were collected periodically at many verticals in the stream cross section. Although data collected periodically may represent conditions only at the time of observations, such data are useful in establishing seasonal relations between quality and streamflow in predicting long-term sediment-discharge characteristics of the stream.

In addition to the records of quantities of suspended sediment, records of periodic measurements of the particle-size distribution of the suspended sediment and bed material are included.

Laboratory Measurements

Sediment samples are analyzed in the U.S. Geological Survey laboratory in Vancouver, Washington. Methods used in analyzing sediment samples and computing sediment records are given in Techniques of Water-Resources Investigations, Book 5, Chapter C1. Methods used by the Geolog-

ical Survey laboratory are given in TWRI, Book 1, Chapter D2; Book 3, Chapter C2; Book 5, Chapters A1, A3, and A4.

Records of Ground-Water Levels

Ground-water level data from a statewide network of observation wells are published in this report. This network consists of observation wells (figure 3) located either in important aquifers or in areas of significant water use.

Data Collection and Computation

Water-level measurements are made in many types of wells, under varying conditions of access and weather conditions. However, the equipment and measuring techniques used at each observation well assure that the measurements are of consistent accuracy and reliability.

Tables of water-level data are presented by Hydrologic Subregion. The station-identification number for a given well is the 15-digit number that appears in the upper left corner of the station description. The secondary identification number is the local number, an alphanumeric number, derived from the township-range location of the well.

Water-level records are obtained from direct measurements with a steel tape, battery-operated electric tape, or from a water-stage recorder that gives a continuous graph of water-level fluctuations, a paper tape punched at selected time intervals, or data stored at selected time intervals on an electronic data logger. The water-level measurements in this report are given in feet with reference to either sea level or land-surface datum. Sea level is the datum plane on which the national network of precise levels is based; land-surface datum is a datum plane that is approximately at land surface at each well. The altitude of the land-surface datum is given in the well description. The height of the measuring point above or below land-surface datum is also given in each well description. Water levels in wells equipped with recording gages are the highest ground-water level recorded in the well on the day indicated.

Water levels are reported to as many significant figures as can be justified by the local conditions. For example, in a measurement of a depth to water of several hundred feet and if an electric water sensor is used, the error in determining the absolute value of the total depth to water may be a few tenths of a foot. However, the error in determining the net change of water level between successive measurements may be only a hundredth or a few hundredths of a foot. For lesser depths to water, the accuracy is greater. Accordingly, most measurements are reported to a hundredth of a foot, but some may be given only to a tenth of a foot.

Data Presentation

Each well record consists of the station description and the data table of water levels observed during the water year. The description of the well is presented through use of descriptive headings preceding the tabular data. Clarification of each heading is given below.

LOCATION.--This paragraph follows the well-identification number and reports the latitude and longitude (given in degrees, minutes, and seconds); the Hydrologic Unit; the distance and direction from a geographic point of reference; and the owner's name.

AQUIFER.--This entry designates by name (if a name exists) and geologic age the aquifer(s) open to the well.

WELL CHARACTERISTICS.--This entry describes the well in terms of depth, diameter, casing depth and/or screened interval, method of construction, and additional information such as casing breaks, collapsed screen, and other changes since construction.

INSTRUMENTATION.--This paragraph provides information on both the frequency of measurement and the collection method used, allowing the user to better evaluate the reported water-level extremes by knowing whether they are based on weekly, monthly, or some other frequency of measurement.

DATUM.--This entry describes both the measuring point and the land-surface elevation at the well. The measuring point is described physically (such as top of collar, notch in top of casing, plug in pump base and so on), and in relation to land surface (such as 1.3 ft above land-surface datum). The elevation of the land-surface datum is described in feet above sea level; it is reported with a precision depending on the method of determination.

REMARKS.--This entry describes factors that may influence the water level in a well or the measurement of the water level. It should identify wells that also are water-quality observation wells and may be used to acknowledge the assistance of local (non-Survey) observers.

PERIOD OF RECORD.--This entry indicates the period for which there are published records for the well. It reports the month and year of the start of publication of water-level records by the U.S. Geological Survey and the words "to current year" if the records are to be continued into the following year. Periods for which water-level records are available, but are not published by the U.S. Geological Survey, may be noted.

EXTREMES FOR PERIOD OF RECORD.--This entry contains the highest and lowest water levels of the period of record, with respect to land-surface datum or sea level, and the dates of their occurrence.

A table of water levels follows the station description for each well. Water levels are reported in feet above or below land-surface datum. Water levels that are above land-surface datum have negative values. For wells equipped with recorders, water level values listed are the highest recorded in the well on the day indicated. Missing records are indicated by dashes in place of the water level.

Information of a more detailed nature than that published, such as well depths and water levels from other ground-water sites throughout the State, is filed in the Anchorage field office. Much of the data are in computer files and can be retrieved for analysis. Information on the availability of unpublished data may be obtained from the District Office in Anchorage.

Records of Ground-Water Quality

Records of ground-water quality in this report differ from other types of records in that for most sampling sites they consist of only one set of measurements for the water year. The quality of ground water ordinarily changes slowly; therefore, for most general purposes one annual sampling, or a few samples taken at infrequent intervals during the year, is sufficient. Frequent measurement of the same constituents is not necessary unless one is concerned with a particular problem, such as monitoring for trends in nitrate concentration. In special cases where the quality of ground water may change more rapidly, more frequent measurements are made to identify the nature of the changes.

Data Collection and Computation

The records of ground-water quality in this report were obtained mostly as a part of special studies in specific areas. Consequently, a number of chemical analyses are presented for some areas but none for other areas. As a result, the records for this year, by themselves, do not provide a balanced view of ground-water quality statewide. Such a view can be attained only by considering records for this year in context with similar records obtained for these and other areas in earlier years.

Data Presentation

The records of ground-water quality are published in a section titled QUALITY OF GROUND WATER immediately following the ground-water-level records. Data for quality of ground water are listed by Hydrologic Subregion, and are identified by well number. The station-identification number for wells sampled is the 15-digit number derived from the latitude-longitude locations. No descriptive statements are given for ground-water-quality records; however, the well number, depth of well, date of sampling, and other pertinent data are given in the table containing the chemical analyses of the ground water.

ACCESS TO USGS WATER DATA

The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the Internet. These data may be accessed at:

http://water.usgs.gov

Some water-quality and ground-water data also are available through the Internet. In addition, data can be provided in various machine-readable formats on magnetic tape or 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (see address on the back of the title page).

DEFINITION OF TERMS

Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Terms such as algae, water level, precipitation are used in their common everyday meanings, definitions of which are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting English units to International System (SI) Units on the inside of the back cover.

Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity).

Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff")

Adenosine triphosphate (ATP) is an organic, phosphaterich, compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter.

Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample.

Alkalinity is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample.

Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acrefeet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches.

Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 to September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.)

Aroclor is the registered trademark for a group of polychlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type and the last two digits represent the weight percent of the hydrogen substituted chlorine.

Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is taken. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate")

Ash mass is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m³), and periphyton and benthic organisms in grams per square meter (g/m²). (See also "Biomass")

Bacteria are microscopic unicellular organisims, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, while others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants.

Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peaks per year will be published.

Base flow is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge.

Bedload is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 ft) that are retained in the bedload sampler. A sample collected with a pressure-differential

bedload sampler may also contain a component of the suspended load.

Bedload discharge (tons per day) is rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload" and "Sediment")

Bed material is the sediment mixture of which a streambed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment")

Benthic organisms are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality.

Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria.

Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat.

Biomass pigment ratio is an indicator of the total proportion of periphyton which are autotrophic (plants). This is also called the Autotrophic Index.

Blue-green algae (*Cyanophyta*) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Bottom material (See "Bed material")

Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L).

Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cell-size variation among the algal species. Cell volume (µm³) is determined by obtaining critical cell measurements on cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid

or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows:

sphere $4/3 \pi r^3$ cone $1/3 \pi r^3 h$ cylinder $\pi r^3 h$.

pi is the ratio of the circumference to the diameter of a circle; pi = 3.14159...

From cell volume, total algal biomass expressed as biovolume ($\mu m^3/mL$) is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes over all species.

Cfs-day (See "Cubic foot per second-day")

Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"]

Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warm-blooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria")

Coliphages are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of waters and of the survival and transport of viruses in the environment.

Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale.

Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable boundaries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well.

Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage.

Continuous-record station is a site where data are collected with sufficient frequency to define daily mean values and variations within a day.

Control designates a feature in the channel downstream from a gaging station that physically influences the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel.

Control structure as used in this report is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater.

Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-feet" sometimes is used synonymously with "cubic feet per second" but is now obsolete.

Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily-mean discharges reported in the daily-value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days.

Cubic foot per second per square mile [CFSM, (ft³/s)/mi²] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff")

Daily mean suspended-sediment concentration is the time-weighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Mean concentration of suspended sediment," "Sediment," and "Suspended-sediment concentration")

Daily-record station is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis.

Data Collection Platform (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry.

Data logger is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems.

Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988")

Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentrations are expressed as number

of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Diel is of or pertaining to a 24-hour period of time; a regular daily cycle.

Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediments or other constituents suspended or dissolved in the water) that passes a cross section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents such as suspended sediment, bedload, and dissolved or suspended chemical constituents, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day).

Dissolved refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered.

Dissolved oxygen (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams.

Dissolved-solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO₃) can be converted to carbonate concentration by multiplying by 0.60.

Diversity index (H) (Shannon Index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is:

$$\bar{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$

where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different.

Drainage area of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified.

Drainage basin is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area")

Dry mass refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass")

Dry weight refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight")

Enterococcus bacteria are commonly found in the feces of humans and other warm-blooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on mE agar and subsequent transfer to EIA medium. Enterococci include *Streptococcus feacalis, Streptococcus feacium, Streptococcus avium,* and their variants. (See also "Bacteria")

EPT Index is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive, the index usually decreases with pollution.

Escherichia coli (E. coli) are bacteria present in the intestine and feces of warm-blooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on mTEC medium. Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Estimated (E) value of a concentration is reported when an analyte is detected and all criteria for a positive result are

met. If the concentration is less than the method detection limit (MDL), an 'E' code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an 'E' code even though the measured value is greater than the MDL. A value reported with an 'E' code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<).

Euglenoids (*Euglenophyta*) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or heterotrophically in the dark. (See also "Phytoplankton")

Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semi-volatile and extractable by ethyl acetate from air-dried streambed sediments. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediments.

Fecal coliform bacteria are present in the intestine or feces of warm-blooded animals. They are often used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on M-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fecal streptococcal bacteria are present in the intestine of warm-blooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Fire algae (*Pyrrhophyta*) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton")

Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates.

Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly larger than

the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any National geodetic datum. However, if the elevation of the gage datum relative to the National datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the National datum by adding the elevation of the gage datum to the gage reading.

Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height is often used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage.

Gage values are values that are recorded, transmitted and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, or 30-minute intervals.

Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. When used in connection with a discharge record, the term is applied only to those gaging stations where a continuous record of discharge is computed.

Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride.

Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton")

Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams.

Hardness of water is a physical-chemical characteristic that is commonly recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃).

High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. *See NOAA web site:* http://www.co-ops.nos.noaa.gov/tide-glos.html

Hilsenhoff's Biotic Index (HBI) is an indicator of organic pollution which uses tolerance values to weight taxa abundances; usually increases with pollution. It is calculated as follows:

$$HBI = sum \frac{(n)(a)}{N}$$

where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample.

Horizontal datum (See "Datum")

Hydrologic benchmark station is one that provides hydrologic data for a basin in which the hydrologic regimen will likely be governed solely by natural conditions. Data collected at a benchmark station may be used to separate effects of natural from human-induced changes in other basins that have been developed and in which the physiography, climate, and geology are similar to those in the undeveloped benchmark basin.

Hydrologic index stations referred to in this report are four continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps.

Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number.

Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff")

Instantaneous discharge is the discharge at a particular instant of time. (See also "Discharge")

Laboratory Reporting Level (LRL) is generally equal to twice the yearly determined long-term method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a non-detection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually based on the most current quality-control data and may, therefore, change. [Note: In several previous NWQL documents (Connor and others, 1998; NWQL Technical Memorandum 98.07, 1998), the LRL was called the non-detection value or NDV—a term that is no longer used.)

Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well.

Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation

$$I = I_0 e^{-\lambda L}$$
,

where I_o is the source light intensity, I is the light intensity at length L (in meters) from the source, λ is the light-attenuation coefficient, and e is the base of the natural logarithm. The light attenuation coefficient is defined as

$$\lambda = -\frac{1}{L} \log_e \frac{I}{I_o} .$$

Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic.

Long-Term Method Detection Level (LT–MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT–MDL data are collected on a continuous basis to assess year-to-year variations in the LT–MDL. The LT–MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT–MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent.

Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. *See NOAA web site:*

http://www.co-ops.nos.noaa.gov/tideglos.html

Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that are usually arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline.

Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration")

Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a specific period. (See also "Discharge")

Mean high or low tide is the average of all high or low tides, respectively, over a specific period.

Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum")

Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level.

Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water.

Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larvaadult or egg-nymph-adult.

Method Detection Limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent.

Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds.

Micrograms per gram (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed.

Micrograms per kilogram (UG/KG, μg/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion.

Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of constituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion.

Microsiemens per centimeter (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is

synonymous with mhos and is the reciprocal of resistance in ohms.

- Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in mg/L and is based on the mass of dry sediment per liter of water-sediment mixture.
- **Minimum Reporting Level** (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method (Timme, 1995).
- **Miscellaneous site,** miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin.
- Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes.
- **Multiple-plate samplers** are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt.
- Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter.
- National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level." Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988")
- **Natural substrate** refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate")
- **Nekton** are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility.
- **Nephelometric turbidity unit** (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of Formazin. Turbidity measured in NTU uses

- nephelometric methods that depend on passing specific light of a specific wavelength through the sample.
- North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the U.S. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and U.S. first-order terrestrial leveling networks.
- **Open or screened interval** is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface.
- **Organic carbon** (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediments. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC).
- **Organic mass** or volatile mass of the living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass," "Biomass," and "Dry mass")
- **Organism count/area** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms.
- **Organism count/volume** refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms.
- **Organochlorine compounds** are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds.
- **Parameter Code** is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property.
- Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded.
- Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes Law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, Sedigraph) determine fall diameter of particles in

either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling).

Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows:

Classification	Size (mm)	Method of analysis
Clay Silt Sand	0.00024 - 0.004 0.004 - 0.062 0.062 - 2.0	Sedimentation Sedimentation Sedimentation/sieve
Gravel	2.0 - 64.0	Sieve

The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. Most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis.

Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation to the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak.

Percent composition or **percent of total** is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume.

Percent shading is determined by using a clinometer to estimate left and right bank shading. The values are added together and divided by 180 to determine percent shading relative to a horizontal surface.

Periodic-record station is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year, but at a frequency insufficient to develop a daily record.

Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. While primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality.

Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides.

pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7 are termed "acidic," and solutions with a pH greater than 7 are termed "basic." Solutions with a pH of 7 are neutral. The presence and concentration of many dissolved chemical constituents found in water are, in part, influenced by the hydrogen-ion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms are also influenced, in part, by the hydrogen-ion activity of water.

Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and are commonly known as algae. (See also "Plankton")

Picocurie (PC, pCi) is one trillionth (1 x 10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute).

Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL of sample).

Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides.

Polychlorinated naphthalenes (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations.

Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photosynthetic and chemosynthetic activity of producer organisms (chiefly, green plants). The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants.

Primary productivity (carbon method) is expressed as milligrams of carbon per area per unit time [mg $C/(m^2/time)$] for periphyton and macrophytes or per volume [mg $C/(m^3/t^2)$]

time)] for phytoplankton. Carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use in unenriched waters. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg O/(m²/time)] for periphyton and macrophytes or per volume [mg O/(m³/time)] for phytoplankton. Oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity")

Radioisotopes are isotopic forms of an element that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight, but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes.

Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material")

Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or non-exceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is

exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day 10-year low flow $(7Q_{10})$ is the flow rate below which the annual minimum 7-day-mean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the non-exceedances of the 7Q₁₀ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous non-exceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the $7Q_{10}$.

Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition.

Return period (See "Recurrence interval")

River mileage is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council, and typically used to denote location along a river.

Runoff is the quantity of water that is discharged ("runs off") from a drainage basin in a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff")

Sea level, as used in this report, refers to one of the two commonly used national vertical datums, (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums. See conversion of units page (inside back cover) for identification of the datum used in this report.

Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are influenced by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation.

Seven-day 10-year low flow (7Q10) is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-run average. The recurrence interval of

the 7Q10 is 10 years; the chance that the annual 7-day minimum flow will be less than the 7Q10 is 10 percent in any given year. (See also "Recurrence interval" and "Annual 7-day minimum")

Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops.

Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75 percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water.

Stable isotope ratio (per MIL/MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific waters, to evaluate mixing of different waters, as an aid in determining reaction rates, and other chemical or hydrologic processes.

Stage (See "Gage height")

Stage-discharge relation is the relation between the watersurface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time.

Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation.

Substrate is the physical surface upon which an organism lives.

Substrate Embeddedness Class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand or finer). Below are the class categories expressed as percent covered by fine sediment:

0 < no gravel or larger substrate

1 > 75%

2 51-75% 4 5-25% 3 26-50% 5 < 5%

Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because

surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained.

Surficial bed material is the upper surface (0.1 to 0.2 ft) of the bed material such as that material which is sampled using U.S. Series Bed-Material Samplers.

Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is operationally defined as the material retained on a 0.45-micrometer filter.

Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended")

Suspended sediment is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment")

Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 ft above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment")

Suspended-sediment discharge (tons/day) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended-sediment concentration")

Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment

load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment")

Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, based on determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended")

Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis.

Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources.

Taxa richness is the total number of distinct species or groups and usually decreases with pollution. (See also "Percent Shading")

Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchical scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, *Hexagenia limbata*, is the following:

Kingdom: Animal
Phylum: Arthropoda
Class: Insecta

Order: Ephemeroptera
Family: Ephemeridae
Genus: Hexagenia

Species: Hexagenia limbata

Temperature preferences:

Cold – preferred water temperature for the species is less than 20 °C or spawning temperature preference less than 16 °C and native distribution is considered to be predominantly north of 45° N. latitude.

Warm – preferred water temperatures for the species is greater than 20 °C or spawning temperature preference greater than 16 °C and native distribution is considered to be predominantly south of 45° N. latitude.

Cool – intermediate between cold and warm water temperature preferences.

Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium.

Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration.

Tons per acre-foot (**T/acre-ft**) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136.

Tons per day (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day.

Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a water-suspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.)

Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warm-blooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gramnegative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bacteria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on M-Endo medium (nutrient medium for bacterial growth). Their concentrations are

expressed as number of colonies per 100 mL of sample. (See also "Bacteria")

Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on.

Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material."

Total length (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together.

Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load.

Total organism count is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume.")

Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for whole-water samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results.

Total sediment discharge is the mass of suspendedsediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Sediment," "Suspended sediment," "Suspended-Sediment Concentration," "Bedload," and "Bedload discharge")

Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also

"Sediment," "Suspended-Sediment Load," and "Total load")

Trophic group:

Filter feeder – diet composed of suspended plant and/or animal material.

Herbivore – diet composed predominantly of plant material

Invertivore – diet composed predominantly of invertebrates.

Omnivore – diet composed of at least 25-percent plant and 25-percent animal material.

Piscivore – diet composed predominantly of fish.

Turbidity is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values. Consequently, the method of measurement and type of instrument used to derive turbidity records should be included in the "REMARKS" column of the Annual Data Report.

Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample.

Vertical datum (See "Datum")

Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinkingwater supplies is a human health concern because many are

toxic and are known or suspected human carcinogens (U.S. Environmental Protection Agency, 1996).

Water table is the level in the saturated zone at which the pressure is equal to the atmospheric pressure.

Water-table aquifer is an unconfined aquifer within which is found the water table.

Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2001, is called the "2001 water year."

WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.)

Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir.

Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass")

Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight")

WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports.

Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and are often large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton")

TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY

The U.S.G.S. publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises.

The reports listed below are for sale by the U.S.G.S., Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (authorized agent of the Superintendent of Documents, Government Printing Office). Prepayment is required. Remittance should be made in the form of a check or money order payable to the "U.S. Geological Survey." Prices are not included because they are subject to change. Current prices can be obtained by writing to the above address. When ordering or inquiring about prices for any of these publications, please give the title, book number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations."

Book 1. Collection of Water Data by Direct Measurement

Section D. Water Quality

- 1-D1. *Water temperature—influential factors, field measurement, and data presentation*, by H.H. Stevens, Jr., J.F. Ficke, and G.F. Smoot: USGS–TWRI book 1, chap. D1. 1975. 65 p.
- 1-D2. *Guidelines for collection and field analysis of ground-water samples for selected unstable constituents*, by W.W. Wood: USGS–TWRI book 1, chap. D2. 1976. 24 p.

Book 2. Collection of Environmental Data

Section D. Surface Geophysical Methods

- 2-D1. *Application of surface geophysics to ground-water investigations*, by A.A.R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS–TWRI book 2, chap. D1. 1974. 116 p.
- 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS-TWRI book 2, chap. D2. 1988. 86 p.

Section E. Subsurface Geophysical Methods

- 2-E1. *Application of borehole geophysics to water-resources investigations*, by W.S. Keys and L.M. MacCary: USGS-TWRI book 2, chap. E1. 1971. 126 p.
- 2-E2. *Borehole geophysics applied to ground-water investigations*, by W.S. Keys: USGS–TWRI book 2, chap. E2. 1990. 150 p.

Section F. Drilling and Sampling Methods

2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS–TWRI book 2, chap. F1. 1989. 97 p.

Book 3. Applications of Hydraulics

Section A. Surface-Water Techniques

- 3-A1. *General field and office procedures for indirect discharge measurements*, by M.A. Benson and Tate Dalrymple: USGS–TWRI book 3, chap. A1. 1967. 30 p.
- 3-A2. *Measurement of peak discharge by the slope-area method*, by Tate Dalrymple and M.A. Benson: USGS—TWRI book 3, chap. A2. 1967. 12 p.
- 3-A3. *Measurement of peak discharge at culverts by indirect methods*, by G.L. Bodhaine: USGS–TWRI book 3, chap. A3. 1968. 60 p.
- 3-A4. *Measurement of peak discharge at width contractions by indirect methods*, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p.
- 3-A5. *Measurement of peak discharge at dams by indirect methods*, by Harry Hulsing: USGS–TWRI book 3. chap. A5. 1967. 29 p.

- 3-A6. *General procedure for gaging streams*, by R.W. Carter and Jacob Davidian: USGS–TWRI book 3, chap. A6. 1968. 13 p.
- 3-A7. *Stage measurement at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A7. 1968. 28 p.
- 3-A8. *Discharge measurements at gaging stations*, by T.J. Buchanan and W.P. Somers: USGS–TWRI book 3, chap. A8. 1969. 65 p.
- 3-A9. *Measurement of time of travel in streams by dye tracing*, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS—TWRI book 3, chap. A9. 1989. 27 p.
- 3-Al0. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A10. 1984. 59 p.
- 3-A11. *Measurement of discharge by the moving-boat method*, by G.F. Smoot and C.E. Novak: USGS–TWRI book 3, chap. A11. 1969. 22 p.
- 3-A12. *Fluorometric procedures for dye tracing*, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A. Kilpatrick: USGS–TWRI book 3, chap. A12. 1986. 34 p.
- 3-A13. *Computation of continuous records of streamflow*, by E.J. Kennedy: USGS–TWRI book 3, chap. A13. 1983. 53 p.
- 3-A14. *Use of flumes in measuring discharge*, by F.A. Kilpatrick and V.R. Schneider: USGS–TWRI book 3, chap. A14. 1983. 46 p.
- 3-A15. *Computation of water-surface profiles in open channels*, by Jacob Davidian: USGS–TWRI book 3, chap. A15. 1984. 48 p.
- 3-A16. *Measurement of discharge using tracers*, by F.A. Kilpatrick and E.D. Cobb: USGS–TWRI book 3, chap. A16. 1985. 52 p.
- 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p.
- 3-A18. *Determination of stream reaeration coefficients by use of tracers*, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS–TWRI book 3, chap. A18. 1989. 52 p.
- 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 p.
- 3-A20. *Simulation of soluble waste transport and buildup in surface waters using tracers*, by F.A. Kilpatrick: USGS–TWRI book 3, chap. A20. 1993. 38 p.
- 3-A21 *Stream-gaging cableways*, by C. Russell Wagner: USGS–TWRI book 3, chap. A21. 1995. 56 p.

Section B. Ground-Water Techniques

- 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS–TWRI book 3, chap. B1. 1971. 26 p.
- 3-B2. *Introduction to ground-water hydraulics, a programed text for self-instruction*, by G.D. Bennett: USGS—TWRI book 3, chap. B2. 1976. 172 p.
- 3-B3. *Type curves for selected problems of flow to wells in confined aquifers*, by J.E. Reed: USGS–TWRI book 3, chap. B3. 1980. 106 p.
- 3-B4. *Regression modeling of ground-water flow*, by R.L. Cooley and R.L. Naff: USGS–TWRI book 3, chap. B4. 1990. 232 p.
- 3-B4. Supplement 1. Regression modeling of ground-water flow --Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS-TWRI book 3, chap. B4. 1993. 8 p.
- 3-B5. *Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems—An introduction*, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS–TWRI book 3, chap. B5. 1987. 15 p.
- 3-B6. *The principle of superposition and its application in ground-water hydraulics*, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS–TWRI book 3, chap. B6. 1987. 28 p.

- 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS–TWRI book 3, chap. B7. 1992. 190 p.
- 3-B8. *System and boundary conceptualization in ground-water flow simulation*, by T.E. Reilly: USGS–TWRI book 3, chap. B8. 2001. 29 p.

Section C. Sedimentation and Erosion Techniques

- 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 p.
- 3-C2. *Field methods for measurement of fluvial sediment*, by T.K. Edwards and G.D. Glysson: USGS–TWRI book 3, chap. C2. 1999. 89 p.
- 3-C3. *Computation of fluvial-sediment discharge*, by George Porterfield: USGS–TWRI book 3, chap. C3. 1972. 66 p.

Book 4. Hydrologic Analysis and Interpretation

Section A. Statistical Analysis

- 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI book 4, chap. A1. 1968. 39 p.
- 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p.

Section B. Surface Water

- 4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 p.
- 4-B2. *Storage analyses for water supply*, by H.C. Riggs and C.H. Hardison: USGS–TWRI book 4, chap. B2. 1973. 20 p.
- 4-B3. *Regional analyses of streamflow characteristics*, by H.C. Riggs: USGS–TWRI book 4, chap. B3. 1973. 15 p.

Section D. Interrelated Phases of the Hydrologic Cycle

4-D1. *Computation of rate and volume of stream depletion by wells*, by C.T. Jenkins: USGS–TWRI book 4, chap. D1. 1970. 17 p.

Book 5. Laboratory Analysis

Section A. Water Analysis

- 5-A1. *Methods for determination of inorganic substances in water and fluvial sediments*, by M.J. Fishman and L.C. Friedman, editors: USGS–TWRI book 5, chap. A1. 1989. 545 p.
- 5-A2. *Determination of minor elements in water by emission spectroscopy*, by P.R. Barnett and E.C. Mallory, Jr.: USGS–TWRI book 5, chap. A2. 1971. 31 p.
- 5-A3. *Methods for the determination of organic substances in water and fluvial sediments*, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS–TWRI book 5, chap. A3. 1987. 80 p.
- 5-A4. *Methods for collection and analysis of aquatic biological and microbiological samples*, by L.J. Britton and P.E. Greeson, editors: USGS–TWRI book 5, chap. A4. 1989. 363 p.
- 5-A5. *Methods for determination of radioactive substances in water and fluvial sediments*, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS–TWRI book 5, chap. A5. 1977. 95 p.
- 5-A6. *Quality assurance practices for the chemical and biological analyses of water and fluvial sediments*, by L.C. Friedman and D.E. Erdmann: USGS–TWRI book 5, chap. A6. 1982. 181 p.

Section C. Sediment Analysis

5-C1. *Laboratory theory and methods for sediment analysis*, by H.P. Guy: USGS–TWRI book 5, chap. C1. 1969. 58 p.

Book 6. Modeling Techniques

Section A. Ground Water

6-A1. *A modular three-dimensional finite-difference ground-water flow model*, by M.G. McDonald and A.W. Harbaugh: USGS–TWRI book 6, chap. A1. 1988. 586 p.

- 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS–TWRI book 6, chap. A2. 1991. 68 p.
- 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS–TWRI book 6, chap. A3. 1993. 136 p.
- 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS—TWRI book 6, chap. A4. 1992. 108 p.
- 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS–TWRI book 6, chap. A5, 1993. 243 p.
- 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS-TWRI book 6, chap. A5,1996. 125 p.

Book 7. Automated Data Processing and Computations

Section C. Computer Programs

- 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS–TWRI book 7, chap. C1. 1976. 116 p.
- 7-C2. *Computer model of two-dimensional solute transport and dispersion in ground water*, by L.F. Konikow and J.D. Bredehoeft: USGS–TWRI book 7, chap. C2. 1978. 90 p.
- 7-C3. *A model for simulation of flow in singular and interconnected channels*, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS–TWRI book 7, chap. C3. 1981. 110 p.

Book 8. Instrumentation

Section A. Instruments for Measurement of Water Level

- 8-A1. *Methods of measuring water levels in deep wells*, by M.S. Garber and F.C. Koopman: USGS–TWRI book 8, chap. A1. 1968. 23 p.
- 8-A2. *Installation and service manual for U.S. Geological Survey manometers*, by J.D. Craig: USGS–TWRI book 8, chap. A2. 1983. 57 p.

Section B. Instruments for Measurement of Discharge

8-B2. *Calibration and maintenance of vertical-axis type current meters*, by G.F. Smoot and C.E. Novak: USGS—TWRI book 8, chap. B2. 1968. 15 p.

Book 9. Handbooks for Water-Resources Investigations

Section A. National Field Manual for the Collection of Water-Quality Data

- 9-A1. *National Field Manual for the Collection of Water-Quality Data: Preparations for Water Sampling*, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A1. 1998. 47 p.
- 9-A2. National Field Manual for the Collection of Water-Quality Data: Selection of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A2. 1998. 94 p.
- 9-A3. National Field Manual for the Collection of Water-Quality Data: Cleaning of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A3. 1998. 75 p.
- 9-A4. *National Field Manual for the Collection of Water-Quality Data: Collection of Water Samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A4. 1999. 156 p.
- 9-A5. *National Field Manual for the Collection of Water-Quality Data: Processing of Water Samples*, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS–TWRI book 9, chap. A5. 1999, 149 p.
- 9-A6. *National Field Manual for the Collection of Water-Quality Data: Field Measurements*, edited by F.D. Wilde and D.B. Radtke: USGS–TWRI book 9, chap. A6. 1998. Variously paginated.

- 9-A7. *National Field Manual for the Collection of Water-Quality Data: Biological Indicators*, edited by D.N. Myers and F.D. Wilde: USGS–TWRI book 9, chap. A7. 1997 and 1999. Variously paginated.
- 9-A8. *National Field Manual for the Collection of Water-Quality Data: Bottom-material samples*, by D.B. Radtke: USGS–TWRI book 9, chap. A8. 1998. 48 p.
- 9-A9. *National Field Manual for the Collection of Water-Quality Data: Safety in Field Activities*, by S.L. Lane and R.G. Fay: USGS–TWRI book 9, chap. A9. 1998. 60 p.

Figure 1. Locations of gaging stations.

15019990 TYEE LAKE OUTLET NEAR WRANGELL

LOCATION.--Lat $56^{\circ}12'00''$, long $131^{\circ}30'24''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 28, T. 65 S., R. 90 E. (Bradfield Canal A-5 quad), Hydrologic Unit 19010101, in Tongass National Forest, on left bank at outlet of Tyee Lake, 1.5 mi south of Bradfield Canal and 37 mi southeast of Wrangell, Alaska.

DRAINAGE AREA.--14.7 mi².

PERIOD OF RECORD.--October 1979 to September 1981 and June 1992 to current year. Records for November 1922 to September 1927 and August 1963 to October 1969, published as Tyee Creek at Mouth near Wrangell (station 15020100) are not equivalent owing to inflow between sites.

GAGE.--Water-stage recorder. Elevation of gage is 1,370 ft above sea level from topographic map. Prior to June 9, 1992, at site 500 ft downstream at datum 13.66 ft lower.

REMARKS.--Records fair, except for estimated daily discharges and discharges below 10 ${\rm ft^3/s}$, which are poor. Water for power generation is diverted from Tyee Lake and discharged into Bradfield Canal. Diversion to hydropower plant began February 1984, and is not included in the discharge records.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	138 110 86 65 56	19 26 125 142 116	36 74 68 51 45	e.00 e.00 e.00 15 23	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e500 e400 e320 e300 e320	263 257 251 298 327	137 136 125 112 99	403 529 554 561 486
6 7 8 9	66 112 156 151 124	91 73 54 37 23	61 48 32 20 12	32 27 26 22 17	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e330 e340 e350 e370 e340	370 461 470 487 457	90 83 72 66 61	455 362 285 226 175
11 12 13 14 15	118 138 211 205 229	15 11 8.2 5.4 3.4	7.7 4.6 2.4 .83 e.00	12 7.6 5.2 3.4 2.1	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.15 e.22 e.32 e.50 e.80	e280 e260 305 334 334	383 321 319 326 302	59 55 54 56 59	131 106 87 68 53
16 17 18 19 20	228 202 176 174 160	1.9 1.5 .89 .49	e.00 e.00 e.00 e.00	1.4 1.1 1.1 .90 .52	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e1.5 e2.5 e4.0 e7.0	322 316 315 339 467	271 268 266 261 278	56 50 41 32 35	42 39 72 111 141
21 22 23 24 25	143 192 237 212 170	3.3 76 180 185 166	e.00 e.00 e.00 e.00	.24 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e20 e16 e28 e44 e75	551 494 436 391 361	308 327 320 288 253	65 83 97 128 185	182 451 628 496 460
26 27 28 29 30 31	130 95 69 48 32 24	137 107 78 53 35	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e120 e155 e195 e250 e225 e440	322 297 312 308 277	222 199 180 162 154 142	295 470 424 323 264 296	386 333 283 297 551
TOTAL MEAN MAX MIN AC-FT	4257 137 237 24 8440	1774.70 59.2 185 .49 3520	462.53 14.9 74 .00 917	197.56 6.37 32 .00 392	0.00 .000 .00 .00	0.00 .000 .00 .00	0.00 .000 .00 .00	1595.99 51.5 440 .00 3170	10591 353 551 260 21010	9191 296 487 142 18230	4108 133 470 32 8150	8953 298 628 39 17760
		STATISTI	CS OF MOI	NTHLY MEAN	DATA FOR	WATER	YEARS 1992	2 - 2001,	BY WATER	YEAR (WY)#		
MEAN MAX (WY) MIN (WY)	165 264 2000 102 1995	50.5 108 1993 5.10 1997	9.91 38.4 1998 .000 1995	1.19 6.37 2001 .000 1993	.030 .28 1994 .000 1993	.000 .000 1993 .000 1993	3.53 24.8 1993 .000 1994	76.0 247 1993 1.58 2000	265 367 1999 176 1994	187 305 1999 55.2 1998	112 216 2000 28.3 1994	171 298 2001 41.5 1993

[#] Record for 1980 and 1981 water years, prior to diversion of 1984, not included. See PERIOD OF RECORD e Estimated

15019990 TYEE LAKE OUTLET NEAR WRANGELL--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER Y	EAR WATER YEARS 1992 - 2001#
ANNUAL TOTAL	37093.76	41130.78	
ANNUAL MEAN	101	113	86.2
HIGHEST ANNUAL MEAN			113 2001
LOWEST ANNUAL MEAN			56.5 1995
HIGHEST DAILY MEAN	566 Aug 22	628 Sep 23	710 Oct 27 1993
LOWEST DAILY MEAN	a .00 Jan 11	b .00 Dec 15	c .00 Dec 30 1992
ANNUAL SEVEN-DAY MINIMUM	.00 Jan 11	.00 Dec 15	.00 Dec 30 1992
MAXIMUM PEAK FLOW		670 Sep 23	d 975 Oct 26 1993
MAXIMUM PEAK STAGE		25.52 Sep 23	28.62 Oct 26 1993
INSTANTANEOUS LOW FLOW		c	C
ANNUAL RUNOFF (AC-FT)	73580	81580	62480
10 PERCENT EXCEEDS	301	334	278
50 PERCENT EXCEEDS	15	32	26
90 PERCENT EXCEEDS	.00	.00	.00

PRIOR TO DIVERSION OF 1984

SUMMARY STATISTICS WATER YEARS 1980 - 1981

ANNUAL MEAN	179	
HIGHEST ANNUAL MEAN	213	1981
LOWEST ANNUAL MEAN	146	1980
HIGHEST DAILY MEAN	1690	Oct. 7 1980
LOWEST DAILY MEAN	f 1.4	Apr. 2 1980
ANNUAL SEVEN-DAY MINIMUM	2.0	Mar.31 1980
INSTANTANEOUS PEAK FLOW	1910	Oct. 7 1980
INSTANTANEOUS PEAK STAGE	12.72	Oct. 7 1980
ANNUAL RUNOFF (AC-FT)	130000	
10 PERCENT EXCEEDS	457	
50 PERCENT EXCEEDS	86	
90 PERCENT EXCEEDS	11	

Record for 1980 & 1981 water years, prior to diversion of 1984, not included. See PERIOD OF RECORD Jan. 11 to May 27,2000, and Dec. 15 - 31, 2000 Dec. 15 to Jan. 3, and Jan. 22 to May 10 No flow many days during winter months most years From rating curve extended above 400 ft 3 /s Apr. 2-3, 1980

15022000 HARDING RIVER NEAR WRANGELL

LOCATION.--Lat $56^{\circ}12'48''$, long $131^{\circ}38'12''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 22, T. 65 S., R. 89 E. (Bradfield Canal A-5 quad), Hydrologic Unit 19010101, in Tongass National Forest, on right bank 1 mi upstream from mouth on north shore of Bradfield Canal, 4 mi downstream from Fall Lake, and 34 mi southeast of Wrangell.

DRAINAGE AREA.--67.4 mi².

Date

Aug 27

PERIOD OF RECORD. -- August 1951 to current year.

REVISED RECORDS. -- WSP 1640: Drainage area.

Time

1145

GAGE.--Water-stage recorder. Elevation of gage is 20 ft above sea level, by barometer. Prior to September 30, 1960, at site 300 ft upstream at datum 0.12 ft lower. October 1, 1960, to August 23, 1975, at prior site and present datum.

Date

Sept 02

Time

0400

Discharge

 (ft^3/s)

*4640

Gage height

(ft)

*9.46

REMARKS.--Records fair except for estimated daily discharges, which are poor.

Discharge

 (ft^3/s)

4480

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 4,000 ft^3/s and maximum (*):

Gage height

(ft)

9.34

Aug	27	1143	4400		9.34		Sept 02	040	U	4040		.40
		D.T.G.GIII			DED GEGOVE			- 0000	mo cermen	rnnn 0001		
		DISCHA	ARGE, CUBIC	FEET			YEAR OCTOBE	ER 2000	TO SEPTEM	IBER 2001		
					DAIL	Y MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1000	377	619	346	638	170	146	432	2030	1300	1230	2200
2	552	610	1320	695	555	131	125	497	1480	1270	1220	3520
3	478	2900	623	2720	571	117	112	617	1360	1310	1090	3090
4	410	1090	426	1040	385	119	122	589	1330	1920	1140	2960
5	649	592	838	883	269	112	138	493	1390	2150	1090	e1800
6	1290	532	1140	911	214	104	129	387	1400	2100	1100	e1750
7	1370	514	521	567	190	139	121	382	1420	2290	1120	e1540
8	1420	419	363	587	169	136	119	454	1440	1920	937	e1430
9	949	338	271	501	152	130	139	461	1590	1900	1050	e1380
10	570	290	219	376	137	152	143	362	1510	1620	1050	e1320
11	1310	260	193	284	e135	352	140	425	1210	1310	1040	e1280
12	1480	269	173	227	e130	356	158	484	1240	1180	994	e1240
13	2110	263	156	208	e127	267	176	560	1580	1550	1150	e1200
14	1070	232	e150	183	131	176	160	500	1490	1840	1210	e1170
15	1420	213	e145	176	e128	156	e157	545	1400	1490	1120	e1140
13	1120	213	0115	2,0	0120	200	0107	313	1100	1170	1120	01110
16	1220	206	e140	370	e120	160	e140	562	1300	1340	1010	e1100
17	753	419	e160	431	e116	159	e180	574	1340	1510	1000	e1100
18	752	326	e148	431	e111	193	e250	544	1360	1460	826	e1200
19	1040	326	e136	425	e107	e170	e340	481	1610	1420	864	e1280
20	809	402	123	333	e102	e178	e400	480	2250	1810	1180	e1180
20	000	402	123	555	CIUZ	C170	6400	400	2230	1010	1100	CIIOO
21	783	594	e125	301	e97	e140	e480	537	2260	1960	1550	e1700
22	2160	2040	e122	265	e88	e115	e600	1450	1580	1860	1370	e3200
23	1850	1780	e121	242	e80	e95	e710	1410	1480	1630	1350	e3900
24	956	1040	e120	331	e90	e85	e690	877	1510	1330	1540	e3200
25	555	866	150	313	e85	e90	584	690	1550	1170	1910	e2900
23	333	800	130	313	603	630	204	090	1330	11/0	1910	62900
26	402	662	202	255	83	e110	519	729	1350	1100	2340	e2600
27	321	551	171	308	144	e150	662	884	1490	1090	3450	e2300
28	266	442	145	404	178	e190	628	1130	1870	1030	1680	e2300
29	234	326	140	269	1/0	170	493	1570	1470	1030	1140	e2700
							469					e3600
30 31	219 346	283	293 515	215 310		157 151	469	1330 2080	1210	1080	1180 1830	e3600
31	340		212	310		151		2080		1050	1830	
TOTAL	28744	19162	9968	14907	5332	4930	0220	22516	45500	47020	10761	61180
	28744 927	639	322	481	190	159	9230 308		45500 1517	1517	40761 1315	2039
MEAN								726 2080				
MAX	2160	2900	1320	2720	638	356	710		2260	2290	3450	3900
MIN	219	206	120	176	80	85	112	362	1210	1030	826	1100
MED	809	419	171	333	130	151	168	545	1480	1460	1140	1720
AC-FT	57010	38010	19770	29570	10580	9780	18310	44660	90250	93260	80850	121400
CFSM	13.8	9.48	4.77	7.13	2.83	2.36	4.56	10.8	22.5	22.5	19.5	30.3
IN.	15.86	10.58	5.50	8.23	2.94	2.72	5.09	12.43	25.11	25.95	22.50	33.77
		STATISTI	CS OF MONT	HLY MEA	AN DATA FOR	WATER	YEARS 1951	- 2001,	BY WATER	YEAR (WY)	#	
MEAN	1086	497	340	252	239	204	363	914	1383	1343	1131	1136
MAX	2152	1252	1065	819	655	510	733	1357	1896	1878	1656	2039
(WY)	1962	1970	1990	1981	1954	1986	1994	1956	1996	1972	1956	2001
MIN	610	118	102	50.6	46.7	54.8	90.0	624	960	861	601	507
(WY)	1970	1986	1984	1969	1969	1969	1954	1977	1981	1995	1993	1965
(II ± /	10,0	1,00	1701	1,00	1,00	1,00	1731	17,7	1701	1000	1,,,,	1703

[#] See Period of Record; partial years used in monthly statistics

e Estimated

15022000 HARDING RIVER NEAR WRANGELL--Continued

SUMMARY STATISTICS FOR	2000 CALEND	AR YE	AR	FOR 2001	WAT	ER YI	EAR	WATER YEARS 1	.951 -	200	01#
ANNUAL TOTAL ANNUAL MEAN	289312 790			309250 847				745			
HIGHEST ANNUAL MEAN								921 558			1992 1995
HIGHEST DAILY MEAN	5640	Aug		3900		Sep		11400			1961
LOWEST DAILY MEAN	61	Mar		80		Feb		a35			1969
ANNUAL SEVEN-DAY MINIMUM	67	Mar	7	89		Feb		35			1969
MAXIMUM PEAK FLOW				4640		Sep	2	b15300	Oct	26	1993
MAXIMUM PEAK STAGE				9	.46	Sep	2	c16.22	Oct	14	1961
INSTANTANEOUS LOW FLOW				d				35	Jan	23	1969
ANNUAL RUNOFF (AC-FT)	573900			613400				539400			
ANNUAL RUNOFF (CFSM)	11.7			12	.6			11.0			
ANNUAL RUNOFF (INCHES)	159.68			170	.68			150.10			
10 PERCENT EXCEEDS	1690			1830				1600			
50 PERCENT EXCEEDS	526			574				544			
90 PERCENT EXCEEDS	107			131				110			

[#] See Period of Record; partial years used in monthly statistics a From Jan. 23 to Feb. 11, 1969
b From rating curve extended above 5,000 ft³/s on basis of slope-area measurement at gage height,13.90 ft
At site then in use
d Not determined,see lowest daily mean

15024800 STIKINE RIVER NEAR WRANGELL (International gaging station)

LOCATION.--Lat $56^{\circ}42'29''$, long $132^{\circ}07'49''$, in $SE^{1}_{/4}$ SE $^{1}_{/4}$ sec. 35, T. 59 S., R. 84 E. (Petersburg C-1 quad), Hydrologic Unit 19010201, on right bank about 10 mi upstream from mouth near Point Rothsay, 11 mi west of Alaska-British Columbia boundary, and 18 mi northeast of Wrangell.

DRAINAGE AREA. -- 19,920 mi², approximately.

PERIOD OF RECORD. -- July 1976 to current year.

REVISED RECORDS.--WDR AK-78-1: Drainage area.

GAGE. -- Water-stage recorder. Elevation of gage is 25 ft above sea level, from topographic map.

REMARKS. -- Records good, except for estimated daily discharges that are tidally affected, Oct. 26 to 30. Nov. 10 to 16, Nov. 24 to 29, Dec. 8 to 13, Apr. 4 to 13, Apr. 20 to May 1 and May 4 to 12, which are fair; and estimated daily discharges during periods of ice effect, Dec.14 to April 1 which are poor. GOES satellite telemetry at

> DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY OCT NOV FEB 28900 e9200 102000 107000 80400 18400 e13000 e13000 e10600 e21400 145000 112000 28700 e17000 105000 149000 107000 66700 23100 e12500 e9800 e8400 21800 124000 3 58700 42300 22500 e24000 e11800 e9300 e8400 24300 103000 150000 108000 117000 20200 e30000 e11000 e8400 100000 112000 108000 52400 44600 e8800 e25200 154000 5 e10000 e23600 49000 35400 21700 e25000 e8200 e8500 103000 155000 112000 88900 6 57500 30600 31100 e25000 e9500 e7800 e21800 106000 150000 e9300 e26000 e8200 e8700 e21400 e22400 71000 28600 27000 106000 145000 113000 82000 75100 27100 e22500 e9000 137000 112000 8 82200 e24000 e9000 e8500 109000 70200 25600 e19900 e21000 e8700 e9000 e9400 e22900 112000 130000 111000 70000 10 59700 e23600 e19900 e17000 e8600 e10000 e9500 e21300 120000 129000 111000 61700 11 59500 e22400 e19200 e13000 e8500 e12000 e9440 e21200 122000 122000 108000 56000 e22200 12 66000 e22200 e18000 e12000 e9000 e13000 e9530 121000 113000 107000 56300 13 80400 e22100 e17800 e10600 e9300 e12000 e9660 24300 137000 109000 109000 61300 77900 e21900 e15200 e11000 e9700 9840 25700 148000 112000 61900 e11400 114000 15 71200 e20900 e14600 e11500 e9000 e10700 9870 27400 148000 117000 116000 62100 e19200 68900 e13000 e11800 e8500 e10200 10000 29000 141000 130000 111000 63300 16 58000 e12000 e8200 10600 30300 139000 145000 17 19600 e12400 e9600 106000 67000 52000 19200 e11800 e13000 e8000 e9200 11600 30000 146000 149000 101000 77300 18 19 50400 17900 e11700 e15000 e7800 e9000 13100 28900 151000 151000 96600 79200 20 47400 17200 e7800 e8700 27900 94900 70200 e11700 e14500 e13900 159000 168000 21 45100 e17400 e11000 e14000 e7700 e8300 e14900 29400 179000 190000 98200 64000 51100 25500 e10400 e13500 e7600 e8000 e15700 36400 180000 201000 103000 100000 23 60000 40500 e10000 e12800 e7500 e7700 €16700 46200 168000 198000 104000 151000 2.4 53000 e39600 e9800 e13000 e7500 e7500 e20600 47400 160000 176000 99700 125000 25 44400 e34600 e9700 e11500 e7800 e7500 e21400 46100 155000 152000 96000 e38700 e8300 46000 26 e30200 e9600 e10500 e7600 e20500 137000 138000 108000 86300 e35000 e9000 e21200 e11000 133000 e26800 e9400 e8000 47100 128000 27 141000 73100 e32600 e23500 e10500 54200 28 e9300 e11500 e9000 e21900 139000 121000 150000 66300 29 e31400 e20600 e9300 e11000 e10000 e21800 67600 143000 118000 120000 63200 e30100 e10500 e9700 e10000 ___ 79000 142000 119000 30 18300 e21700 101000 85600 ___ 31 30400 e11000 e10200 e9400 88400 111000 108000 795000 392040 3397400 TOTAL 1731300 480800 476300 255100 288700 1080800 4014000 4412000 2498300 15360 142300 55850 15510 9111 13070 133800 109600 26500 9313 83280 MEAN 34860 21900 MAX 82200 44600 31100 30000 13000 13000 180000 201000 150000 151000 MTN 30100 17200 9300 10200 7500 7500 8400 21200 100000 109000 94900 56000 27900 76200 57500 24600 13000 13000 8850 9000 9940 145000 108000 MED 138000 AC-FT 3434000 1577000 953700 944700 506000 572600 777600 2144000 7962000 8751000 6739000 4955000 .46 .78 .77 .47 .66 CESM 2.80 1 33 1.75 6.72 7.50 7.14 8.24 5.50 4.18 4.67 3.23 1.48 9.0 6.34 IN. .89 .48 .54 .73 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1976 - 2001, BY WATER YEAR (WY)# 107500 25080 14070 9372 67040 135100 134800 MEAN 58230 11650 10300 16850 80230 199900 134200 113300 25780 39450 19080 31960 119100 MAX 58280 42340 163800 128600 (WY) 1987 1979 1990 1981 1977 1992 1992 1993 1992 1985 1977 1981 MTN 30590 10010 5593 5958 5111 4719 9070 32260 103400 109100 76770 50760 (WY) 1986 1986 1997 1978 1999 1978 1982 1982 1978 1983 1995 1,986 SUMMARY STATISTICS FOR 2000 CALENDAR YEAR FOR 2001 WATER YEAR WATER YEARS 1976 - 2001# 20598780 19821740 ANNUAL TOTAL ANNUAL MEAN 56030 HIGHEST ANNUAL MEAN 72870 1981 LOWEST ANNUAL MEAN 42100 1978 HIGHEST DAILY MEAN 204000 Sep 18 201000 Jul 22 324000 Sep 23 1994 a6400 LOWEST DAILY MEAN Mar 14 b7500 Feb 23 4000 Feb 12 1988 ANNUAL SEVEN-DAY MINIMUM 8 1999 6530 Mar 11 7670 Feb 19 4090 Mar 204000 Sep 23 MAXIMUM PEAK FLOW Jul 351000 Sep 23 1994 MAXIMUM PEAK STAGE 24 48 Tul 22 30.60 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 40860000 39320000 40590000 2.83 2.81 38 47 ANNUAL RUNOFF (INCHES) 37.02 38 21 134000 137000 10 PERCENT EXCEEDS 137000 50 PERCENT EXCEEDS 27400 32500

9000

7340

9000

90 PERCENT EXCEEDS

See Period of Record; partial years used in monthly statistics

Mar. 14 to 15 Feb. 23 to 24 and Mar. 24 to 25 b

Estimated

15039900 DOROTHY LAKE OUTLET NEAR JUNEAU

 $\text{LOCATION.--Lat } 58^{\circ}14'56'', \text{ long } 133^{\circ}58'54'', \text{ in } \text{NE}^{1}\!/_{4} \text{ NW}^{1}\!/_{4} \text{ sec. } 9, \text{ T. } 42 \text{ S., R. } 70 \text{ E.}(\text{Taku River A-6 quad}), \text{ Hydrologic Unit } 19010301, \text{ City and Borough of Juneau, in Tongass National Forest, on right bank 3 mi upstream from mouth at Taku Inlet, and } 16.4 \text{ mi east of Juneau.}$

DRAINAGE AREA.--11.0 mi².

PERIOD OF RECORD. -- October 1986 to current year.

GAGE.--Water-stage recorder. Datum of gage is 2,410.78 ft above sea level.

REMARKS.--Records fair, except for discharges under 50 $\mathrm{ft^3/s}$ and estimated discharges, which are poor.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 ft^3/s and maximum (*).

D	ate	Time	Discha (ft ³ /		Gage height (ft)		Date	Time	Disch (ft³		Gage he	
0c	t.07	1900	*493	3	*11.45		Aug 27	2000	4	55	11.33	3
Ju	ly 8	0030	458	3	11.34							
		DISCHA	RGE, CUBI	C FEET			YEAR OCTOBER VALUES	2000 I	TO SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEPT
1 2 3 4 5	183 146 122 100 126	42 41 79 83 74	45 45 42 39 52	e19 e21 e25 e44 e50	e30 e30 e29 e27 e25	e15 e14 e13 e12 e12	e13 e12 e11 e13 e13	e17 e17 e20 e21 e22	127 139 154 156 151	213 214 207 227 270	237 231 227 232 266	279 310 290 265 282
6 7 8 9 10	297 407 425 333 260	67 62 56 50 46	62 57 50 45 40	e44 e40 e50 e46 e42	e23 e20 e18 e17 e16	e13 e14 e14 e14 e17	e12 e12 e11 e11	e20 e20 e22 e22 e20	146 148 149 152 159	327 417 438 403 375	256 233 214 201 187	331 304 294 245 195
11 12 13 14 15	260 312 395 314 268	44 48 45 41 38	36 33 e30 e28 e26	e38 e29 e28 e26 e26	e14 e13 e17 e20 e19	e21 e20 e19 e17 e15	e11 e11 e11 e11	e20 e19 e21 e22 e23	154 154 163 169 170	323 282 283 286 270	175 170 171 178 187	160 162 295 364 325
16 17 18 19 20	218 175 142 121 104	37 39 36 34 33	e23 e22 23 23 21	e26 e25 e24 e24 e22	e17 e15 e14 e13 e12	e16 e16 e15 e14 e14	e10 e9.8 e10 e10 e10	e25 e27 e29 e29 e30	173 176 179 187 211	255 238 227 231 259	187 186 185 185 185	326 316 306 267 250
21 22 23 24 25	92 91 98 93 82	48 81 94 87 79	20 19 18 17 17	e21 e21 e24 e24 e21	e12 e12 e12 e11 e11	e13 e12 e11 e11	e10 e11 e11 e12 e13	e33 e42 e52 e54 e51	257 256 249 242 223	281 328 382 377 359	186 180 172 179 185	221 248 242 224 219
26 27 28 29 30 31	71 61 54 49 44 44	72 65 57 47 45	18 17 e15 e15 e17 e18	e19 e23 e25 e22 e20 e24	e12 e15 e16 	e11 e12 e12 e12 e12 e12	e13 e16 e18 e18 e18	e49 e52 61 73 83 104	200 196 220 223 214	338 305 266 249 256 251	211 374 419 350 313 295	191 165 145 127 184
TOTAL MEAN MAX MIN AC-FT CFSM IN.	5487 177 425 44 10880 16.1 18.56	1670 55.7 94 33 3310 5.06 5.65	933 30.1 62 15 1850 2.74 3.16	893 28.8 50 19 1770 2.62 3.02	490 17.5 30 11 972 1.59 1.66	434 14.0 21 11 861 1.27 1.47	362.8 12.1 18 9.8 720 1.10 1.23	1100 35.5 104 17 2180 3.23 3.72	5497 183 257 127 10900 16.7 18.59	9137 295 438 207 18120 26.8 30.90	6957 224 419 170 13800 20.4 23.53	7532 251 364 127 14940 22.8 25.47

e Estimated

15039900 DOROTHY LAKE OUTLET NEAR JUNEAU--Continued

STATISTI MEAN MAX (WY) MIN (WY)	CS OF MONT 163 243 1988 90.9 1993	THLY MEAN 49.7 88.7 1994 21.2 1996	DATA FOR 36.2 80.8 2000 16.9 1995	WATER YEA 21.7 38.1 2000 9.25 1997	RS 1987 20.6 40.8 1993 11.3 1998		2001, B 17.8 59.2 1992 4.65 1989	19 36 19 10	ATER Y 0.8 5.9 994 0.6 989	EAR (WY)# 87.4 140 1993 35.5 2001	214 267 1992 181 1996	270 364 2000 210 1993	253 342 1990 194 1995	264 387 1991 177 1992
SUMMARY	STATISTIC	CS FOR	2000 CALE	NDAR YEAR	!	FO	OR 2001	WATE	ER YEA	.R	WATER	YEARS 19	987 - 200	1
			45642.6 125				40492. 111	8			119 141 97.	6	199 199	
	DAILY MEA		816	Jul 24			438		Jul	8	915		ep 11 199	
LOWEST	DAILY MEAN	N .	a8.2	Mar 14	:		9.	8	Apr 1	.7	4.	2 Ma	ar 13 198	9
ANNUAL	SEVEN-DAY	MINIMUM	8.6	Mar 10	l .		10		Apr 1	.5	4.		ar 10 198	
MAXIMUM	PEAK FLOW	V					493		Oct	7	b990	Se	ep 10 199	5
MAXIMUM	PEAK STAC	ΞE					11.	45	Oct	7	13.	05 Se	ep 10 199	5
	ANEOUS LOV						C				C			
ANNUAL	RUNOFF (AG	C-FT)	90530				80320				85990			
ANNUAL	RUNOFF (CI	FSM)	11.3				10.	1			10.	8		
ANNUAL	RUNOFF (II	NCHES)	154.3	5			136.	94			146.	60		
10 PERC	ENT EXCEE	OS	313				284				285			
50 PERC	ENT EXCEE	OS	56				47				56			
90 PERC	ENT EXCEEI	OS	13				12				12			

a Mar. 14 to Mar. 15

b From rating curve extended above 350 ft $^3/s$ c Not determined; see lowest daily mean

SOUTHEAST ALASKA

15041200 TAKU RIVER NEAR JUNEAU (International gaging station)

LOCATION.--Lat $58^{\circ}32'19''$, long $133^{\circ}42'00''$, in $NE^{1}_{/4}$ $NW^{1}_{/4}$ sec. 33, T. 38 S., R. 71 E. (Taku River C-6 quad), Hydrologic Unit 19010301, City and Borough of Juneau, in Tongass National Forest, on left bank, 1.5 mi upstream from Wright River, and 31 mi northeast of Juneau.

DRAINAGE AREA.--6,600 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1987 to current year.

REVISED RECORD.--WDR AK-98-1, 1987-1997; WDR AK-00-1 1989-90 (M), 1992-95 (M).

GAGE.--Water-stage recorder. Elevation of gage is 50 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $50,000 \text{ ft}^3/\text{s}$ and maximum (*).

Da	ite	Time	Discha (ft³/		Gage heigh (ft)	t	Date	Time	e Di	ischarge (ft ³ /s)		height [t]
Jur	1 22	0845	55,	700	39.96		Aug 10	141	5	*a76600	*41	.85
		DISCH	ARGE, CUB	IC FEET	PER SECOND,		YEAR OCTOB	ER 2000	TO SEPTEM	IBER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	14000	6990	e3400	e2300	e2550	e2000	1910	4910	29300	35600	25500	20500
2	12100	6610	e3600	e2600	e2400	e1950	1860	5170	33200	37300	26300	19100
3	11600	7260	e3700	e2800	e2300	e1800	1830	5720	34000	35000	29500	17600
4	12000	7380	e3200	e3200	e2150	e1700	1930	6040	32400	34100	30900	16200
5	14300	6700	e3000	e3100	e2000	e1600	2030	5770	31100	34600	30800	16300
6	28100	6130	e4800	e3000	e1900	e1500	2020	5310	32500	33100	29800	17800
7	42600	6020	5420	e3000	e1850	e1550	2030	5140	32100	31000	30900	16900
8	31200	5900	4680	e3200	e1800	e1650	2040	5360	32600	29600	36200	19600
9	17800	5560	e4100	e2900	e1800	e1700	2100	5460	33600	27900	50100	16500
10	14600	5040	e3800	e2700	e1800	e2000	2140	5460	37400	27200	67600	13200
11	14800	4960	e3700	e2400	e1700	e2100	2170	5400	39400	26000	30500	12100
12	17800	5790	e3400	e2300	e1700	e2300	2210	5750	42700	24800	25100	11600
13	21700	5890	e3100	e2200	e1800	e2250	2320	6850	45300	24000	25400	16600
14	19700	5360	e2900	e2180	e1900	e2200	2360	7800	43600	24600	26300	24600
15	17300	4840	e2600	e2100	e1700	e2100	2410	8250	38800	25800	27400	25800
16	15300	4630	e2400	e2100	e1650	e2100	2510	8910	36700	27600	25800	22500
17	13400	4550	e2300	e2150	e1600	e2000	2670	9200	38500	28900	24300	22100
18	12000	4700	e2250	e2000	e1550	e1900	2840	9340	39600	30800	22900	22000
19	11200	4400	e2250	e2000	e1550	e1800	3180	9130	39900	34600	22500	19200
20	10700	4230	e2250	e2000	e1500	e1700	3420	9280	39600	38600	22000	16600
21	10300	4530	e2100	e1900	e1500	e1650	3660	9650	45000	41100	21500	14700
22	10300	6010	e2000	e1900	e1480	e1600	3880	10300	50500	43400	21600	15900
23	11000	7220	e1950	e2000	e1480	e1500	4060	11500	38900	43100	21300	17500
24	10900	6870	e1900	e2000	e1500	e1500	4280	11700	37300	39300	21000	15900
25	10100	6100	e1900	e1900	e1550	e1450	4530	11300	33600	35900	19300	14300
26 27 28 29 30 31	9190 8500 7990 7530 7200 7070	5620 5040 4590 e4200 e3600	e1850 e1800 e1800 e1800 e2000 e2100	e1850 e2000 e2200 e2100 e2000 e2200	e1600 e1800 e2100 	e1500 e1550 e1600 e1700 e1800 e1900	4580 4580 4910 4960 4860	11200 12600 17300 21200 23400 24800	29500 29000 32500 35600 36200	32800 30900 29800 29300 28500 27000	19000 24000 27700 23700 21000 21000	13100 11800 10900 10200 11000
TOTAL	452280	166720	88050	72280	50210	55650	90280	299200	1100400	992200	850900	502100
MEAN	14590	5557	2840	2332	1793	1795	3009	9652	36680	32010	27450	16740
MAX	42600	7380	5420	3200	2550	2300	4960	24800	50500	43400	67600	25800
MIN	7070	3600	1800	1850	1480	1450	1830	4910	29000	24000	19000	10200
AC-FT	897100	330700	174600	143400	99590	110400	179100	593500	2183000	1968000	1688000	995900
CFSM	2.21	.84	.43	.35	.27	.27	.46	1.46	5.56	4.85	4.16	2.54
IN.	2.55	.94	.50	.41	.28	.31	.51	1.69	6.20	5.59	4.80	2.83
		STATIST	ICS OF MOI	NTHLY ME	AN DATA FOR	WATER	YEARS 1988	- 2001,	BY WATER	YEAR (WY) #	
MEAN	11650	4700	3415	2215	1946	2651	4446	20150	34620	32160	26020	19580
MAX	17250	8633	6613	4223	3682	10500	6815	33800	49280	41080	32450	26550
(WY)	1992	1994	2000	2000	1992	1992	1992	1993	1992	1992	1989	1994
MIN	6265	2488	1256	1125	1041	1359	2846	9652	23170	25040	18610	11180
(WY)	1997	1997	1997	1988	1999	1991	2000	2001	1995	1996	1995	1992

[#] See Period of Record; partial years used in monthly statistics a Result of Tulsequah River glacier dam breakout e Estimated

SOUTHEAST ALASKA

15041200 TAKU RIVER NEAR JUNEAU--Continued

SUMMARY STATISTICS F	OR 2000	CALENDAR	YEAR	FOR 2001 W	ATER	YEAR	WATER YEARS	1988	- :	2001
ANNUAL TOTAL	5027760			4720270						
ANNUAL MEAN	13740			12930			13690			
HIGHEST ANNUAL MEAN							16820			1992
LOWEST ANNUAL MEAN							10800			1996
HIGHEST DAILY MEAN	93100	Jul	26	67600	Aug	10	93100	Jul	26	2000
LOWEST DAILY MEAN	a1680	Mar	13	1450	Mar	25	710	Feb	12	1988
ANNUAL SEVEN-DAY MINIMU	M 1710	Mar	11	1510	Feb	18	721	Feb	8	1988
MAXIMUM PEAK FLOW				b76600	Aug	10	b110000	Aug	17	1989
MAXIMUM PEAK STAGE				41.85	Aug	10	44.13	Aug	17	1989
INSTANTANEOUS LOW FLOW				C			710	Feb	12	1989
ANNUAL RUNOFF (AC-FT)	9973000			9363000			9919000			
ANNUAL RUNOFF (CFSM)	2	.08		1.96			2.07			
ANNUAL RUNOFF (INCHES)	28	.34		26.61			28.19			
10 PERCENT EXCEEDS	33300			33400			33500			
50 PERCENT EXCEEDS	7030			6020			7320			
90 PERCENT EXCEEDS	2180			1800			1650			

[#] See Period of Record; partial years used in monthly statistics
a Result of Tulsequah River glacier dam breakout
b From Mar. 13 to Mar. 14
c Not determined; see lowest daily mean

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1998 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: June 1999 to current year

INSTRUMENTATION.--Electronic water-temperature recorder set for 15-minute recording interval.

REMARKS.- No record from March 4-10, 14 to April 11 when the probe was out of the water. The recorder malfunctioned on October 3-4, 10-15, December 13-14, 16, 21-22, February 10, July 30, and September 14-25. Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross section on September 20. The September 20 temperature cross section found no variation between mean stream temperature and sensor temperature. The outburst peak of the lake dammed by Tulsequah Glacier occurred on August 10. As a result, the temperature cross section showed a variation of 1.5° C during sampling on August 10 but no variation was noted on August 11.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum recorded, 12.5°C, July 14, 1999 and July 20 and 21, 2001; minimum, 0.0°C, many days during most winters.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum recorded, 12.5°C, July 20 and 21, ; minimum, 0.0°C, many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
SEP 2001								
20	1333	75.0	117	7.7	7.0	757	11.2	93
20	1335	225	117	7.8	7.0	757	11.2	93
20	1337	375	117	7.8	7.0	757	11.1	92
20	1339	525	116	7.8	7.0	757	11.1	92
20	1340	675	116	7.8	7.0	757	11.1	92

						DIS-				PH			
						CHARGE,			SPE-	WATER			BARO-
						INST.			CIFIC	WHOLE			METRIC
						CUBIC	SAM-	SAM-	CON-	FIELD	TEMPER-	TEMPER-	PRES-
				STREAM	GAGE	FEET	PLING	PLER	DUCT-	(STAND-	ATURE	ATURE	SURE
				WIDTH	HEIGHT	PER	METHOD,	TYPE	ANCE	ARD	AIR	WATER	(MMOF
		MEDIUM	SAMPLE	(FT)	(FEET)	SECOND	CODES	(CODE)	(US/CM)	UNITS)	(DEG C)	(DEG C)	HG)
DATE	TIME	CODE	TYPE	(00004)	(00065)	(00061)	(82398)	(84164)	(00095)	(00400)	(00020)	(00010)	(00025)
OCT													
11	1145	9	9	166	33.25	13900	20	3053	128	7.7	6.5	4.5	757
APR													
11	1500	9	9	274	28.76	2130	20	8010	222	8.7	8.0	3.5	752
JUN		_	_										
07	1400	9	9	753	36.33	33900	20	3053	137	7.8		9.0	764
28	1343	9	9		36.35	33900	20	3053	122	7.7		8.5	765
JUL													
06	1232	9	9	750	36.45	31100	20	3053	118	6.9	11.0	8.0	752
AUG													
10	1610	9	9	776	41.82	73900	20	3053	90	8.0	20.5	7.0	764
11	1125	9	9	717	35.99	28800	20	3053	100	7.9	18.5	8.0	764
SEP													
20	1325	9	9		33.46	16300	20	3053	117	7.8		7.0	757

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001--Continued

DATE OCT	OXYGEN DIS- OLVED (MG/L) (00300)	OXY- GEN, DIS- OLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CAL- CIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFL- TRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ALKA- LINITY WAT DIS FIX END FIELD CACO3 (MG/L) (39036)	SUL- FATE (MG/L AS SO4) (00946)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)
11 APR			68	20.6	4.03	1.7	58	<.70	68	56	58	12	.1
11 JUN	12.2	93	130	36.4	8.69	5.0	102	1.00	124	102	100	20	.1
07 28 JUL		98 90	69 62	20.6	4.16	1.5	60 51	<.70	71 55	58 51	60 51	10	M
06 AUG	11.1	95	58	17.8	3.25	1.5	46	<.70	55	45	46	10	<.02
10 11	10.6	87 	47 54	15.0 16.9	2.42 2.87	.7 1.1	33 45	<.70 1.20	40 55	32 45	33 45	12 9.8	<.02 <.02
SEP 20	11.1	92	59	18.3	3.28	1.4	50	<.70	60	49	50	10	<.02
DATE OCT_	NITRO- GEN, AMMO- NIA TOTAL (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	ALUMI- NUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105)	ALUMI- NUM, DIS- SOLVED (UG/L AS AL) (01106)		ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BAR- IUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BAR- IUM, DIS- SOLVED (UG/L AS BA) (01005)	CAD- MIUM WATER UNFL- TRD TOTAL (UG/L AS CD) (01027)	CAD- MIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR) (01030)	COP- PER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)
11 APR	.03	.047	1020	25	1	.6	43.7	27.7	.15	<.10	2	<1.0	3.7
JUN	<.02	.014	169	<20	М	. 4	45.4	43.7	<.10	<.10	1	<1.0	1.6
07 28 JUL	E.03	.180	2670 	38	2	.5 	69.7 	24.5	.11	<.10	8	1.1	8.8
06 AUG	E.01	.176	2530	34	2	.6	64.6	23.1	<.10	<.10	5	<1.0	7.0
10 11 SEP	.09	.670 .259	7630 E3120	34 E29	7 3	.5 .5	174 87.9	23.6 25.3	.31	<.10 <.10	16 7	1.2	25.9 10.3
20	<.02	.098	E1880	28	2	.6	57.1	25.2	<.10	<.10	4	2.1	4.4
DATE	COP- PER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)		SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SIL- VER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	SIL- VER, DIS- SOLVED (UG/L AS AG) (01075)
11 APR	<1.0	1420	20	2	<.10	46	8.8	4	.83	<1.0	<1.0	<.10	<.1
11	<1.0	570	20	M	<.10	50	42.2	2	1.29	<1.0	<1.0	<.10	<.1
JUN 07 28	1.4	4290	20	2	<.10	129	6.5	14	1.72	<1.0	<1.0	<.10	<.1
JUL 06	<1.0	3770	<10	3	<.10	111	5.2	8	.84	<1.0	<1.0	<.10	<.1
AUG 10 11		11800 4850	<10 <10	8 E3	<.10 <.10	348 148	8.3 6.9	23 10	.79 .82	<1.0 <1.0	<1.0 <1.0	.11 <.10	<.1 <.1
SEP 20	<1.0	2630	<10	E2	<.10	74	6.0	4	.87	<1.0	<1.0	<.10	<.1

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001--Continued

DATE	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)		ORGANIC TOTAL (MG/L AS C)	DIS- SOLVED (MG/L AS C)
OCT				
11	8	<4	1.5	1.2
APR		_		
11	8	6	1.4	.89
JUN 07	17	<4		
28	± /			
JUL				
06	22	4	1.1	1.1
AUG				
10	52	5	< .50	<.50
11	19	<4	< .50	<.50
SEP				
20	14	< 4	.62	.53

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	4.5 3.0 2.5 2.0	3.0 2.0 1.5 1.5	3.5 2.5 1.5	2.5 2.0 2.0 2.0 1.5	2.0 1.5 1.5 1.5	2.0 1.5 1.5 2.0 1.5	1.5 1.5 1.0 1.5	.5 .5 .5	1.0 1.0 1.0 1.0	.5 .5 .5	.0.0.0.0	.0 .0 .0 .0
6 7 8 9 10	2.0 3.0 4.0 4.5	1.5 2.0 2.5 4.0	2.0 2.5 3.5 4.0	1.5 1.5 1.5 1.0	1.0 1.0 1.0 .0	1.5 1.5 1.5 .5	1.0 .5 .5 .5	.0 .0 .5 .5	.5 .5 .5 .5	.5 .5 .5	.0 .0 .5 .0	.5 .5 .5 .5
11 12 13 14 15	 	 	 	2.0 2.0 2.0 2.0 1.5	1.0 1.5 1.5 1.5	1.5 2.0 2.0 2.0 1.5	1.0 1.0 .5	.5 .5 .0	.5 .5 .5	.5 .5 .5	.5 .0 .5 .5	.5 .5 .5 .5
16 17 18 19 20	4.5 4.5 4.0 4.5	4.0 4.0 3.5 3.5 4.0	4.5 4.0 3.5 4.0	1.5 1.0 1.0 1.0	.0 .0 .5 1.0	1.0 .5 .5 1.0	 .0 .0 .5	.0.0.0	.0 .0 .0	.5 .5 1.0 1.0	.5 .5 .5 .0	.5 .5 .5 .5
21 22 23 24 25	4.5 4.0 4.0 4.0	4.0 3.5 3.5 4.0 3.0	4.0 4.0 4.0 4.0 3.5	1.5 1.5 1.5 1.5	.5 1.0 1.5 1.5	1.0 1.5 1.5 1.5	 . 0 . 0	.0	.0 .0	.5 1.0 .5 1.0	.0 .5 .5 .5	.5 .5 .5 .5
26 27 28 29 30 31	3.0 2.5 2.5 2.5 2.0 2.0	2.5 2.0 2.5 2.0 1.0	2.5 2.5 2.5 2.0 1.5	1.5 1.5 1.0 .5	1.0 1.0 .0 .0	1.5 1.0 1.0 .0	.0 .5 .5 .5	.0.0.0.0.0	.0 .0 .0 .0	.5 .5 1.0 1.0 1.0	.5 .0 .5 .5	.5 .5 .5 .5
MONTH				2.5	.0	1.3				1.0	.0	. 4

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1	1.0	. 5	.5	1.0	.5	.5				6.0	5.0	5.5
2	1.0	. 5	.5	1.0	.5	.5				5.5	4.0	4.5
3	1.0	. 5	.5	1.0	.0	.5				4.0	3.5	4.0
4	1.0	.5	.5							6.0	4.0	5.0
5	.5	.0	.5							5.5	4.5	5.0
6	1.0	.0	.5							6.5	5.0	5.5
7	1.0	. 5	.5							6.5	5.5	6.0
8	1.0	. 0	.5							6.5	5.5	6.0
9	1.0	. 0	.5							7.0	5.5	6.0
10										7.5	6.0	6.5
11	. 5	. 0	.5	1.0	.5	. 5				8.0	6.0	7.0
12	1.0	. 5	.5	1.0	.5	.5	4.5	3.0	3.5	8.0	6.5	7.0
13	1.0	. 0	.5	1.5	.5	1.0	5.5	3.0	4.0	8.0	6.5	7.0
14	1.0	.5	.5				5.0	3.0	4.0	8.0	5.5	6.5
15	1.0	.5	.5				5.5	3.0	4.0	8.0	7.0	7.5
16	1.0	.5	1.0				5.5	3.0	4.0	8.0	6.0	7.0
17	1.0	. 5	1.0				4.5	3.5	4.0	8.5	6.5	7.5
18	1.0	. 5	.5				5.5	3.0	4.0	8.0	6.0	7.5
19	1.0	. 5	1.0				5.5	4.0	4.5	8.5	6.0	7.0
20	1.0	.5	1.0				5.5	3.5	4.5	8.5	6.5	7.5
21	1.0	1.0	1.0				5.5	3.5	4.5	8.5	6.0	7.0
22	1.0	.5	.5				4.5	4.0	4.5	9.0	7.0	8.0
23	1.0	. 0	.5				5.0	3.5	4.0	8.0	7.0	7.5
24	1.0	.5	.5				4.0	3.5	4.0	8.5	6.5	7.5
25	1.0	.5	.5				5.0	3.5	4.0	9.0	6.5	7.5
26	1.0	.5	.5				5.0	3.5	4.0	10.0	7.0	8.5
27	1.0	.5	.5				4.5	3.5	4.0	9.5	8.0	8.5
28	1.0	.5	.5				5.5	4.0	4.5	8.5	7.5	8.0
29							5.0	4.0	4.5	8.5	7.0	7.5
30							6.5	4.5	5.0	8.5	7.0	8.0
31										8.5	7.5	8.0
MONTH										10.0	3.5	6.8

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
1 2 3 4 5	9.0 8.5 8.0 9.0 8.5	JUNE 7.0 7.0 6.5 6.0 7.0	8.0 7.5 7.0 7.5 8.0	11.5 11.0 10.5 10.0 9.5	JULY 8.5 9.0 7.5 8.5 8.5	10.0 9.5 9.0 9.0	10.5 12.0 11.0 10.0 11.0	AUGUST 9.0 9.0 9.5 9.0	10.0 10.5 10.0 9.5 10.0	10.0 10.0 10.0 10.5 10.5	9.0 9.0 9.0 8.5 9.0	9.5 9.5 9.5 10.0 9.5
6 7 8 9 10	10.0 10.0 9.5 9.5 9.0	6.5 7.5 7.5 7.5 7.0	8.0 8.5 8.5 8.5 8.0	9.0 9.0 9.0 9.5 10.0	7.5 7.0 7.5 8.0	8.0 8.0 8.5 8.5	10.5 10.5 9.5 8.0 9.0	8.5 8.5 7.5 5.5 4.5	9.5 9.5 8.5 6.5	10.0 9.5 10.0 10.0	8.5 8.5 8.5 8.5 8.0	9.5 9.0 9.0 9.0
11 12 13 14 15	9.5 10.0 9.5 8.5 9.5	6.5 8.0 8.0 7.5 7.0	8.0 9.0 8.5 8.0	10.0 10.0 10.0 11.0 12.0	8.5 8.0 8.5 8.5	9.0 9.0 9.0 9.5 10.0	11.0 12.0 12.0 12.0 12.0	8.0 9.0 9.5 9.5 9.5	9.0 10.5 10.5 10.5	10.0 9.5 10.0 	8.0 8.5 9.0 	9.0 9.0 9.5
16 17 18 19 20	9.5 10.5 10.5 10.0 10.0	8.0 8.0 8.0 8.5 8.0	9.0 9.0 9.5 9.5 9.0	11.5 11.0 12.0 12.0 12.5	9.0 8.5 8.5 9.0 9.5	10.0 9.5 10.0 10.5 11.0	11.5 11.0 10.5 11.0 10.5	9.0 9.5 9.0 9.5 9.5	10.5 10.0 9.5 10.0 10.0	 	8.5 9.0 	
21 22 23 24 25	9.5 8.0 10.0 10.0 8.5	7.5 6.0 7.0 7.5 7.0	8.0 7.0 8.5 8.5 7.5	12.5 11.5 10.0 10.0 9.5	9.5 9.5 8.5 8.5	11.0 10.0 9.0 9.0 9.0	10.5 10.0 10.5 10.0	9.5 9.5 8.5 9.0 8.5	10.0 9.5 9.5 9.5 9.0	 	8.5 8.5 8.0 	
26 27 28 29 30 31	10.5 10.5 9.5 10.0 10.5	7.0 8.5 8.5 7.5 7.5	8.5 9.5 8.5 8.5 9.0	10.0 10.5 11.0 11.0 11.0	8.5 8.5 9.0 9.5	9.0 9.5 10.0 10.0 10.0	10.0 10.0 10.0 9.5 10.0	8.5 9.0 9.0 8.5 8.5	9.5 9.5 9.5 9.0 9.0	9.0 8.5 8.0 8.0	8.0 7.5 7.0 7.0 7.5	8.5 8.0 7.5 7.5 8.0
MONTH	10.5	6.0	8.4				12.0	4.5	9.5			

Gage height

(ft)

Discharge

 (ft^3/s)

No other peak greater than base discharge

15050000 GOLD CREEK AT JUNEAU

LOCATION.--Lat $58^{\circ}18'25''$, long $134^{\circ}24'05''$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 23, T. 41 S., R. 67 E. (Juneau B-2 SE quad), City and Borough of Juneau, Hydrologic Unit 19010301, on left bank, 150 ft upstream from Alaska Electric Light and Power Company dam and diversion, 0.5 mi northeast of Juneau, and 1 mi upstream from mouth at Gastineau Channel.

DRAINAGE AREA. -- 9.76 mi².

Date

*Oct 12

PERIOD OF RECORD.--July 1916 to December 1920 (monthly discharge only), October 1946 to September 1948, October 1949 to September 1982. Annual maximums, water years 1991, 1994, 1996. October 1997 to current year.

REVISED RECORDS.--WSP 1372: Drainage area.

Time

1830

Discharge

(ft³/s)

1180

GAGE.--Water-stage recorder. Elevation of gage is 245 ft above sea level, from topographic map. July 20, 1916 to December 31, 1920, at site 50 ft upstream at different datum. September 11, 1946 to September 30, 1948, nonrecording gage at site 0.7 mi downstream at different datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Water may be diverted about 0.5 mi upstream and three wells, located upstream from the gage in Last Chance Basin, pump water for municipal use and may decrease flow during winter periods.

Date

Time

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 900 ft^3/s and maximum (*):

Gage height

(ft)

4.92

*0GL	12	1830	118	U	4.92		NO OLIIE	er peak	greater th	an base	discharge	2
		DISCHARG	GE, CUBIC	FEET PER		, WATER LY MEAN	YEAR OCTOBER VALUES	2000 1	TO SEPTEMBEI	R 2001		
DAY	OCT	NOV	DEG	T 7 NT				M237	JUN	JUL	AUG	SEP
DAY			DEC	JAN	FEB	MAR	APR	MAY				
1 2	29 24	36 41	29 28	19 26	119 78	15 13	e4.9 e4.7	18 20	241 222	203 216	207 179	133 324
3	22	147	25	167	59	13	e5.1	36	217	191	168	176
4 5	19 134	68 44	25 187	76 51	44 36	12 11	5.8 6.0	36 27	239 216	266 350	222 187	156 389
6	330	36	116	48	30	12	e5.9	22	201	456	146	291
7 8	259 182	37 33	60 39	51 89	28 24	14 13	e5.5 e5.1	24 40	214 223	566 422	135 125	325 240
9	274	28	30	58	23	14	5.9	69	234	318	102	157
10	190	25	26	42	19	20	e5.6	35	245	323	95	110
11 12	484	47	24 22	34 30	19	31 21	e5.4 e5.2	30 32	195 188	237 213	90	85 159
13	515 417	91 44	19	28	18 18	16	e5.2 e5.0	43	223	357	94 110	600
14 15	264 261	33 30	17 16	27 32	17 16	14 13	e4.8 e4.9	41 42	212 209	299 236	118 112	385 217
16 17	187 136	29 53	16 15	32 38	15 15	12 11	e5.3 5.9	49 54	204 211	212 186	99 106	259 226
18	102	34	15	44	14	10 9.5	7.4	54	220	179 189	145	182
19 20	78 71	32 56	15 14	45 37	14 13	8.9	8.4 8.9	46 44	246 306	228	132 137	187 230
21	74	223	14	34	13	8.4	10	67	315	233	121	166
22 23	123 164	292 181	13 13	34 42	13 12	7.5 7.0	11 13	123 143	251 230	364 361	103 85	199 170
24	114	126	13	36	12	6.2	15	109	211	289	102	149
25	81	91	13	30	11	6.2	15	79	182	286	93	158
26 27	59 45	77 58	13 13	27 44	13 29	6.0 5.8	15 24	68 90	176 239	258 190	122 315	122 109
28	36	43	12	42	19	5.8	24	129	330	154	150	87
29 30	30 29	33 30	12 18	32 27		e5.5 e5.3	20 19	166 173	252 205	189 194	159 157	73 263
31	46		22	49		e5.1		225		191	162	
TOTAL	4779	2098	894	1371	741	352.2	281.7	2134	6857	8356	4278	6327
MEAN MAX	154 515	69.9 292	28.8 187	44.2 167	26.5 119	11.4 31	9.39 24	68.8 225	229 330	270 566	138 315	211 600
MIN	19	25	12	19	11	5.1	4.7	18	176	154	85	73
MED AC-FT	114 9480	44 4160	17 1770	37 2720	18 1470	11 699	5.9 559	46 4230	221 13600	236 16570	125 8490	179 12550

e Estimated

SOUTHEAST ALASKA

15050000 GOLD CREEK AT JUNEAU-Continued

STATISTIC	CS OF MONTHLY MEAN	N DATA FOR WATER YEAR	RS 1916 - 2001,	BY WATER YEAR	(WY)#	
MEAN 158 83.3 MAX 349 206 (WY) 2000 1947 MIN 62.6 18.1 (WY) 1952 1976	36.8 21.8 202 170 2000 1981 6.22 1.71 1956 1974	14.5 12.6 81.4 137 1977 1947 .48 .055 1972 1974	24.7 125 91.7 220 1947 1948 3.78 64.5 1954 1920	307 3 1964 19 134 1	227 188 364 374 975 1961 30 85.4 982 1968	184 302 1999 73.7 1978
SUMMARY STATISTICS FOR	2000 CALENDAR YEA	R FOR 2001 WA	TER YEAR	WATER YEARS	3 1916 - 2001#	
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW	46068.5 126 869 Jul 2 3.1 Mar 1 3.3 Mar 1 91380 302 79 7.4	4 4.7	Sep 13 Apr 2 Apr 10 Oct 12 Oct 12	109 155 77.5 1830 a.00 .00 2950 8.14 a.00 78830 262 68 5.0	2000 1951 Aug 12 1961 Mar 4 1951 Mar 4 1951 Sep 25 1996 Sep 25 1996 Mar 4 1951	

[#] See Period of Record; partial years used in monthly statistics a No flow at times during some winters b Not determined, see lowest daily discharge

15051010 SALMON CREEK NEAR JUNEAU

LOCATION.--Lat $58^{\circ}19'57''$, long $134^{\circ}27'57''$, in $NE^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 9, T. 41 S., R. 67 E. (Juneau B-2 SE quad), City and Borough of Juneau, Hydrologic Unit 19010301, in Tongass National Forest, on left bank, about 0.3 mi upstream from mouth and 2.5 mi northwest of Juneau.

DRAINAGE AREA. -- 9.69 mi².

PERIOD OF RECORD.--October 1990 to current year. Daily discharge record previously collected 0.5 mi upstream at station number 15051008 "above canyon mouth" during water-years 1982-90. Drainage area, 9.50 mi².

REVISED RECORDS.--WDR AK 93-1: 1991 (m).

GAGE.--Water-stage recorder. Elevation of gage is 30 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges which are poor. Flow regulated by Salmon Creek Reservoir 2.5 mi upstream. Diversions upstream for off-stream hydropower plant; outflow from the plant goes into Gastineau Channel and is not included in the discharge records. Diversions upstream into Twin Lakes via a pipeline are also not included in the discharge records.

		DISCHAF	RGE, CUBIC	FEET PE		WATER	YEAR OCTOBER VALUES	2000	TO SEPTEMBE	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19 17 16 15 48	22 20 37 25 21	e16 16 15 17 163	17 21 81 38 23	73 42 33 27 23	18 14 13 11	9.4 9.2 9.5 11	15 18 42 37 26	65 60 61 67 57	45 48 43 53 60	35 31 27 36 33	36 86 46 43 79
6 7 8 9 10	117 81 59 71 64	19 21 18 16 15	68 42 34 28 25	25 25 36 25 e19	19 18 16 15	13 17 13 21 34	9.9 9.7 9.9 9.8 9.3	19 18 34 52 27	52 53 55 61 64	100 110 83 66 68	26 24 23 19 17	68 69 57 42 34
11 12 13 14 15	199 140 130 87 82	31 52 25 20 19	23 21 18 e16 e16	e18 18 18 19 28	e12 12 17 13 e11	45 28 20 16 15	9.5 10 10 9.5 9.3	24 24 27 24 25	48 45 55 50 49	55 49 79 65 53	16 16 16 17 16	29 36 173 102 62
16 17 18 19 20	55 41 32 29 27	18 31 21 21 26	e15 15 16 14 13	26 28 29 27 22	e10 e9.5 e9.0 e8.4 e8.3	15 13 12 9.5 e8.5	9.3 10 12 10	26 26 20 17 17	51 54 55 59 74	46 41 38 37 42	15 18 25 28 33	75 60 52 50 64
21 22 23 24 25	28 45 70 43 31	69 102 58 44 31	12 e11 e11 11 e10	21 22 30 24 21	e8.3 e7.9 e7.7 e7.6 e7.5	e7.6 e6.9 e6.3 e5.7 e5.9	11 12 14 16 15	24 41 42 31 29	71 58 56 50 43	43 69 63 53 56	28 21 16 17 16	47 51 43 40 42
26 27 28 29 30 31	26 23 20 17 18 24	28 24 21 18 17	e10 e10 10 11 19 21	20 38 34 24 20 40	17 55 27 	9.4 10 10 10 9.8 9.8	15 26 23 16 15	27 33 40 53 54 65	43 59 77 54 45	51 38 33 34 33 32	20 71 35 46 42 41	34 30 27 25 60
TOTAL MEAN MAX MIN AC-FT	1674 54.0 199 15 3320	890 29.7 102 15 1770	727 23.5 163 10 1440	837 27.0 81 17 1660	18.8 73 7.5 1050	438.4 14.1 45 5.7 870	360.3 12.0 26 9.2 715	957 30.9 65 15 1900	1691 56.4 77 43 3350	1686 54.4 110 32 3340	824 26.6 71 15 1630	1662 55.4 173 25 3300
MEAN MAX (WY) MIN (WY)	64.1 131 1999 36.2 1997	30.0 76.9 1994 16.3 1991	27.3 69.5 2000 12.7 1997	18.3 33.5 1992 9.65 1997	22.4 45.0 1992 9.16 1999	17.3 39.0 1992 9.38 1997	25.0 38.6 1994 12.0 2001	2001, 50.1 71.3 1992 29.7 1996	56.1 82.9 1991 35.9 1995	EAR (WY)# 46.1 69.0 1997 22.7 1993	36.4 66.5 1991 18.2 1994	63.3 108 1991 41.0 1997
SUMMARY	STATISTI	CS	FOR 2000 (CALENDAR	YEAR	FOR	2001 WATER Y	EAR	WATER Y	EARS 1991	- 2001#	
LOWEST ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL 50 PERCE		AN AN N MINIMUM W GE C-FT) DS	12934 .! 35 .: 229 7 .: 7 .: 25660 71 27 10	Jul :	11	19	9 Oct 11 5.7 Mar 24 7.2 Mar 20 2 Dec 5 2.97 Dec 5		38. 48. 29. 954 5. 6. 1930 a4. 27600 73 28	6 7 Oct 7 Mar 8 Mar Sep	1992 1995 20 1998 24 2001 4 1998 25 1996	

See Period of Record

From flood marks Estimated

15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY

LOCATION.--Lat 58°21′59", long 134°34′34", in SW¹/₄ SW¹/₄ SE¹/₄ sec. 30, T. 40 S., R. 66 (Juneau B-2 SW quad), Hydrologic Unit 19010301, City and Borough of Juneau on right bank at downstream side of footbridge, 50 ft downstream from Egan Drive, 0.4 mi southeast of intersection of Egan Drive and Mendenhall Loop Road and 3 mi east of Auke Bay Post Office.

DRAINAGE AREA. -- 2.60 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1997 to current year. Prior to October 1996, published as miscellaneous site 15052482 Jordan Creek at Trout Street Bridge near Auke Bay, at site about 500 ft downstream at different datum.

GAGE.--Water-stage recorder. Datum of gage is 19.80 ft above sea level, determined by levels survey.

REMARKS.--Records fair except for estimated daily discharges, which are poor.

EXTEREMES OUTSIDE PERIOD OF DAILY RECORD.--Flood of September 25, 1996, reached a stage of 4.34 ft, site and datum then in use, from floodmarks, discharge 140 ft³/s; no flow observed March 2, 1989, March 5, 1996, and January 15, 1997.

1997.	•											
		DISCHAF	RGE, CUBI	C FEET PER		, WATER LY MEAN	YEAR OCTOBE: VALUES	R 2000 T	O SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5.8 5.5 5.4 5.0 8.2		7.0 7.5 6.6 7.5 35	3.2 3.5 14 6.7 5.2	5.0	4.4 3.4 2.9 2.7 2.6	e2.5 e2.4 e2.3 e2.7 e2.6	2.7 3.4 8.6 9.5 7.0	8.1 7.9 9.8 8.6 7.3	1.4 1.3 1.2 1.8 3.3	3.2 2.8 2.5 2.9 2.6	2.1 10 4.1 4.3 9.2
6 7 8 9 10	28 18 26 14 14	5.8 6.6 5.6 5.1 4.9	18 12 11 8.9 7.9	6.9 6.4 6.8 5.5 4.5	5.0 4.7 4.3 3.8 e3.5	4.1 5.4 4.6 6.7	e2.4 e2.3 e2.5 e2.3	5.3 5.1 6.2 10 7.9	6.5 5.9 5.4 5.3 5.3	8.2 5.3 9.5 5.5 4.3	e2.3 e2.2 e1.9 e1.6 1.3	11 8.9 7.6 5.4 4.4
11 12 13 14 15	27 22 33 21 20	7.1 10 6.7 5.9 5.8	7.1 6.2 e5.5 e5.2 e4.9	4.1 3.8 4.4 5.2 8.2	e3.1 3.8 7.1 6.0 4.5	13 8.4 6.4 5.6 5.2	1.3 1.6 1.5 1.3	6.5 6.0 6.1 5.7 5.3	4.5 3.9 3.9 3.6 3.5	3.3 3.0 4.1 4.5 3.4	1.2 1.0 .89 .79	3.9 4.0 17 11 6.4
16 17 18 19 20	15 12 10 10	5.5 10 7.9 7.8 7.3	e4.6 e4.7 8.5 3.7	7.8 8.2 7.3 6.1	e4.1 e3.2 e2.9 e2.6 e2.5	6.9 5.7 4.6 4.4 4.2	1.2 1.3 1.5 1.4	5.2 5.2 5.4 5.1	3.1 2.8 2.7 2.5 2.4	2.8 2.4 2.1 1.8	.63 .57 .88 1.6	12 8.6 7.6 6.6
21 22 23 24 25	10 10 10 9.7 8.3	10 17 19 15	e2.5 e2.4 e2.3 e2.3	5.1 5.1 7.4 6.6 5.3	e2.4 e2.3 e2.1 e2.0 3.0	3.5 3.2 e3.2 e3.0 e3.1	1.3 1.3 1.5 1.8	6.5 8.1 9.0 8.8 6.7	2.5 2.6 2.6 2.3 2.0	1.5 12 25 8.3 10	.94 .77 .67 .64	8.4 9.6 9.5 7.9 7.0
26 27 28 29 30 31	7.4 6.7 6.1 5.7 6.4 6.3	9.8 8.9 8.0 7.1 6.5	2.4 2.3 2.3 2.2 3.3 3.8	5.0 8.4 9.7 6.4 5.4 8.1	7.5 21 9.2 	e3.0 e3.1 e3.4 e2.9 e2.7 e2.6	1.8 2.8 4.6 3.1 2.8	6.1 6.6 6.9 7.5 8.2 8.3	1.9 1.7 1.7 1.6 1.5	8.0 5.7 4.7 4.4 4.0 3.6	.71 8.5 2.5 2.2 2.4 2.4	6.1 5.4 4.9 4.6 11
TOTAL MEAN MAX MIN AC-FT CFSM IN.	396.1 12.8 33 5.0 786 4.91 5.67	248.8 8.29 19 4.9 493 3.19 3.56	203.2 6.55 35 2.2 403 2.52 2.91	195.5 6.31 14 3.2 388 2.43 2.80	147.1 5.25 21 2.0 292 2.02 2.10	146.9 4.74 13 2.6 291 1.82 2.10	59.8 1.99 4.6 1.2 119 .77 .86	204.2 6.59 10 2.7 405 2.53 2.92	123.4 4.11 9.8 1.5 245 1.58 1.77	158.0 5.10 25 1.2 313 1.96 2.26	55.37 1.79 8.5 .57 110 .69	232.5 7.75 17 2.1 461 2.98 3.33
		STATISTIC	S OF MONT	HLY MEAN I	DATA FOR	WATER Y	YEARS 1997 -	2001, E	BY WATER Y	EAR (WY):	#	
MEAN MAX (WY) MIN (WY)	16.9 22.2 1999 11.1 1998	8.12 11.2 2000 4.21 1999	12.1 20.8 2000 2.67 1999	6.76 11.3 1999 3.52 1998	2.13 5.25 2001 .47 1999	3.07 4.74 2001 1.62 1998	5.99 12.1 1999 1.99 2001	8.05 13.7 1999 3.71 1998	5.11 10.2 1999 1.63 1998	5.83 8.49 2000 3.97 1998	6.24 9.65 2000 1.79 2001	13.6 18.7 1999 7.68 1997
SUMMARY	STATIST				R	FOR 20	01 WATER YE	AR	WATER YE	ARS 1997	- 2001#	
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL ANNUAL	MEAN ANNUAL ANNUAL DAILY M DAILY ME SEVEN-DA 1 PEAK FL 1 PEAK ST CANEOUS L RUNOFF (RUNOFF (MEAN EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM)	5590 2.90	Sep 17 3 Mar 13 0 Mar 10		2170 5 35 a 58 5 c 4310 2 31	Dec 5 .57 Aug 17 .78 Aug 12 Jul 23 .90 Jul 23 .54 Aug 16		7.9 9.8 5.9 129 b.0 .0 149 7.5 b.0 5780 3.0 41.6	7 7 7 5 Dec 0 Mar 0 Dec 9 Dec 0 Mar 7 7	2000 2001 28 1999 3 1999 3 1999 28 1999 28 1999 3 1999	
10 PERC 50 PERC 90 PERC	CENT EXCE CENT EXCE	INCHES) EDS EDS EDS	16 5.8 1.4			5			17 5.2 1.2			

See Period of Record; partial year used in monthly statistics

Aug. 17 and 25 Mar. 3 to Mar. 9 Aug. 16-17, and 25 Estimated

15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1997 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: July 1999 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder with 15-minute recording interval started on July 15, 1999.

REMARKS.-- Records represent water temperature at the sensor within 0.5°C .

EXTREMES FOR PERIOD OF RECORD. --

WATER TEMPERATURE: Maximum, 13.0°C, July 1, 2001; minimum, 0°C, many days during winters.

EXTREMES FOR CURRENT PERIOD. --

WATER TEMPERATURE: Maximum, 13.0°C, July 1; minimum, 0°C, many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			SAMPLE		DIS-	
			LOC-		CHARGE,	
			ATION,		INST.	
			CROSS		CUBIC	TEMPER-
		STREAM	SECTION	GAGE	FEET	ATURE
DATE	TIME	WIDTH	(FT FM	HEIGHT	PER	WATER
		(FT)	L BANK)	(FEET)	SECOND	(DEG C)
		(00004)	(00009)	(00065)	(00061)	(00010)
MAR						
07	1400	10.8	10.1	3.63	5.9	2.0
07	1401	10.8	8.10	3.63	5.9	2.0
07	1402	10.8	6.10	3.63	5.9	2.0
07	1403	10.8	4.10	3.63	5.9	2.0
07	1404	10.8	2.10	3.63	5.9	2.0

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	5.5 4.0 3.5 3.5 6.0	3.5 3.0 3.0 2.5 3.5	4.0 3.5 3.0 3.0 4.5	5.0 5.0 5.5 5.0 3.5	4.0 4.0 4.5 3.0 3.0	4.5 4.5 5.0 4.0 3.0	3.0 3.5 3.5 3.5 4.0	1.5 3.0 3.0 3.5 3.5	2.5 3.5 3.5 3.5 3.5	2.5 2.5 2.0 2.5 2.5	1.5 2.0 1.5 2.0	2.0 2.0 2.0 2.5 2.0
6 7 8 9 10	7.0 7.5 7.0 6.5 7.0	6.0 7.0 6.0 6.5	6.5 7.5 6.5 6.5	4.0 4.5 4.5 4.0 3.0	3.5 4.0 4.0 3.0 2.5	3.5 4.5 4.5 3.5 3.0	4.5 4.0 4.0 2.0 2.0	4.0 4.0 2.0 1.0	4.0 4.0 3.0 1.5 2.0	2.5 3.5 3.5 3.0	1.5 2.5 3.0 1.5	2.0 3.0 3.0 2.5 1.0
11 12 13 14 15	7.0 8.0 8.0 7.0	6.0 7.0 7.0 6.5	6.5 7.5 7.5 6.5	4.0 5.0 4.5 4.5 4.5	3.0 4.0 4.0 4.0 3.5	3.5 4.5 4.5 4.5 4.5	2.5 2.0 .5 .0	2.0 .5 .0 .0	2.0 1.0 .0 .0	1.5 1.0 1.5 2.0	.5 .5 .5 1.5	1.0 .5 1.0 2.0 2.0
16 17 18 19 20	7.0 6.5 6.0 6.5 6.0	6.5 5.5 5.0 6.0 5.5	6.5 6.0 5.5 6.0	4.0 4.5 4.0 4.0 5.0	3.0 4.0 3.5 3.5 4.0	3.5 4.0 3.5 4.0 4.5	.0 .0 1.0 1.5	.0 .0 .0 1.0	.0 .0 .0 1.5	2.5 3.0 3.0 3.5 3.0	2.0 2.5 2.5 3.0 2.0	2.0 2.5 3.0 3.0
21 22 23 24 25	6.0 6.5 6.5 6.5	5.5 5.5 6.0 6.0	5.5 6.0 6.5 6.0 5.5	5.5 5.5 5.0 4.5 4.5	5.0 5.0 4.5 4.5	5.5 5.5 4.5 4.5	.5 .0 .0 .5	.0 .0 .0 .0	.0 .0 .0 .0	3.0 3.5 3.5 2.5	2.0 3.0 2.0 2.0 2.0	3.0 3.5 3.0 2.0 2.5
26 27 28 29 30 31	5.0 5.0 5.0 4.0 4.0 5.0	4.0 4.0 4.0 2.5 2.5	4.5 4.5 4.5 2.5 3.0 4.5	4.5 4.5 4.5 3.0 3.0	4.5 4.5 3.0 2.0 2.5	4.5 4.5 4.0 2.5 3.0	1.5 1.5 1.5 2.0 2.0	1.5 1.0 1.0 1.0 1.5	1.5 1.5 1.5 2.0 2.0	3.0 3.0 3.0 3.0 3.0 3.5	2.5 3.0 2.5 2.5 2.0 1.5	2.5 3.0 2.5 2.5 2.5 2.5
MONTH	8.0	2.5	5.5	5.5	2.0	4.1	4.5	.0	1.5	3.5	.5	2.3

15052475 JORDAN CREEK BELOW EGAN DRIVE NEAR AUKE BAY--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN									
	E	FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	3.5 3.5 3.5 2.5 2.5	3.0 3.0 2.5 2.0 1.5	3.5 3.5 3.0 2.5 2.0	1.5 1.5 2.0 1.5	.5 .5 1.0 .0	1.0 1.0 1.5 1.0	 	 	 	6.5 5.5 4.0 5.0	5.0 4.0 4.0 3.0 3.0	6.0 4.5 4.0 4.0
6 7 8 9 10	1.5 1.5 1.5 1.0	.5 1.0 .5 .0	1.0 1.0 1.5 .5	2.0 2.0 2.5 2.5 1.5	1.5 1.5 1.5 1.5	1.5 2.0 2.0 2.0 1.5	 4.0	 	 	6.5 6.0 5.0 5.0 7.0	3.0 4.5 4.0 4.0 3.5	5.0 5.0 4.5 4.5 5.0
11 12 13 14 15	.0.0.0	.0 .0 .0	.0.0.0.0	2.0 3.0 3.0 3.5 3.5	1.5 2.0 2.0 2.5 2.5	2.0 2.5 2.5 3.0 3.0	4.0 4.5 5.0 5.5 5.0	2.0 3.0 2.5 3.5 2.0	3.0 3.5 3.5 4.5 3.5	7.0 7.5 7.0 8.0 8.5	5.0 4.0 5.5 4.0 6.0	6.0 6.0 6.5 6.0
16 17 18 19 20	.0.0.0	.0 .0 .0	.0.0.0.0	3.0 4.0 3.0 .5	1.5 2.5 .5 .0	2.5 3.0 2.0 .0	5.5 5.0 6.5 7.5 7.0	2.0 3.0 4.0 4.0 3.5	3.5 4.0 5.0 5.5 5.0	9.0 7.5 8.5 8.0 7.5	5.5 5.5 5.0 5.0	7.0 6.5 7.0 6.5 6.5
21 22 23 24 25	. 0 . 0 . 0 . 0	.0 .0 .0	.0.0.0.0	.0 .0 .0	.0	.0 .0 .0	7.0 6.0 6.5 5.5 6.5	4.0 4.5 4.5 5.0 4.0	5.5 5.5 5.5 5.0 5.5	7.5 6.5 6.0 8.5 8.5	5.5 5.5 5.0 5.0	6.5 6.0 5.5 6.5 7.0
26 27 28 29 30 31	.0 .0 1.0 	.0	.0 .0 .5 		 	 	6.0 6.5 6.5 6.0 7.5	5.0 5.0 4.0 4.0 4.5	5.5 5.5 5.0 5.0 6.0	9.5 8.5 9.0 8.0 8.0	4.0 6.5 6.0 6.5 6.0	6.5 7.5 7.5 7.0 7.0
MONTH	3.5	.0	.7							9.5	3.0	6.0

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		į	AUGUST		S	SEPTEMBE	R
1 2 3 4 5	10.0 9.0 7.0 8.5 8.0	6.5 7.0 6.5 6.0	8.0 7.5 7.0 7.5 7.5	13.0 12.0 12.0 11.5 9.5	10.0 10.0 8.5 9.5 9.0	11.0 11.0 10.5 10.5 9.5	10.0 11.0 11.0 10.0	8.0 8.5 9.0 9.0	9.0 10.0 10.0 9.5	 	 	
6 7 8 9 10	9.0 9.0 10.0 10.0 9.0	6.5 7.0 6.0 7.5 7.5	8.0 8.0 8.0 8.5 8.0	9.0 9.0 9.5 9.5	8.5 8.5 8.0 8.0	9.0 8.5 8.5 8.5	 			 		
11 12 13 14 15	8.0 8.0 8.0 9.0	7.0 7.0 7.0 6.5 7.5	7.5 7.5 7.5 8.0 8.0	9.0 9.0 9.0 10.0	8.0 8.0 8.0 8.0	8.5 8.5 8.5 9.0 9.0	 			 		
16 17 18 19 20	10.5 10.0 11.0 10.5 10.5	7.0 8.5 8.0 8.5 8.5	9.0 9.0 9.5 9.5 9.5	10.0 10.0 10.0 11.0 12.0	8.5 8.5 8.5 8.0 9.0	9.5 9.5 9.5 9.5 10.5	 	 	 	 	 	
21 22 23 24 25	10.5 10.0 9.0 10.0 11.0	9.0 8.5 8.0 7.5 8.5	9.5 9.0 8.5 9.0 10.0	12.0 11.5 11.0 9.5 9.0	10.0 10.5 9.5 9.0 8.5	11.0 11.0 10.5 9.0 9.0	 	 	 	 	 	
26 27 28 29 30 31	11.5 12.5 12.0 10.5 12.0	8.0 9.0 10.0 9.0 9.0	10.0 11.0 11.0 10.0 10.5	9.0 9.5 9.5 9.0 9.0	8.5 8.0 8.0 8.0 8.0	8.5 8.5 8.5 8.5 8.5	 		 	 	 	
MONTH	12.5	6.0	8.7	13.0	8.0	9.3						

15052495 NUGGET CREEK ABOVE DIVERSION NEAR AUKE BAY

LOCATION.--Lat $58^{\circ}25'25''$, long $134^{\circ}31'25''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $SE^{1}/_{4}$ sec. 4, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301, City and Borough of Juneau, on left bank, 1,200 ft upstream from old diversion dam, 3,000 ft upstream from mouth at Mendenhall Lake and 5.2 mi northeast of Auke Bay.

DRAINAGE AREA.-- 15.8 mi².

PERIOD OF RECORD. -- March 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 590 ft above sea level, from topographic map.

 ${\tt REMARKS.--Records\ fair\ except\ estimated\ daily\ discharges,\ which\ are\ poor.}$

		DISCHAR	GE, CUBIC	FEET PER		WATER Y Y MEAN V	EAR OCTOBER ALUES	2000 5	TO SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	122 99 88 76 319	55 78 273 116 83	80 79 71 70 245	47 50 146 83 63	86 63 55 48 42	31 28 27 27 26	11 12 12 12 12	36 38 55 54 40	346 313 336 310 272	361 354 314 427 609	343 344 329 415 413	270 474 275 289 518
6 7 8 9 10	643 590 391 339 276	71 70 59 51 47	134 93 77 66 64	60 62 78 60 51	39 39 35 34 29	28 30 28 30 39	12 12 12 13 12	33 34 40 56 42	276 295 328 364 380	657 726 590 513 471	288 244 236 219 198	520 474 481 266 185
11 12 13 14 15	453 810 665 402 276	70 93 60 49 48	59 54 51 e50 49	46 44 42 41 49	32 34 36 32 31	61 37 25 22 21	13 13 13 13	46 51 78 72 79	307 321 372 321 341	372 329 447 397 345	187 214 261 285 303	147 219 925 734 400
16 17 18 19 20	195 148 119 109	49 78 51 53 89	46 45 45 42 40	48 52 60 55 47	31 30 30 29 28	20 19 17 16 e15	14 17 22 23 24	84 85 80 75 74	343 355 366 406 582	324 286 299 383 458	249 227 325 497 398	467 423 327 261 289
21 22 23 24 25	99 140 197 143 106	265 406 210 146 114	38 37 36 35 35	44 44 54 45 41	28 27 26 26 26	14 14 14 14	27 30 33 33 32	93 160 165 116 90	554 452 432 397 325	467 763 778 662 727	365 301 234 227 206	224 305 230 190 186
26 27 28 29 30 31	86 72 63 55 57 62	100 90 80 68 73	34 33 33 33 51 59	40 57 52 42 39 61	31 61 36 	14 13 12 12 12 12	34 53 50 41 37	90 130 173 218 224 340	318 506 612 437 365	676 439 330 421 474 396	304 769 382 391 358 318	144 130 112 104 237
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	7302 236 810 55 140 14480 14.9 17.19	3095 103 406 47 76 6140 6.53 7.29	1884 60.8 245 33 50 3740 3.85 4.44	1703 54.9 146 39 50 3380 3.48 4.01	1044 37.3 86 26 32 2070 2.36 2.46	692 22.3 61 12 20 1370 1.41 1.63	655 21.8 53 11 14 1300 1.38 1.54	2951 95.2 340 33 78 5850 6.02 6.95	11332 378 612 272 350 22480 23.9 26.68	14795 477 778 286 439 29350 30.2 34.83	9830 317 769 187 303 19500 20.1 23.14	9806 327 925 104 272 19450 20.7 23.09
		STATISTICS	OF MONTE	HLY MEAN 1	DATA FOR	WATER Y	EARS 2000 -	2001,	BY WATER Y	EAR (WY)‡	‡	
MEAN MAX (WY) MIN (WY)	236 236 2001 236 2001	103 103 2001 103 2001	60.8 60.8 2001 60.8 2001	54.9 54.9 2001 54.9 2001	37.3 37.3 2001 37.3 2001	22.3 22.3 2001 22.3 2001	24.4 26.9 2000 21.8 2001	120 146 2000 95.2 2001	427 476 2000 378 2001	532 586 2000 477 2001	377 436 2000 317 2001	382 438 2000 327 2001
SUMMARY	STATISTI	CS		FOR 2001	WATER Y	EAR			WATER Y	EARS 2000	- 2001#	
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS				18 1293 1	278 225 11 12 320 24.42 9.8	Oct 12			178 178 178 1380 11 12 2220 24.8 9.8 129200 11 153.5 548 146 23	Aug Apr Mar Sep 36 Sep 3 Apr	2001 2001 22 2000 1 2001 28 2001 4 2000 4 2000 2 2001	

[#] See period of Record; partial years used in monthly statistics e Estimated

15052500 MENDENHALL RIVER NEAR AUKE BAY

LOCATION.--Lat $58^{\circ}25'47''$, long $134^{\circ}34'22''$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec. 6, T. 40 S., R. 66 E. (Juneau B-2 NW quad.), Hydrologic Unit 19010301, at the north end of Mendenhall Lake, 1.2 mi north of Mendenhall Lake Outlet and 4.1 mi northeast of Auke Bay, and 7 mi upstream from mouth at Fritz Cove.

DRAINAGE AREA. -- 85.1 mi².

Date

Jul 23

Aug 29

PERIOD OF RECORD.--May 1965 to October 1994, annual maximum, water years 1995-96, October 1996 to current year. Prior to April 15, 1983, at site 1.3 mi southeast at east end of Mendenhall Lake, same datum.

REVISED RECORDS. -- WDR AK-95-1: 1981(M)

Time

0445

GAGE. -- Water-stage recorder. Elevation of gage is 60 ft above sea level, from topographic map.

(ft)

7.02

6.62

Discharge Gage Height

 (ft^3/s)

5750

5000

REMARKS.--Records fair except estimated daily discharges, which are poor. Streamflow is augmented and diurnal fluctuations caused by melting from Mendenhall Glacier, which covers two-thirds of the basin. GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--During late summer 1961, flood flows of 27,000 $\mathrm{ft^3/s}$ were estimated at the mouth of the Mendenhall River. For discussion of this flood, see USGS Hydrologic Atlas HA-259.

Date

Sep 15

Time

0315

Discharge

 (ft^3/s)

*6380

Gage Height

(ft)

*7.33

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $4,600~{\rm ft}^3/{\rm s}$ and maximum (*):.

	5											
		DISCHA	RGE, CUBI	C FEET PI		WATER Y	YEAR OCTOB VALUES	ER 2000	TO SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1780	370	324	142	193	102	46	140	1010	e2850	3230	2880
2	1260	365	e303	150	195	90	42	144	1050	e2600	2970	3240
3	962	516	e280	250	191	80	40	176	1150	e2400	3170	2900
4 5	797 874	632 598	e300 e500	312 300	176 159	71 64	43 46	209 202	1290 1390	e2800 e3600	3230 3270	2620 3000
5	0/4	390	6300	300	159	04	40	202	1390	63000	3270	3000
6	1800	569	e465	295	141	61	45	179	1280	e3700	2890	4090
7	3300	597	e395	290	136	68	44	166	1260	e4200	2650	3580
8	3290	583	e315	311	126	71	44	176	1270	e3400	2570	3860
9 10	2990 2630	496 424	e272 e250	294 266	115 e103	76 93	48 48	220 223	1390 1480	3170 3060	2480 2390	2550 1950
10	2030	121	6230	200	6103	93	40	223	1400	3000	2390	1930
11	2270	416	e220	245	e95	140	48	214	1360	2510	2260	1850
12	2500	472	e205	228	e87	164	49	216	1390	2250	2300	1750
13 14	3510 3280	427 378	e190 161	215 195	99 94	149 130	49 48	238 254	1530 1570	2420 2560	2720 3130	3250 6030
15	2310	365	159	191	82	116	47	276	1680	2430	3170	5640
16	1660	347	149	187	73	118	48	293	1800	2430	2890	4710
17	1380	405	140	172	66	109	50	308	1860	2360	2740	4120
18 19	1060 909	357 333	141 137	169 157	60 55	100 88	57 64	310 309	1860 1960	2380 2610	2790 3170	3460 2610
20	837	338	128	137	51	77	71	308	2130	3190	3300	2480
21	804	483	121	119	48	67	81	365	2440	3540	3430	1880
22	788	777	114	110	46	60	88	437	2600	4400	3260	2050
23 24	934 983	703 690	110 105	127 131	44 41	55 52	96 104	536 573	2970 2630	5410 4380	2830 2560	2360 2090
25	963 876	578	103	120	39	50	104	513	2220	4440	2460	1790
26 27	719	529	100 97	113	43 82	49 49	110	469	2130	4110	2810	1450
28	574 466	368 247	96	128 157	82 105	50	126 154	513 607	2350 3020	3260 2930	4330 4840	1160 1080
29	395	289	94	146		50	153	711	e3200	3020	4770	1030
30	364	319	106	132		49	146	768	e3000	3470	4020	1280
31	369		133	138		49		863		3700	3470	
TOTAL	46671	13971	6212	5927	2745	2547	2143	10916	56270	99580	96100	82740
MEAN	1506	466	200	191	98.0	82.2	71.4	352	1876	3212	3100	2758
MAX	3510	777	500	312	195	164	154	863	3200	5410	4840	6030
MIN	364	247	94	110	39	49	40	140	1010	2250	2260	1030
AC-FT	92570	27710	12320	11760	5440	5050	4250	21650	111600	197500	190600	164100
CFSM	17.7	5.47	2.35	2.25	1.15	.97	.84	4.14	22.0	37.7	36.4	32.4
IN.	20.40	6.11	2.72	2.59	1.20	1.11	.94	4.77	24.60	43.53	42.01	36.17
		STATISTIC	CS OF MON	THLY MEAN	DATA FOR	WATER Y	EARS 1965	- 2001,	BY WATER	YEAR (WY) #	
MEAN	1350	351	157	113	90.9	93.1	140	648	1870	3005	3321	2683
MAX	2649	920	526	600	254	379	313	1227	2819	3835	4701	4100
(WY)	1987	1977	2000	1981	1977	1992	1994	1993	1969	1979	1990	1991
MIN	532	110	40.0	30.8	21.5	22.3	56.9	268	732	1939	2025	1380
(WY)	1969	1986	1984	1969	1969	1974	1967	1985	1985	1985	1985	1984

[#] See Period of Record; partial years used in monthly summary statistics and break in record

e Estimated

15052500 MENDENHALL RIVER NEAR AUKE BAY--Continued

SUMMARY STATISTICS	FOR 2000 CA	LENDAR YEAR	FOR 2001 W	ATER	YEAR	WATER YEARS	1965	- 2	2001#
ANNUAL TOTAL	446110		425822						
ANNUAL MEAN	1219		1167			1164			
HIGHEST ANNUAL MEAN						1547			1990
LOWEST ANNUAL MEAN						758			1985
HIGHEST DAILY MEAN	7630	Aug 22	6030	Sep	14	13700	Sep	8	1981
LOWEST DAILY MEAN	39	Mar 13	39	Feb	25	19	Mar	1	1969
ANNUAL SEVEN-DAY MINIMUM	41	Mar 10	43	Apr	2	19	Mar	5	1974
MAXIMUM PEAK FLOW			6380	Sep	15	16000	Sep	11	1995
MAXIMUM PEAK STAGE			7.33	Sep	15	all.18	Sep	11	1995
INSTANTANEOUS LOW FLOW				Apr	3	b19	Mar	1	1969
ANNUAL RUNOFF (AC-FT)	884900		844600			843000			
ANNUAL RUNOFF (CFSM)	14.3		13.7			13.7			
ANNUAL RUNOFF (INCHES)	195.01		186.14			185.79			
10 PERCENT EXCEEDS	3190		3230			3210			
50 PERCENT EXCEEDS	474		378			401			
90 PERCENT EXCEEDS	75		60			48			

[#] See Period of Record; partial years used in monthly summary statistics and break in record
a From floodmarks
b Mar. 1-3, 1969, and Mar. 7-11, 1974

SOUTHEAST ALASKA

15052800 MONTANA CREEK NEAR AUKE BAY

LOCATION.--Lat $58^{\circ}23'53''$, long $134^{\circ}36'34''$, in $SE^{1}_{/4}$ $SW^{1}_{/4}$ sec. 13, T. 40 S., R. 65 E. (Juneau B-2 NW quad.), Hydrologic Unit 19010301,On right bank 30 ft upstream from bridge on Mendenhall Loop Road, 1.2 mi upstream from mouth at Mendenhall River, 1.5 mi northeast of Auke Lake, and 3.9 mi downstream from McGinnis Creek.

DRAINAGE AREA.--14.1 mi².

PERIOD OF RECORD.-- August 1965 to September 1975, July 1983 to September 1987, Annual Maximum 1996 to 2000, November 2000 to September 2001.

REVISED RECORDS.--WDR-99-1: 1996-98 (M).

GAGE.--Water-stage recorder. Elevation of gage is 40 ft above sea level, from topographic map.

REMARKS.--Records fair, except estimated daily discharges, which are poor.

		DISCHARG	E, CUBIC	FEET PER			YEAR OCTOBER	2000	TO SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	 	e68 e62 e95 e60 e68	53 59 53 59 868	32 40 124 62 48	152 62 70 48 38	81 58 46 38 28	18 17 16 21 25	42 42 135 154 79	164 142 198 152 131	105 103 91 115 210	108 103 97 117 137	121 230 118 128 376
6 7 8 9 10	 	e60 e70 65 54 49	262 134 108 91 83	75 58 75 54 37	32 31 28 e25 e22	26 43 37 56 149	22 20 21 29 25	54 44 48 156 69	120 126 122 134 146	292 452 329 227 182	94 77 69 56 61	304 268 203 137 100
11 12 13 14 15		157 163 73 59 67	77 e69 e56 e48 e44	31 28 31 43 87	e21 e20 e20 e19 e19	236 94 55 41 36	22 26 25 23 24	68 68 82 64 66	114 111 124 114 117	123 106 170 154 123	58 58 63 65 66	84 131 1300 481 175
16 17 18 19 20	 	65 139 77 70 68	e41 e39 e40 e42 e40	76 67 65 50 39	e19 e18 e18 e18 e18	50 44 36 e24 e19	26 31 52 42 39	e60 e57 e56 e57 e54	118 122 119 130 162	108 93 87 96 115	61 58 89 77 84	215 164 175 140 242
21 22 23 24 25	 	89 134 139 107 76	e37 e34 e28 e24 e23	34 38 64 48 37	e17 e17 e16 e16 e36	e16 e14 e14 e13 e12	40 40 44 40 40	e60 e75 e130 e105 77	171 137 126 118 101	116 400 504 221 302	63 56 50 50	120 165 158 110 90
26 27 28 29 30 31	 	66 64 60 51 47	e22 e22 22 21 44 51	37 69 86 47 36 81	56 194 120 	25 20 19 20 19 20	40 75 82 47 40	67 79 95 116 132 151	96 116 143 110 94	246 138 109 141 140 118	84 295 107 252 203 248	77 69 63 58 196
TOTAL MEAN MAX MIN AC-FT CFSM IN.		80.7 163 47	2594 83.7 868 21 5150 5.93 6.84	1699 54.8 124 28 3370 3.89 4.48	1170 41.8 194 16 2320 2.96 3.09	1389 44.8 236 12 2760 3.18 3.66	1012 33.7 82 16 2010 2.39 2.67	2542 82.0 156 42 5040 5.82 6.71	3878 129 198 94 7690 9.17 10.23	5716 184 504 87 11340 13.1 15.08	3056 98.6 295 50 6060 6.99 8.06	6198 207 1300 58 12290 14.7 16.35
		STATISTICS	OF MONTE	HLY MEAN	DATA FOR	WATER	YEARS 1965 -	2001,	BY WATER YE	EAR (WY)	#	
MEAN MAX (WY) MIN (WY)	158 285 1975 89.7 1969	21.4	46.2 112 1986 15.9 1972	43.2 186 1985 5.02 1974	39.1 121 1971 7.52 1972	50.2 195 1972 9.64 1974	54.3 88.5 1969 33.7 2001	132 185 1972 72.6 1984	164 207 1967 71.1 1971	148 213 1975 52.5 1971	160 246 1972 69.2 1968	166 263 1987 70.9 1984
SUMMARY	STATISTI	cs	FC	OR 2001 W	ATER YEAR		WATER YE	ARS 19	65 - 2001#			
ANNUAL MEAN HIGHEST ANNUAL MEAN LOMEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS				1300 12 1670 14.7	Sep 13 Mar 25 Sep 13 5 Sep 13		104 131 80.8 1350 3.4 3.5 3800 17.36 3.2 75660 7.41 100.64 224 77	Fe Ja Oc Oc Fe	1975 1971 p 29 1970 b 8 1972 n 13 1974 t 20 1998 t 20 1998 b 8 1972			

See Period of Record, partial years used in monthly statistics Estimated

15053200 DUCK CREEK BELOW NANCY STREET NEAR AUKE BAY

LOCATION.--Lat 58°22'31", long 134°34'38", in NW\(\) SW\(\) A E\(\) Sec. 30, T. 40 S., R. 66 E. (Juneau B-2 NW), Hydrologic Unit 19010301, City and Borough of Juneau, on right bank, 50 ft south of intersection of Nancy Street and Mendenhall Loop Road, 0.4 mi north of intersection of Egan Drive and Mendenhall Loop Road, and 1.44 mi upstream from mouth.

DRAINAGE AREA. -- 1.30 mi².

PERIOD OF RECORD. -- December 1993 to current year.

GAGE.--Water-stage recorder. Datum of gage is 21.87 ft above sea level, determined by levels survey.

REMARKS.--Records fair except for estimated daily discharges, which are poor.

		DISCH	ARGE, CUB	IC FEET P		D, WATER	YEAR OCTOBER	R 2000	TO SEPTEME	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	8.8 8.1 8.8 8.1	4.9 4.6 6.8 4.4 4.9	5.0 5.2 5.0 5.7 24	2.7 3.0 7.2 5.1 4.5	6.1 5.0 5.0 4.4 3.9	5.4 3.6 2.7 2.0 1.7		2.1 2.5 5.3 6.4 5.2	2.7 2.6 3.0 2.9 2.7	.92 .95 .89 .91	2.7 2.4 2.2 2.6 2.4	3.1 4.6 3.9 4.0 4.5
6 7 8 9 10	21 21 23 19 18	4.6 5.1 4.7 4.3 4.0	16 10 8.1 7.1 6.5	5.4 5.0 5.1 4.5 3.9	3.5 3.4 3.2 2.9 2.6	2.2 2.7 2.7 3.6 7.0		4.5 4.2 5.1 8.0 6.1	2.5 2.3 2.2 2.1 2.0	1.5 1.6 2.4 2.3 2.0	2.2 2.2 2.1 1.9	5.1 5.2 4.9 4.2 3.6
11 12 13 14 15	23 22 24 18 14	7.1 8.9 6.4 5.3 5.3	5.2 4.8 4.0 2.9 2.5	3.5 3.2 3.4 3.9 6.7	2.2 e2.1 e2.1 e2.1 e2.0	9.2 7.0 5.4 4.6 4.1	1.2 1.1	5.1 4.6 4.4 3.7 3.4	1.9 1.8 1.7 1.7	1.8 1.6 2.0 2.0	1.9 1.8 1.8 1.8	3.2 3.1 5.6 6.4 5.3
16 17 18 19 20	8.8 7.4 6.3 6.3	4.8 9.2 6.9 6.2 5.6	2.4 2.3 3.9 3.0 2.5	5.3	e2.0 e2.0 e1.9 e1.9	5.1 4.7 4.0 3.4 2.9	.98 1.1	3.2 3.1 3.1 3.0 2.9	1.6 1.5 1.4 1.4	3.6 2.8 1.9 1.7	1.7 1.7 1.8 2.6 2.4	6.5 5.9 5.4 5.1 7.2
21 22 23 24 25	6.9 7.9 7.9 7.1 5.7	6.3 9.1 11 9.9 7.8	2.2 2.0 2.1 2.1 2.1	3.8 3.7 4.9 4.9	1.9 1.8 1.8 1.7	2.4 2.0 1.8 e1.7 e1.7	1.2 1.2 1.3 1.5	3.2 3.8 4.5 4.4 3.6	1.2 1.4 1.3 1.2	1.8 6.4 9.8 5.2 5.1	2.1 2.0 1.9 1.8 1.8	6.1 5.8 5.8 5.3 5.0
26 27 28 29 30 31	4.9 4.3 3.7 3.1 4.2 4.9	6.8 6.2 5.7 5.2 4.8	2.1 2.1 2.1 2.0 3.1 3.2	3.9 5.9 6.8 5.2 4.5 5.3	3.6 16 8.4 	e1.6 e1.5 1.9 1.9 1.7	2.4	3.3 3.1 2.9 2.8 2.9 2.9	1.1 1.0 .97 .96 .95	4.5 3.9 3.5 3.3 3.1 2.9	1.8 4.3 3.2 3.2 3.2 3.3	4.5 4.1 3.9 3.7 6.4
TOTAL MEAN MAX MIN AC-FT CFSM IN.		6.23	151.2 4.88	146.3 4.72 7.2 2.7 290 3.63 4.19	97.1 3.47 16 1.7 193 2.67 2.78	103.9 3.35 9.2 1.5 206 2.58 2.97	1.45 2.4 .92 86 1.11	123.3 3.98 8.0 2.1 245 3.06 3.53	52.28 1.74 3.0 .95 104 1.34 1.50	84.87 2.74 9.8 .89 168 2.11 2.43	70.5 2.27 4.3 1.7 140 1.75 2.02	147.4 4.91 7.2 3.1 292 3.78 4.22
		STATISTI	CS OF MON	THLY MEAN	DATA FO	OR WATER	YEARS 1994 -	2001,	BY WATER	YEAR (WY)#	<u> </u>	
MEAN MAX (WY) MIN (WY)	9.48 18.1 2000 5.29 1998	4.91 10.3 2000 2.36 1996	5.51 12.2 2000 1.95 1996	2.66 4.85 2000 .85 1997	2.18 3.55 1997 .79 1999	2.42 5.08 1994 .94 1995	3.09 6.16 1999 1.45 2001	3.04 4.97 1999 1.60 1996	2.24 3.47 1999 1.20 1998	2.84 4.23 1997 1.75 1995	3.72 6.13 2000 1.31 1994	7.95 14.5 2000 3.81 1997
SUMMARY	STATIST	ics	FOR 2000	CALENDAR	YEAR	FOR 2001	l WATER YEAR		WATER YE.	ARS 1994 -	2001#	
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUN MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS		30 3890 4 56 12	.35 Sep .19 Mar .26 Mar	15	308	4.25 24 Oct 13 .89 Jul 3 .94 Jun 28 34 Dec 5 5.96 Dec 5 b.80 Jul 3 80 3.27 444.39 7.1	3 5 5 5	6 3 68 80 6 a7 c 3030 3 433 8	.19 Mar .26 Mar Dec .80 Dec .59 Sep .18 Mar .21 .67	2000 1995 28 1999 15 2000 10 2000 28 1999 28 1999 25 1996 8 1999		
				.7			3.2 1.5			.7		

See period of Record; partial years used in monthly summary statistics Backwater caused by culvert, which was removed Apr. 1998 Jul. 3 and 4 Mar. 8, 1999 and Mar. 14 and 15, 2000 Estimated

15055500 ANTLER RIVER BELOW ANTLER LAKE NEAR AUKE BAY

LOCATION.--Lat $58^{\circ}51'07''$, long $134^{\circ}42'31''$, in $NE^{1}_{/4}$ $SE^{1}_{/4}$ $NE^{1}_{/4}$ sec. 10, T. 35 S., R. 64 E. (Juneau D-3 quad), Hydrologic Unit 19010301, in Tongass National Forest, 200 ft below outlet of Antler Lake, 10 mi northeast of Berners Bay, and located 32 mi northwest of Auke Bay.

DRAINAGE AREA.--26.0 \mbox{mi}^{2} , approximately.

PERIOD OF RECORD. -- May 1997 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 80 ft above sea level, from topographic map.

REMARKS.--No estimated daily discharges. Records fair,

		DISCHA	RGE, CUBIC	FEET PER		, WATER LY MEAN	YEAR OCTOBER VALUES	2000	TO SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	168 137 117 100 108	72 69 84 86 80	65 66 61 57 76	28 29 61 75 68	72 72 69 63 56	46 42 37 33 30	18 18 17 18	53 52 60 71 71	222 258 279 270 258	368 365 352 352 324	233 240 255 255 255	219 229 217 195 199
6 7 8 9 10	283 406 416 341 270	73 69 64 59 54	97 90 79 69 61	65 66 81 79 70	50 46 41 37 33	29 32 31 30 30	18 17 17 17	66 61 60 63 62	245 256 269 291 333	309 309 322 306 297	239 219 207 202 197	217 221 251 226 191
11 12 13 14 15	255 304 476 380 380	54 64 65 61 58	55 49 44 39 36	61 54 49 45 45	30 28 29 28 26	34 41 40 38 36	17 17 16 16	59 60 68 75 80	333 349 354 338 305	278 256 241 238 246	192 191 206 228 237	163 152 377 704 569
16 17 18 19 20	305 233 183 154 133	55 58 56 52 51	33 31 32 32 30	44 44 49 49	25 23 21 20 19	35 33 31 29 26	16 16 18 19 21	87 92 91 90 88	291 320 337 360 382	267 273 280 305 359	226 212 201 216 227	409 343 322 261 213
21 22 23 24 25	121 123 147 144 126	83 162 172 151 128	28 27 25 24 23	44 43 47 46 43	18 18 17 17	25 23 22 20 19	24 26 29 33 36	88 97 118 120 111	432 425 386 372 343	389 454 501 410 366	220 205 185 166 154	177 191 184 171 179
26 27 28 29 30 31	109 94 83 73 67 70	111 96 83 72 64	23 22 21 21 22 27	39 45 53 50 46 50	17 39 50 	19 19 18 18 18	37 45 55 56 55	105 111 128 154 168 183	323 336 388 413 379	334 305 284 270 252 240	169 281 321 287 260 244	162 144 127 113 116
TOTAL MEAN MAX MIN AC-FT CFSM IN.	6306 203 476 67 12510 7.82 9.02	2406 80.2 172 51 4770 3.08 3.44	1365 44.0 97 21 2710 1.69 1.95	1615 52.1 81 28 3200 2.00 2.31	980 35.0 72 16 1940 1.35 1.40	903 29.1 46 18 1790 1.12 1.29	743 24.8 56 16 1470 .95 1.06	2792 90.1 183 52 5540 3.46 3.99	12.6	9852 318 501 238 19540 12.2	6930 224 321 154 13750 8.60 9.92	7242 241 704 113 14360 9.28 10.36
		STATISTIC	S OF MONTE	HLY MEAN	DATA FOR	WATER	YEARS 1997 -	2001,	BY WATER YE	AR (WY)#	<u></u>	
MEAN MAX (WY) MIN (WY)	180 240 1999 104 1998	65.9 80.2 2001 50.8 1999	76.1 134 2000 33.9 1999	37.2 52.1 2001 21.2 1999	24.0 35.0 2001 11.5 1999	21.6 29.1 2001 14.6 1999	43.0 55.8 1999 24.8 2001	136 204 1998 90.1 2001	318 330 1999 290 1998	281 327 2000 215 1998	216 231 2000 189 1998	237 271 1999 207 1998
SUMMARY	STATISTI	CS F	OR 2000 CA	LENDAR Y	EAR	FOR 2	2001 WATER YEA	AR.	WATER YEA	ARS 1997	- 2001#	
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL, RINOFF (AC-FT)				7 3 3)	7 33 7	10 Sep 14 .6 Feb 25 .6 Apr 11 .8 Sep 14 .22.95 Sep 14 .5 Feb 25 .0 5 .37 .2.94		137 147 124 993 7.8 8.0 b1300 34.0' 7.8 99160 5.2(71.5) 324 111 21	Oct Mar Mar Oct Oct Mar	2000 1998 20 1998 9 1999 5 1999 20 1998 20 1998 9 1999		

See period of Record; partial years used in monthly summary statistics Feb. 25 and Apr. 13-17 $\,$

b From rating curve extended above $600 \text{ ft}^3/\text{s}$ on basis of slope-area measurement at gage height, 34.07 ft

15056030 KAKUHAN CREEK NEAR HAINES

LOCATION.--Lat $59^{\circ}00'19''$, long $135^{\circ}11'02''$, in $SW^1/_4$ $NE^1/_4$ $SE^1/_4$ sec. 14, T. 33 S., R. 61 E. (Skagway A-1 quad), Hydrologic Unit 19010301, in Tongass National Forest, about 200 ft upstream from mouth on west side of Lynn Canal, 19 mi southeast of Haines, and 60 mi northwest of Juneau.

DRAINAGE AREA.--1.53 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1997 to current year.

 ${\tt GAGE.--Water-stage}$ recorder. Elevation of gage is 25 ft above sea level, from topographic map.

REMARKS.--Records poor.

		DISCHA	RGE, CUBI	C FEET PI		, WATER Y LY MEAN V	EAR OCTOBI ALUES	ER 2000 1	TO SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.9 5.9 5.8 5.4 25	3.0 3.1 4.4 3.0 2.7	2.0 1.8 1.7 2.0 4.0	1.6 1.8 4.8 2.3 1.6	2.3 1.4 1.1 1.0 .78	1.2 .98 .89 .87	.64 .62 .64 .74	2.8 2.9 2.9 2.7 2.3	13 15 13 11 9.6	38 36 35 47 37	20 24 23 21 19	30 29 17 14 14
6 7 8 9 10	47 50 20 13 10	2.6 2.6 2.6 2.4 2.2	3.3 2.4 1.8 1.5	1.5 2.0 2.2 1.6 1.1	e.65 e.60 e.60 e.55 e.55	1.0 1.6 1.3 1.2	.88 .99 1.1 1.1	2.1 2.2 2.1 2.1 2.0	9.5 10 12 17 17	48 49 39 39 29	17 16 16 17 16	11 13 10 9.5 9.0
11 12 13 14 15	11 80 26 14 15	2.4 3.1 2.6 2.3 2.0	1.5 1.4 e1.2 e1.1 e1.1	.94 e.90 e.85 1.1	e.50 e.50 e.48 e.48 e.46	1.5 1.4 1.2 1.2	1.3 1.3 .98 .93	2.2 2.6 3.5 4.0 5.6	16 18 19 14 13	24 22 27 33 40	16 18 22 25 22	8.1 19 67 39 23
16 17 18 19 20	9.4 7.9 6.9 6.3 5.9	2.0 2.5 2.0 1.9 3.0	e1.0 e.95 e1.0 e1.1	1.5 2.2 2.8 1.9 1.4	e.46 e.44 e.44 e.42 e.44	1.0 .93 e.80 e.70 e.65	1.2 1.8 2.1 2.8 3.5	5.6 5.3 5.5 5.6 5.8	16 24 26 29 40	45 44 54 57 42	20 20 20 21 20	27 37 31 21 17
21 22 23 24 25	5.3 6.2 6.0 5.0 4.4	6.3 8.7 4.7 3.8 3.2	1.1 1.0 1.1 1.0	1.2 1.4 1.6 1.2	e.44 e.42 e.40 e.36 e.40	e.60 e.55 e.55 e.50 e.60	4.1 3.7 3.0 2.9 2.9	5.8 6.4 5.8 5.0 4.8	41 29 26 31 25	37 62 45 32 30	19 18 16 15 15	17 17 12 16 15
26 27 28 29 30 31	4.0 3.4 3.0 2.9 3.1 3.3	2.9 2.7 2.3 2.0 1.9	1.1 1.1 1.0 1.2 3.1 2.5	1.1 1.8 1.6 1.0 .88 2.1	.87 2.4 1.5 	e.65 e.70 e.70 .73 .68	2.9 3.7 3.5 2.8 2.6	5.7 8.4 9.4 10 8.8	27 32 42 41 32	24 21 22 24 20 18	23 51 27 38 42 40	11 9.1 8.2 7.4 7.7
TOTAL MEAN MAX MIN AC-FT CFSM IN.	418.0 13.5 80 2.9 829 8.81 10.16	90.9 3.03 8.7 1.9 180 1.98 2.21	48.75 1.57 4.0 .95 97 1.03 1.19	50.57 1.63 4.8 .85 100 1.07 1.23	20.94 .75 2.4 .36 42 .49	28.64 .92 1.6 .50 57 .60	57.71 1.92 4.1 .62 114 1.26 1.40		668.1 22.3 42 9.5 1330 14.6 16.24	1120 36.1 62 18 2220 23.6 27.23	697 22.5 51 15 1380 14.7 16.95	566.0 18.9 67 7.4 1120 12.3 13.76
		STATISTI	CS OF MON	THLY MEAN	DATA FOR	WATER Y	EARS 1997	- 2001,				
MEAN MAX (WY) MIN (WY)	10.1 14.9 1999 4.70 1998	3.32 4.16 1999 2.81 2000	3.32 5.70 2000 1.57 2001	1.36 1.63 2001 1.12 1998	1.06 1.28 1998 .75 2001	1.21 1.76 1999 .92 2001	2.35 3.85 1999 1.20 2000	6.68 10.7 1998 4.87 2001	22.2 25.2 1999 20.9 2000	32.0 37.5 1999 27.0 1997	26.5 37.0 1999 22.2 2000	18.6 23.8 1999 13.4 1998
SUMMARY	STATIST:	ICS :	FOR 2000	CALENDAR '	YEAR	FOR 20	01 WATER Y	EAR	WATER	YEARS 1997	- 2001#	
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN ANNUAL MANNUAL MA	MEAN EAN EAN AN Y MINIMUM OW AGE AC-FT) CFSM) EDS EDS EDS	88 28 3	Oct : .55 Feb : .59 Feb :	12 16 10	a342 8 7770 7 95 31		.9 .2	13 9 152 a415 7860 7 96	Sep .36 Feb .41 Feb .42 Aug .77 Aug	1999 1998 2 22 1999 2 24 2001 5 19 2001 5 31 1998 7 31 1998	

[#] See Period of Record; partial years used in monthly statistics

a $\,$ From rating curve extended above 51 $\,$ ft $^3/s$

e Estimated

SOUTHEAST ALASKA

15056030 KAKUHAN CREEK NEAR HAINES--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- March 1998 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: August 1998 to current year.

INSTRUMENTATION.-- Electronic water-temperature recorder set for 15-minute recording interval.

REMARKS.-- Records represent water temperature at the sensor within $0.5^{\circ}C$.

EXTREMES FOR PERIOD OF RECORD. --

WATER TEMPERATURE: Maximum, 15.0°C, August 1-2, 1999; minimum, 0.0°C, on many days during winter periods.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 14.5°C, August 14 and 15; minimum, 0.0°C, on many days during winter.

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	2.0 2.0 3.0 3.0 6.5	1.0 1.0 1.5 1.0 2.5	1.5 1.5 2.0 2.0 4.0	4.0 2.5 5.0 2.5 1.5	2.0 1.5 2.5 1.0	3.5 2.0 4.0 1.5	1.5 1.5 2.0 2.0 3.0	.0 .5 1.5 .5	.5 1.0 1.5 1.5	1.5 2.0 2.5 2.5 2.0	1.0 1.5 1.5 2.0 1.5	1.5 1.5 2.5 2.0 1.5
6 7 8 9 10	7.5 7.0 6.5 7.0 6.0	5.5 5.5 4.5 5.0	6.5 6.5 5.5 6.0 5.5	1.5 2.0 3.0 1.5 2.0	.5 .5 1.5 1.0	1.0 1.5 2.0 1.0	3.0 2.5 1.5 .5	2.0 1.5 .5 .0	2.5 2.0 1.0 .0	2.5 3.5 3.5 2.5 .5	2.0 2.5 2.5 .5 .0	2.0 3.0 2.5 1.5
11 12 13 14 15	7.5 7.5 7.0 6.0 7.0	5.0 6.0 5.0 5.5	6.5 6.5 6.0 5.0	3.5 4.0 3.5 3.5 3.5	2.0 3.0 3.0 3.0 3.0	3.0 3.5 3.5 3.5 3.5	. 5 . 5 . 0 . 0	.0.0.0.0	.0.0.0.0	.0 .5 1.0	.0 .0 .0 .5	.0 .0 .0 .5
16 17 18 19 20	6.0 7.0 5.5 6.0 4.5	5.0 4.5 4.5 4.5 3.5	5.5 5.5 4.5 5.0 4.0	3.0 3.5 3.5 3.5 4.5	2.5 2.5 2.5 2.0 3.5	2.5 3.0 3.0 2.5 4.0	.0 .0 .0 .0	.0.0.0.0	.0.0.0.0	1.5 2.5 2.5 2.5 2.0	1.5 1.5 2.0 2.0	1.5 2.0 2.5 2.5 1.5
21 22 23 24 25	4.5 6.0 6.0 5.0 4.5	2.5 3.0 5.0 4.5 3.5	4.0 5.0 5.5 4.5	5.0 5.0 4.0 3.5 3.0	4.5 3.5 3.0 3.0 2.0	5.0 4.5 3.5 3.5 2.5	. 5 . 0 . 5 . 5	.0.0.0.0.5	.0 .0 .0 .5	2.0 2.0 2.5 1.5	1.0 1.5 1.0 .5	1.5 2.0 2.0 1.0
26 27 28 29 30 31	3.5 3.0 2.0 .5 2.0 3.5	3.0 2.0 .5 .5 .5	3.5 2.5 1.5 .5 1.0 3.0	3.5 3.5 3.0 1.0 .5	3.0 3.0 1.0 .5	3.0 3.0 2.5 .5 .5	1.0 1.0 1.0 1.0 1.5 2.0	.5 .5 .5 .5	.5 1.0 1.0 1.0 1.0	2.5 2.5 2.0 1.5 1.0 2.0	1.5 1.5 1.5 1.0 .5	2.0 2.0 2.0 1.5 1.0
MONTH	7.5	.5	4.2	5.0	.5	2.6	3.0	.0	.6	3.5	.0	1.5

15056030 KAKUHAN CREEK NEAR HAINES--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	FEBRU	ARY	MZ	ARCH	A	PRIL	I	MAY				
1 2 3 4 5	2.5 2.0 2.0 1.0	2.0 1.5 1.0 .5	2.5 1.5 2.0 1.0	1.0 1.0 1.0 1.0	.5 .5 .0 .5	.5 .5 .5 .5	.5 .5 .5 1.0		0	5.0 3.5 4.0 4.5 3.5	2 -	4.0 3.5 3.0 3.5 3.0
6 7 8 9 10	.0.0.0	.0.0.0.0.0	.0.0.0.0	1.0 1.5 2.0 2.0 2.5	.5 .5 1.0 1.5	.5 1.0 1.5 2.0	1.0 1.0 1.5 1.5	.5 .5 1.0 .5	.5 1.0 1.0 1.0	4.0 4.0 4.0 4.0	2.5 3.5 3.0 3.5 2.5	3.0 3.5 3.5 3.5 3.5
11 12 13 14 15	.0.0.0.0	.0.0.0.0	.0.0.0.0	3.0 2.5 3.0 2.5 2.0	2.0 2.0 1.5 2.0 2.0	2.5 2.0 2.0 2.5 2.0	1.5 2.5 2.5 3.0 3.0	1.0 1.5 1.5 1.5		5.0 6.0 5.5 6.5 5.5		4.5 4.5 5.0 5.0
16 17 18 19 20	.0.0.0.0	.0.0.0.0		2.0 2.0 1.5 .5		2.0 1.5 .5 .0	3.5 3.5 4.0 4.5 4.5	1.5 2.5 2.5 2.5 2.5	2.5 3.0 3.0 3.5 3.5	5.5 6.0 6.0 6.5 5.0	4.0 4.0 3.5 3.5 4.0	4.5 4.5 4.5 4.5 4.5
21 22 23 24 25	.5 .5 .0 .0	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0.0.0.0	5.0 4.5 4.0 4.0 5.0	2.5 3.0 3.0 2.5 3.0	3.5 3.5 3.5 3.5 4.0	6.5 6.0 5.0 5.5	4.0 4.0 4.0 3.5 3.5	5.0 5.0 4.5 4.5 4.5
26 27 28 29 30 31	.0 .5 1.0 	.0 .0 .5 		.0 .0 .0 .5 .5	.0.0.0.0.0	.0 .0 .0 .0	4.5 5.0 4.0 4.0 5.0	3.5 3.0 2.5 2.5 3.0	4.0 4.0 3.5 3.5 4.0	7.5 6.5 7.5 6.0 6.5 7.0	3.0 5.0 5.0 5.0 4.0 5.0	5.0 5.5 6.0 5.5 5.0
MONTH	2.5	.0	.3	3.0	.0	.8	5.0	.0	2.3	7.5	2.0	4.4
		JUNE			JULY		i	AUGUST			SEPTEMBEI	₹.
1 2 3 4 5	5.5	JUNE 4.0 5.0 4.5 4.5 4.5	5.5 5.0 5.0 5.5 5.5	10.5 9.5 11.0 8.0 7.5		8.0 8.0 8.5 7.5 6.5		8.0 9.5 9.0 9.0 8.5	10.0 11.0 10.5 9.5 9.5	9.0 8.5 9.0 8.5 8.0	SEPTEMBER 6.5 6.5 6.5 7.0 7.0	7.5 7.5 7.5 7.5 7.5
2 3 4	5.5 7.0 6.5	4.0 5.0 4.5 4.5		10.5 9.5 11.0 8.0 7.5 7.0 6.5 7.5 8.5	6.5 6.5 6.0 6.5 6.5		13.0 13.5 12.0 10.5	8.0 9.5 9.0 9.0 8.5			SEPTEMBEI 6.5 6.5 7.0 7.0 6.5 6.0 6.5	7.5 7.5 7.5 7.5
2 3 4 5 6 7 8 9	5.5 7.0 6.5 8.0 7.0 9.0 8.5 6.0	4.0 5.0 4.5 4.5 4.5 5.0 5.0 5.0	6.0 6.0 6.5 5.5	7.0 6.5 7.5 7.5 8.5	6.5 6.5 6.0 6.5 6.5	6.5 6.5 6.5 6.5	13.0 13.5 12.0 10.5 11.0 12.0 11.0 10.5 12.0	8.0 9.5 9.0 9.0 8.5	9.5 10.0 9.5 9.5 9.0	9.0 8.5 9.0 8.5 8.0 9.0 9.0 10.0	6.0 6.5 6.0 6.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
2 3 4 5 6 7 8 9 10 11 12 13 14	5.5 7.0 6.5 8.0 7.0 9.0 8.5 6.0 7.5 7.0 6.5 7.0	4.0 5.0 4.5 4.5 4.5 5.0 5.0 5.0 5.0 4.5	6.0 6.0 6.5 5.5 6.0 5.5 5.5	7.0 6.5 7.5 7.5 8.5 8.0 8.0 10.0	6.55 6.055 6.55 5.055 6.55 6.55 6.55 6.5	6.5 6.5 6.5 6.5 7.0 7.5 7.5 8.0	13.0 13.5 12.0 10.5 11.0 12.0 11.0 10.5 12.0 10.0	8.0 9.5 9.0 9.0 8.5 7.5 9.0 8.5 8.5 9.5	9.5 10.0 9.5 9.5 9.0 10.0 10.5 11.5	8.5 9.0 9.0 9.0 10.0 8.0 8.0 9.0	6.0 6.5 6.0 6.5 7.0 7.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	5.5 7.0 6.5 8.0 9.0 8.5 6.0 7.5 7.0 8.0 9.5 7.5 9.0 8.0	4.5 4.5 5.0 5.0 5.0 5.0 5.0 6.0 6.5	6.0 6.0 6.5 5.5 6.0 5.5 6.0 6.5 7.0 6.5	7.0 6.5 7.5 7.5 8.5 8.0 8.0 10.0 12.0 9.5 11.5	66.055 50550 55505 55555 66666 5.556 66676 777.5	6.5 6.5 6.5 6.5 7.0 7.5 7.5 8.0 9.0 8.5 9.0	13.0 13.5 12.0 10.5 11.0 12.0 11.0 10.5 12.0 10.5 12.0 10.5 14.0 14.5 14.5 14.5 14.5 14.5	8.5 9.0 9.0 9.5 7.5 9.0 8.5 9.5 8.5 9.5 8.5 9.0 9.0 9.0	9.5 10.0 9.5 9.5 9.0 10.0 10.5 11.5 11.5 11.0	8.0 9.0 9.0 10.0 8.0 9.0 9.0 9.0 9.0 9.5 7.5	6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	5.5 7.0 6.5 8.0 9.0 8.5 6.0 7.5 7.0 8.0 9.5 7.5 9.0 8.5 8.5 7.5 9.0 8.5 8.5 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	4.55 4.55 5.00 4.55 5.00 5.00 5.00 5.00	6.0 6.0 6.5 5.5 6.0 5.5 6.5 7.0 6.5 7.0 6.5 7.0	7.0 6.5 7.5 7.5 8.5 8.5 8.0 10.0 12.0 9.0 9.5 11.5 13.5 13.5	66.0555 50550 555555 777.50 0500 877.0	6.5 6.5 6.5 6.5 7.0 7.5 7.5 7.5 8.0 9.0 8.0 8.5 9.0 10.0 10.0	13.0 13.5 12.0 10.5 11.0 12.0 11.0 10.5 12.0 10.0 12.5 14.0 14.5 14.5 14.5 10.5 10.0 11.5	8.5 9.0 9.0 9.0 8.5 9.0 8.5 9.5 8.5 9.5 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	9.5 10.0 9.5 9.5 9.0 10.0 10.5 11.5 11.0 10.5 10.5 9.0 9.5 9.0	8.0 9.0 9.0 10.0 8.0 9.0 9.0 9.0 9.5 8.5 7.5 7.5 6.5	6.5 6.5 6.5 7.5 7.5 7.5 8.0 7.5 6.5 6.5 6.5 6.5 6.5	7.55 7.55 7.55 7.55 7.55 7.55 7.55 7.55

15057580 KAHTAHEENA RIVER ABOVE UPPER FALLS NEAR GUSTAVUS

LOCATION.--Lat $58^{\circ}26'37''$, long $135^{\circ}36'01''$, in $SW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 36, T. 39 S., R. 59 E. (Juneau B-5 quad), Hydrologic Unit 19010302, in Glacier Bay National Park and Preserve, 1.7 miles above the mouth at Icy Passage, 4.5 mi east of Gustavis, and 44 mi west of Juneau.

DRAINAGE AREA.--10.1 mi²

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- August 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 560 ft above sea level, from topographic map.

 ${\tt REMARKS.--Records\ fair\ except\ for\ estimated\ daily\ discharges\ and\ those\ above\ 130\ {\tt ft}^3/{\tt s},\ {\tt which\ are\ poor.}$

	1100010	DISCH	ARGE, CUB	IC FEET			YEAR OCTO	BER 2000	TO SEPTEM	BER 2001	c poor.	
						ILY MEAN						
DAY 1	OCT 33	NOV 34	DEC 47	JAN 29	FEB 56	MAR 21	APR 9.8	MAY 40	JUN 144	JUL 45	AUG 57	SEP 85
2	30 28	28 111	38 29	58 218	35 39	14 12	9.7	40 52	157 206	42 39	44 36	92 64
4 5	26 72	59 43	37 274	77 57	24 19	13 11	9.8 e11	52 38	151 129	39 46	32 28	54 75
6	79	37			21	12	e12	28	133	75	25	64
7 8	134 120	47 33	66 43	54 43	16 e14	25 24	e11 e11	27 26	132 122	104 101	22 21	105 83
9 10	100 99	27 24	30 25	80 54 43 32 25	e13 e12	22 52	e11 15	45 33	121 128	79 64	19 17	60 44
11 12	148 222	41 41	22 20	22 19 18	e11 e23	87 38	15 27	39 47	116 94	52 45	16 15	35 47
13	222	30	e19	18	e34	30	19	54	93	57	14	283
14 15	159 120	27 30	e17 e14	18 21	e22 e18	34 25	18 17	56 57	96 94	52 48	13 13	218 107
16 17	81 62	27 41	e13 e11	21 61	e14 e13	22 18	17 20	58 62	84 87	44 38	12 12	126 152
18 19	48 42	27 26	e12 e12	35 30	e11 e10	16 e15	34 30	63 60	85 83	33 30	12 12	120 84
20	37	28	e11	22	e9.5	e13	27	57	107	29	12	94
21 22	42 64	98 208	e10 e10	21 29	e9.5 e12	e12 e11	29 30	59 69	115 84	27 31	12 11	72 76
23 24	90 70	132 81 55	e12 e11	35 23	e14 e13	e10 e10	33 34	85 73	69 70	41 91	11 11	72 52
25	59 45		e17	19	e12	e10	36	62 57	65 59	107 165	11	43 35
26 27	37	41 35 31 26	e33 e14 15 19 e90	19 32 27 19 16	e17 e113	e12 10 10	33 48	67	70	93	12 62	33
28 29	31 26	31 26	15 19	19	50 	10	61 45	82 92	81 65	93 66 65 84	27 56	28 26
30 31	27 36	23	e90 53	16 71		10 10	42	89 125	50 	84 73	97 85	105
TOTAL	2389	1491	1138	1251	655.0	619	724.8	1794	3090	1905	827	2534
MEAN MAX	77.1 222	49.7 208	36.7 274	1251 40.4 218	23.4 113	20.0 87	24.2 61	57.9 125	103 206	61.5 165	26.7 97	84.5 283
MIN MED	26 62	208 23 34 2960	274 10 19	218 16 29	9.5 15	10 13	9.5 20	26 57	50 94	27 52	11 16	26 74
AC-FT	4740	2960	2260	2480	1300	1230	1440	3560	6130	3780	1640	5030
CFSM IN.	7.63 8.80	4.92 5.49	3.63 4.19	4.00 4.61	2.32 2.41	1.98 2.28	2.39 2.67	5.73 6.61	10.2 11.38	6.08 7.02	97 11 16 1640 2.64 3.05	8.36 9.33
		STATISTI	CS OF MO	NTHLY MEA	AN DATA FO	OR WATER	YEARS 1999	9 - 2001,	BY WATER	YEAR (WY)	#	
MEAN	98.9	52.3	82.2	29.5	17.1	21.4	31.0	74.2	108	70.3	44.1	105
MAX (WY)	121 2000	54.9 2000	128 2000	40.4 2001	23.4 2001	22.7 2000	37.8 2000	90.6 2000	114 2000	79.1 2000	61.6 2000	128 1999
MIN (WY)	77.1 2001	49.7 2001	36.7 2001	18.7 2000	11.0 2000	20.0 2001	24.2 2001	57.9 2001	103 2001	61.5 2001	26.7 2001	84.5 2001
SUMMARY	STATIST	TCS	FOR 2000	CALENDAR	YEAR	FOR 2	2001 WATER	YEAR	WATER	YEARS 1999	9 - 2001#	
ANNUAL '			21396			1841						
ANNUAL HIGHEST		MEAN	58				50.5			0.4	2000 2001	
HIGHEST	DAILY M	EAN	296	Sep	16		33 Sep 19.5 Feb		1110) Dec	27 1999 10 2000	
ANNUAL	SEVEN-DA	Y MINIMUM	1 6	5.9 Feb	11		9.8 Mar	29		5.9 Feb	10 2000	
MAXIMUM	PEAK FL	AGE					9 Sep 29.31 Sep		30	0.52 Dec	27 1999	
	ANEOUS L RUNOFF (.	OW FLOW AC-FT)	42440)		3653		20	43750	0	10 2000	
	RUNOFF (78	3.81			5.00 57.84		82	5.98 1.24		
10 PERC	ENT EXCE	EDS	126 41	5		10	06		128	В		
	ENT EXCE		11				L2		12			

See Period of Record, partial years used in monthly statistics Estimated Feb. 20-21

15057580 KAHTAHEENA RIVER ABOVE UPPER FALLS NEAR GUSTAVUS--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- October 1999 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: October 1999 to current year.

INSTRUMENTATION.-- Electronic water-temperature recorder set for 1-hour recording interval.

REMARKS.--Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross sections on January 25 and March 22. Temperature cross sections found no variation. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 13.5°C, August 13-15, 2001; minimum, 0.0°C, on many days during winter periods.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum, 13.5°C, August 13-15; minimum, 0.0°C, on many days during the winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	STREAM WIDTH	TEMPER- ATURE WATER	CHARGE, INST. CUBIC FEET PER	GAGE HEIGHT	SAM- PLING METHOD,
		(FT) (00004)	(DEG C) (00010)	SECOND (00061)	(FEET) (00065)	CODES (82398)
JAN						
25	1402	39.0	2.0	19	27.62	10
25	1403	39.0	2.0	19	27.62	10
25	1404	39.0	2.0	19	27.62	10
25	1405	39.0	2.0	19	27.62	10
MAR						
22	1135	37.0	.00	11		10
22	1136	37.0	.00	11		10
22	1137	37.0	.00	11		10
22	1138	37.0	.00	11		10
22	1139	37.0	.00	11		10

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	4.0 4.0 3.5 3.5	3.0 3.0 2.5 2.0 3.5	3.5 3.0 3.0 3.0 4.5	3.5 3.5 4.0 3.5 3.0	2.5 2.5 3.5 2.0 2.0	3.0 3.0 4.0 2.5 2.5	2.5 2.5 2.5 2.5 3.0	1.0 2.0 2.0 2.0 2.0	2.0 2.5 2.5 2.5 2.5	2.0 2.0 1.5 2.0 2.0	1.0 .5 .5 1.5	1.5 1.5 1.5 2.0
6 7 8 9 10	6.5 7.0 6.0 6.0	6.0 6.0 5.0 5.5	6.5 6.5 5.5 5.5	3.0 3.5 3.5 2.5 2.5	3.0 3.0 2.5 1.5	3.0 3.5 3.0 2.0 2.0	3.0 3.0 2.0 .5 1.0	3.0 2.0 .5 .0	3.0 2.5 1.5 .5	1.5 2.5 2.5 2.0 .5	1.5 1.5 2.0 .5	1.5 2.0 2.0 1.5
11 12 13 14 15	6.5 7.5 6.5 6.0 5.5	5.0 6.0 5.5 5.0	6.0 6.5 6.0 5.5 5.5	3.5 4.0 3.5 3.5 3.5	2.5 3.0 2.5 3.0 2.5	3.0 3.5 3.0 3.5 3.5	1.5 .5 .0 .0	.5 .0 .0 .0	1.0 .0 .0 .0	1.0 .5 1.0 1.5	.0 .0 .0 1.0	.5 .0 .5 1.5
16 17 18 19 20	5.5 5.5 5.0 5.0	5.0 4.5 4.0 4.5 4.5	5.5 5.0 4.5 5.0 4.5	3.0 3.5 3.0 3.5 4.5	2.5 3.0 3.0 3.0 3.0	2.5 3.0 3.0 3.0 3.5	.0.0.0.0	.0.0.0	.0.0.0	1.5 2.0 2.0 2.0 2.0	1.0 1.5 1.5 1.5	1.5 1.5 1.5 2.0 1.5
21 22 23 24 25	5.0 5.5 5.5 5.0 4.5	4.5 4.5 5.0 4.5 4.0	4.5 5.0 5.0 5.0 4.5	4.5 4.5 3.5 3.5 3.0	4.0 3.5 3.0 3.0 3.0	4.5 4.0 3.5 3.5 3.0	.0.0.0.0	.0.0.0.0	.0.0.0.0	2.0 2.0 2.0 1.5 2.0	1.5 2.0 1.0 1.0	2.0 2.0 1.5 1.5
26 27 28 29 30 31	4.5 3.5 3.5 2.5 3.0 3.5	3.5 3.0 2.5 1.0 2.0 3.0	4.0 3.5 3.0 2.0 2.5 3.5	3.0 3.0 3.0 2.0 2.0	3.0 3.0 1.5 1.0	3.0 3.0 2.5 1.5 2.0	.0 .0 1.0 1.0 1.0	.0 .0 .0 .0	.0 .5 1.0 .5	2.0 2.0 1.5 1.5 1.5	1.5 1.5 1.0 1.0	2.0 2.0 1.5 1.0 1.0
MONTH	7.5	1.0	4.6	4.5	1.0	3.0	3.0	.0	.8	2.5	.0	1.4

15057580 KAHTAHEENA RIVER ABOVE UPPER FALLS NEAR GUSTAVUS--Continued

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	;	FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	2.0 2.0 2.0 1.5	1.5 1.5 1.5 .5	1.5 2.0 1.5 1.0	.0.0.0.0	.0.0.0	.0.0.0	.0 .0 .0 .0	.0.0.0	.0.0.0	4.0 3.5 4.0 3.5 4.0	2.5 2.0 2.5 2.5 2.0	3.5 3.0 3.0 3.0
6 7 8 9 10	.5 1.0 .5 .0	.0.0.0.0	.0	.0 .0 .0 1.0	.0.0.0	.0 .0 .0 .5	1.0 1.0 .5 2.0 2.0	.0	.0 .5 .5 .5	4.5 5.0 4.5 4.5 5.0	3.0 3.0	3.5 4.0 3.5 3.5 4.0
11 12 13 14 15	.0.0.0.0	.0.0.0.0	.0.0.0.0	1.0 1.5 2.0 2.0 2.5	.5 .5 1.0 1.0	1.0 1.0 1.5 1.5	1.5 1.0 3.0 3.0 3.5	1.0	.5 .5 1.5 1.5	5.0 5.5 5.5 5.5 6.0	2.5 4.0 3.0	4.0 4.0 4.5 4.5
16 17 18 19 20	.0.0.0.0	.0.0.0.0	.0.0.0.0	2.0 2.5 1.5 .0	1.0 1.0 .0 .0	1.5 2.0 1.0 .0	4.0 3.0 3.5 3.0 4.5	.0 1.0 1.0 1.0	1.5 2.0 2.0 2.0 2.0	5.5 5.5 5.5 4.5	3.0 2.5	4.5 4.5 4.5 4.0
21 22 23 24 25	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0 .0 .0 .0	.0.0.0	.0.0.0	5.0 3.0 3.5 2.5 4.5		2.5 2.5 2.5 2.5 3.0	6.0 4.5 4.5 6.0 5.0	3.5	4.5 4.0 4.0 4.5 4.0
26 27 28 29 30 31	.0	.0.0.0	.0.0.0	.0.0.0.0.0	.0.0.0.0	.0.0.0.0.0	3.5 4.0 4.0 4.0 4.5	2.0 2.0 2.0 2.5 2.5	3.0 3.0 3.0 3.0 3.5	6.5 6.0 6.0 5.5 5.5 6.0	3.5 3.5	4.5 5.0 4.5 4.5 4.0 5.0
MONTH	2.0	.0	.2	2.5	.0	. 4	5.0	.0	1.5	6.5	2.0	4.0
		JUNE			JULY			AUGUST			SEPTEMBE	ER
1 2 3 4 5	6.0 4.5 5.0 5.5	3.5 4.0 4.0 4.0	4.5 4.0 4.5 4.5	9.5 9.0 10.0 9.0 8.0	6.5 7.0 6.5 7.0 6.5	8.0 8.5 7.5	9.0 10.5 9.5 9.0 10.0	7.5 8.0 8.5 8.5	8.5 9.5 9.0 8.5 9.0	9.0 9.0 8.5 9.0 9.0	8.5 8.0 7.5 8.0	9.0 8.5 8.0 8.5
6 7 8 9 10	6.0 6.0 7.5 6.5 5.5	4.0 4.0 3.5 4.0 4.5	5.0 5.0 5.5 5.0	8.0 7.5 8.0 8.5 9.0	7.0 6.5 6.5 6.5	7.5 7.0 7.0 7.5 7.5	11.0 10.5 10.0 11.0	7.5 8.5 8.5 8.5 8.5	9.5 9.5 9.0 9.5 9.5	8.5 8.5 8.0 8.0	7.5 7.5 6.0	8.0 8.0 8.0 7.0
11 12 13 14 15	5.5 5.5 5.5 7.0 6.5	4.5 4.5 4.5 4.5	5.0	8.5 8.0 8.0 9.0 8.5	7.0 7.0 7.5 7.0 7.5	7.5 7.5 7.5 8.0 8.0	11.0 13.0 13.5 13.5		9.5 10.0 10.5 10.5 11.0	8.0 8.5 9.5 8.5 8.0	7.5 8.5	7.5 8.0 9.0 8.0 7.5
16 17 18 19 20	8.0 6.5 7.5 7.0 7.5	4.0 5.0 5.0 5.0 5.5	6.0 5.5 6.0 6.0	8.0 9.5 9.0 11.0	7.5 7.5 8.0 7.0 8.0	8.0 8.5 8.5 9.0 9.5	13.0 12.0 11.5 11.5	8.0 9.5 10.0 9.5 9.5	10.0 10.5 10.5 10.5	9.0 9.5 9.0 8.0 8.5	8.0 8.5 8.0 7.5 7.5	8.5 9.0 8.5 8.0
21 22 23 24 25	6.5 6.5 7.5 8.5 7.5	5.0 5.0 5.0 5.0	5.5 5.5 6.0 7.0 6.5	11.0 10.0 10.0 9.5 9.0	8.5 9.0 9.0 8.5 8.0	10.0 9.5 9.0 9.0 8.5	12.0 11.5 11.0 10.5	9.0 9.5 8.5 9.0 8.0	10.5 10.5 9.5 10.0 9.5	8.0 8.0 8.0 7.5 7.5	7.0 7.5 7.0 7.0 6.5	7.5 8.0 7.5 7.0
26 27 28 29 30 31	9.0 9.5 8.0 8.0	4.5 6.0 6.5 6.0	7.0 8.0 7.0 7.5	9.0 8.5 8.5 9.0 9.0	8.0 7.5 7.5 8.0 8.0 7.5	8.5 8.0 8.0 8.5 8.5	11.0 11.0 10.5 10.0 10.5	9.0 9.5 9.5 9.5 9.5	10.0 10.0 10.0 9.5 10.0 9.5	7.5 7.5 7.5 7.0 7.5	6.0 6.5 6.5 6.0 7.0	7.0 7.0 7.0 6.5 7.5
MONTH	9.5	3.5	5.7	11.5	6.5	8.2	13.5	7.5	9.8	9.5	6.0	7.8

15057590 KAHTAHEENA RIVER NEAR GUSTAVUS

LOCATION.--Lat $58^{\circ}25'24''$, long $135^{\circ}35'53''$, in $SE^{1}_{/4}$ $NW^{1}_{/4}$ $NE^{1}_{/4}$ sec. 12, T. 40 S., R. 59 E. (Juneau B-5 quad), Hydrologic Unit 19010302, in Glacier Bay National Park and Preserve, 1000 ft above the mouth at Icy Passage, 4.5 mi east of Gustavis, and 44 mi west of Juneau.

DRAINAGE AREA. -- 10.7 mi²

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1998 to April 2001 (discontinued).

REVISED RRECORD. -- WRD AK-00-1 1999

GAGE.--Water-stage recorder. Elevation of gage is 35 ft above sea level, from topographic map. Prior to April 2000, at a site 800 ft downstream at a different datum.

REMARKS.--Records fair, except for daily discharges above $150 \text{ ft}^3/\text{s}$ and estimated daily discharges, which are poor.

EXTREMES FOR CURRENT YEAR--Maximum discharge during period October to April, 629 $\rm ft^3/s$ October 12, gage height 19.57; minimum discharge, 6.3 $\rm ft^3/s$, March 19, gage height 17.17.

		DISCHAF	RGE, CUBI	C FEET F		, WATER LY MEAN	YEAR OCTOBER VALUES	2000	TO SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	34 31 30 27 70	38 31 113 60 44	48 42 33 38 333	35 63 273 76 58	59 39 44 31 25	28 18 15 13	8.9 8.6 8.1 		 		 	
6 7 8 9	76 132 119 94 95	39 48 36 30 26	108 61 43 33 29	80 55 44 36 30	22 20 17 15 e12	14 31 32 31 56	 		 		 	
11 12 13 14 15	149 252 246 157 112	42 44 32 29 33	26 22 17 e16 e15	26 23 22 21 26	e11 26 38 24 e19	97 46 38 43 32	 		 		 	
16 17 18 19 20	77 60 47 42 38	30 43 30 29 30	e14 e13 e15 e14	27 61 40 35 28	e15 e14 e12 e11 e9.7	29 23 19 12 e12	 		 		 	
21 22 23 24 25	42 64 90 70 59	97 227 130 79 55	11 11 13 12 19	25 32 40 30 24	e9.7 e13 16 15	e11 e11 e11 e10	 		 		 	
26 27 28 29 30 31	46 39 34 30 30 38	43 38 35 29 26	36 20 16 20 97 58	23 35 33 25 20 72	19 e120 56 	e12 e11 11 10 9.7 9.2	 		 		 	
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2430 78.4 252 27 4820 7.33 8.45	1566 52.2 227 26 3110 4.88 5.44	1246 40.2 333 11 2470 3.76 4.33	1418 45.7 273 20 2810 4.27 4.93	726.4 25.9 120 9.7 1440 2.42 2.53	717.9 23.2 97 9.2 1420 2.16 2.50	 		 		 	
		STATISTIC	S OF MONT	HLY MEA	N DATA FO	R WATER	YEARS 1999 -	2001,	BY WATER YEA	R (WY)	#	
MEAN MAX (WY) MIN (WY)	103 129 2000 78.4 2001	45.7 61.7 2000 23.1 1999	66.2 133 2000 25.2 1999	28.3 45.7 2001 19.0 1999	15.2 25.9 2001 7.70 1999	22.5 25.1 2000 19.2 1999	54.1 67.3 1999 40.9 2000	106 118 1999 93.5 2000	115 2000 113	73.4 82.7 2000 64.1 1999	64.4 66.0 2000 62.8 1999	120 135 1999 105 2000

See period of record, pratial years used in monthly statistics

15057590 KAHTAHEENA RIVER NEAR GUSTAVUS--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	WATER YEARS 1999 - 2001#
ANNUAL TOTAL	22338.2	
ANNUAL MEAN	61.0	68.7
HIGHEST ANNUAL MEAN		74.0 2000
LOWEST ANNUAL MEAN		63.3 1999
HIGHEST DAILY MEAN	333 Dec 5	1140 Dec 27 1999
LOWEST DAILY MEAN	5.5 Mar 10	5.5 Mar 10 2000
ANNUAL SEVEN-DAY MINIMUM	7.4 Feb 11	6.8 Feb 11 1999
MAXIMUM PEAK FLOW		a1980 Dec 27 1999
MAXIMUM PEAK STAGE		b22.18 Dec 27 1999
INSTANTANEOUS LOW FLOW		5.5 Mar 10 2000
ANNUAL RUNOFF (AC-FT)	44310	49740
ANNUAL RUNOFF (CFSM)	5.70	6.42
ANNUAL RUNOFF (INCHES)	77.66	87.18
10 PERCENT EXCEEDS	126	132
50 PERCENT EXCEEDS	44	42
90 PERCENT EXCEEDS	12	11

[#] See Period of Record, partial years used in monthly statistics
a From rating curve extended above 450 ft³/s on the basis of a slope-area measurement of peak flow at gage height 21.67 ft site and datum then in use
b Site and datum then in use

15057590 KAHTAHEENA RIVER NEAR GUSTAVUS--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1999 to April 2001 (discontinued).

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: October 1998 to April 2001.

INSTRUMENTATION.-- Electronic water-temperature recorder set for 1-hour recording interval.

REMARKS.--Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross sections on January 25. Temperature cross sections found no variation. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 13.5° C, August 4-6, 1999; minimum, 0.0° C, on many days during the winter periods.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum recorded, 8.0 C October 12; minimum, 0.0°C, on many days during the winter.

WATER-QUALITY DATA

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)
JAN 2001							
25	1242	19.0	17.0	17.51	22	2.0	3.5
25	1243	19.0	22.0	17.51	22	2.0	3.5
25	1244	19.0	27.0	17.51	22	2.0	3.5
25	1245	19.0	32.0	17.51	22	2.0	3.5

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	4.5 4.0 3.5 3.5	3.0 3.0 2.5 2.0 3.5	3.5 3.5 3.0 3.0 5.0	4.0 4.0 4.5 4.0 3.0	3.0 3.0 4.0 2.5 2.5	3.5 3.5 4.5 3.0 3.0	2.5 3.0 3.0 3.0 3.5	1.5 2.5 2.5 2.5 2.5	2.0 2.5 2.5 3.0 3.0	2.0 2.0 2.0 2.5 2.5	1.5 1.5 1.5 2.0 2.0	2.0 2.0 2.0 2.0 2.0
6 7 8 9 10	7.0 7.5 6.5 6.5	6.5 6.5 5.5 6.0 5.5	7.0 7.0 6.0 6.0	3.5 4.0 4.0 3.0 2.5	3.0 3.5 3.0 2.0 2.0	3.5 4.0 3.5 2.5 2.0	3.5 3.5 2.5 1.0	3.5 2.5 1.0 .5	3.5 3.0 2.0 .5 1.0	2.0 3.0 3.0 2.5	2.0 2.0 2.5 1.0	2.0 2.5 2.5 2.0
11 12 13 14 15	7.0 8.0 7.0 6.5 6.5	5.5 6.5 6.0 6.0	6.5 7.0 6.5 6.0	4.0 4.0 4.0 4.0	2.5 3.5 3.0 3.5 3.0	3.5 4.0 3.5 4.0 4.0	1.5 1.0 .5 .0	1.0 .0 .0 .0	1.5 .5 .0 .0	1.5 1.0 1.5 2.0	.5 .5 1.0 1.0 2.0	1.0 .5 1.0 1.5 2.0
16 17 18 19 20	6.0 6.0 5.5 5.5	5.5 5.0 4.5 5.0 5.0	6.0 5.5 5.0 5.5 5.0	3.5 4.0 3.5 3.5 4.5	3.0 3.5 3.0 3.0 3.5	3.0 3.5 3.5 3.5 4.0	.0 .0 .0 .0	. 0 . 0 . 0 . 0	.0 .0 .0 .0	2.0 2.5 2.5 2.5 2.5	2.0 2.0 2.0 2.0 1.5	2.0 2.0 2.5 2.5 2.0
21 22 23 24 25	5.0 6.0 6.0 5.5 5.0	5.0 5.0 5.5 5.0 4.5	5.0 5.5 5.5 5.5	5.0 5.0 4.0 4.0 3.5	4.5 4.0 3.5 3.5 3.5	5.0 4.5 4.0 4.0 3.5	.5 .0 .5 .5	.0.0.0.0	.0 .0 .5	2.5 3.0 2.5 2.0	2.5 2.5 1.5 1.5 2.0	2.5 2.5 2.0 1.5 2.0
26 27 28 29 30 31	5.0 4.0 4.0 3.0 3.5 4.0	4.0 3.5 3.0 1.5 2.0 3.5	4.5 3.5 3.5 2.0 2.5 4.0	3.5 3.5 3.5 2.0 2.0	3.0 3.5 2.0 1.5 2.0	3.5 3.5 3.0 1.5 2.0	.5 .5 1.0 1.5 1.5	.0 .5 .5 .0	.0 .5 .5 1.0 .5	2.5 2.5 2.5 2.0 2.0	2.0 2.5 1.5 1.5 1.5	2.0 2.5 2.0 1.5 1.5
MONTH	8.0	1.5	5.0	5.0	1.5	3.5	3.5	.0	1.0	3.0	.5	1.9

SOUTHEAST ALASKA

15057590 KAHTAHEENA RIVER NEAR GUSTAVUS--Continued

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	1	FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	2.5 2.5 2.5 1.5	2.0 2.0 1.5 1.0	2.0 2.0 2.0 1.5	1.0 .5 1.0 .5	.5 .0 .0 .0	.5 .5 .5 .5	.5 .5 	.0 .0 	.5 .5 	 	 	
6 7 8 9 10	.5 1.0 1.0 .5	.0 .5 .0 .0	.5 .5 .0	1.0 1.0 1.0 1.5	.5 .5 .5 .5	.5 .5 1.0 1.0	 	 	 	 	 	
11 12 13 14 15	.5 .0 .0 .0	.0.0.0.0	.0.0.0.0	1.5 2.0 2.5 2.5 2.5	1.0 1.0 1.0 1.5 2.0	1.5 1.5 1.5 2.0 2.0	 	 	 	 	 	
16 17 18 19 20	.0.0.0.0	.0.0.0.0	.0.0.0.0	2.5 2.5 2.0 .5	1.5 1.5 .5 .5	2.0 2.0 1.5 .5	 	 	 	 	 	
21 22 23 24 25	.0.0.0.0	.0.0.0.0	.0.0.0.0	.5 .0 .0 .0	.0 .0 .0 .0	.0.0.0	 	 	 	 	 	
26 27 28 29 30 31	.0 .5 	.0	.0 .0 .5 	.0 .0 .5 .5	.0.0.0.0	.0 .0 .0 .5	 	 	 	 	 	
MONTH	2.5	.0	. 4	2.5	.0	.7						

15070000 SWAN LAKE NEAR KETCHIKAN

LOCATION.--Lat $55^{\circ}36'54''$, long $131^{\circ}20'14''$, in $SW^{1}_{/4}$ NE $^{1}_{/4}$ sec. 20, T. 72 S., R. 92 E. (Ketchikan C-4 quad), Hydrologic Unit 19010102, Ketchikan Gateway Borough, on Revillagigedo Island, in Tongass National Forest, 0.7 mi upstream from mouth at Carroll Inlet, and 22 mi northeast of Ketchikan.

DRAINAGE AREA. -- 36.5 mi².

PERIOD OF RECORD.--September 1916 to January 1926, September 1927 to December 1933 and October 1946 to September 1959 (discharge). Published as "Swan Lake Outlet at Carroll Inlet" prior to 1946 and as "Falls Creek near Ketchikan" October 1946 to September 1959. Monthly discharges only for some periods, published in WSP 1372. October 1984 to current year (month end reservoir contents and monthly discharges).

REVISED RECORDS. -- WSP 1372: Drainage area, 1918.

GAGE.--Non-recording lake-level staff gage. Datum of lake-level staff gage is at sea level. Totalizing MWH meters on the two turbines in Swan Lake Powerhouse. September 1916 to January 1926 and September 1927 to December 1933 at site 1,500 ft downstream at different datum. October 1946 to September 1959, recording gage at site 2,500 ft downstream, elevation of gage was 130 ft above sea level, from topographic map.

REMARKS.--Reservoir is formed by a concrete arch dam located at the outlet of Swan Lake; construction began in August 1980 and was completed in March 1983. Total and usable capacities below spillway crest of 330 ft are 126,200 and 82,800 acre-ft, respectively. Reservoir is used for power. Discharge released through turbines is computed from relation between discharge, head, and power generation; release flow enters directly into Carroll Inlet and is not returned to stream. Spill is computed from a theoretical relation between discharge and stage above crest of the spillway. Turbine and spillway ratings and reservoir capacity table furnished by the City of Ketchikan in 1985.

COOPERATION. -- Reservoir elevations and release flow provided by the City of Ketchikan.

AVERAGE DISCHARGE.--45 years (water years 1917-25, 1928-33, 1947-59, 1985-2001), 444 $\mathrm{ft^3/s}$, 165.2 in/yr, 321,700 acre-ft/yr. Mean discharge for water years 1985-2001 adjusted for change in contents of Swan Lake.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 132,200 acre-ft, November 29, 1987, elevation, 334.2 ft; minimum contents observed, 51,770 acre-ft, September 22, 1993, elevation, 278.4 ft. Maximum discharge, about 5,500 ft³/s, November 1, 1917; minimum daily discharge, 19 ft³/s, February 21 to 25, 1925. Maximum daily discharge since construction of dam, 3,680 ft³/s, November 30, 1988; no flow released several days most years.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 131,960 acre-ft, September 23, 2001, elevation, 334.00 ft; minimum contents observed, 77,556 acre-ft, April 16, 2001, elevation, 296.4 ft. Maximum release from reservoir (mean daily, not adjusted for changes in storage), 2,213 ft³/s, September 23, 2001; minimum release, undetermined.

MONTH END RESERVOIR ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	ELEVATION	CONTENTS	CHANGE IN CONTENTS
SEP 30	329.0	124,700	
OCT 31	328.6	124,140	-560
NOV 30	329.7	125,740	+1,600
DEC 31	317.7	108,380	-17,360
JAN 31	319.1	110,400	+2,020
FEB 28	305.6	90,860	-19,540
MAR 31	300.3	83,200	-7,660
APR 30	301.6	85,080	+1,880
MAY 31	302.5	86,380	+1,300
JUN 30	317.6	108,230	+21,850
JUL 31	321.3	113,580	+5,350
AUG 31	322.5	115,320	+1,740
SEP 30	333.9	131,880	+16,560
		CAL YR 2000	-8,390
		WTR YR 2001	+7,180

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 MEAN VALUES

MONTH	RELEASE	SPILL	TOTAL	ADJUSTED
OCT	373	0.2	373.2	364
NOV	398	0.1	398.1	425
DEC	498	0.1	498.1	216
JAN	473	0	473	506
FEB	522	0	522	170
MAR	309	0	309	184
APR	309	0	309	341
MAY	528	0	528	549
JUN	337	0	337	704
JUL	401	0	401	488
AUG	431	0	431	459
SEP	681	282	963	1241
CAL YR 2000	431	0.03	431	419
WTR YR 2001	438	23.2	461	471

15072000 FISH CREEK NEAR KETCHIKAN

LOCATION.--Lat $55^{\circ}23'31''$, long $131^{\circ}11'38''$, in $SW^{1}/_{4}SW^{1}/_{4}$ sec. 6, T. 75 S., R. 94 E. (Ketchikan B-4 quad.), Gateway Borough, Hydrologic Unit 19010102, on Revillagigedo Island, in Tongass National Forest, on right bank 250 ft upstream from outlet of Low Lake, 750 ft upstream from mouth at Thorne Arm, and 18 mi east of Ketchikan.

DRAINAGE AREA.--32.1 mi², excludes that of Granite Lake drainage basin.

PERIOD OF RECORD.--May 1915 to October 1936, October 1938 to current year. Prior to October 1945, monthly discharge only. Records of daily discharge prior to October 1945 are available in computer files of the Geological Survey. Prior to January 1921, published as "near Sea Level, Revillagigedo Island."

REVISED RECORDS. -- WSP 1372: 1918.

GAGE.--Water-stage recorder. Elevation of gage is 20 ft above sea level, by barometer. Prior to October 1935, at site 150 ft downstream at different datum. October 1935 to October 3, 1975, at prior site and present datum.

REMARKS.--No estimated daily discharges. Records fair. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 2,200 ft^3/s and/or maximum (*):

Dat	te	Time	Dischard (ft³/s)		Gage height (ft)		Date	Time		ischarge (ft ³ /s)	Gage he	
*Sep	23	0230	*328	0	*4.16		No ot	her peak	greater	than base	discharge	
		DISCHA	RGE, CUBIC	FEET P			YEAR OCTOBI	ER 2000 T	TO SEPTEM	IBER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	709 550 453 384 325	327 378 669 681 560	614 914 902 687 588	443 923 1600 1620 1730	686 843 912 713 538	233 215 211 201 176	217 192 172 175 184	723 618 792 731 608	993 839 682 570 504	373 344 332 347 412	184 200 207 205 210	990 1640 1910 1920 1490
6 7 8 9	280 328 383 389 370	466 466 400 335 288	781 698 539 422 337	1410 1010 880 827 685	417 336 286 245 216	163 181 182 169 184	170 155 145 140 134	487 485 465 426 375	477 463 448 458 462	538 933 1010 1040 902	219 225 217 203 188	1410 1080 771 590 460
11 12 13 14 15	345 361 451 442 798	247 294 292 247 218	283 238 210 183 160	539 418 339 288 261	191 170 160 167 160	357 447 381 318 285	129 131 132 130 125	479 502 520 511 473	443 416 402 427 448	708 567 559 621 580	175 163 152 143 136	370 317 279 244 218
16 17 18 19 20	766 656 572 565 554	199 246 291 288 282	155 137 198 180 150	316 359 368 396 386	148 136 127 118 109	307 328 286 266 243	124 130 149 167 174	478 609 673 691 569	448 442 418 415 575	488 454 427 381 342	130 125 122 120 146	196 183 196 236 346
21 22 23 24 25	499 779 844 680 525	297 690 1230 1500 1470	132 121 110 104 208	380 324 291 261 241	103 96 90 86 83	214 190 170 155 150	180 188 319 717 635	507 656 773 689 576	720 691 618 594 578	321 311 296 280 261	342 393 380 435 612	500 1920 2910 1840 1410
26 27 28 29 30 31	418 348 337 310 289 305	1190 911 683 523 446	329 371 305 283 318 397	223 295 343 305 274 400	80 139 261 	158 239 242 222 219 248	572 652 799 771 829	499 463 448 460 469 795	520 471 462 449 413	241 225 215 204 193 185	1080 1570 1290 869 670 664	1140 1000 988 1030 1410
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	15015 484 844 280 442 29780 15.1 17.40	16114 537 1500 199 389 31960 16.7 18.67	11054 357 914 104 283 21930 11.1 12.81	18135 585 1730 223 380 35970 18.2 21.02	7616 272 912 80 164 15110 8.47 8.83	7340 237 447 150 219 14560 7.38 8.51	8737 291 829 124 173 17330 9.07 10.13	17550 566 795 375 511 34810 17.6 20.34	15846 528 993 402 462 31430 16.5 18.36	14090 455 1040 185 373 27950 14.2 16.33	11775 380 1570 120 207 23360 11.8 13.65	28994 966 2910 183 989 57510 30.1 33.60
MEAN MAX (WY) MIN (WY)	699 1326 1975 237 1926	567 1767 1918 89.2 1974	421 1081 1931 83.4 1984	350 975 1926 37.9 1950	318 944 1993 37.8 1969	264 673 1986 71.4 1969	355 655 1949 130 1967	- 2001, 504 867 1999 182 1998	471 764 1951 142 1998	YEAR (WY) 335 718 1976 65.3 1958	# 332 767 1972 50.7 1965	441 966 2001 80.0 1965

[#] See period of record

15072000 FISH CREEK NEAR KETCHIKAN--Continued

SUMMARY STATISTICS FOR	2000 CALENDA	AR YEAR	FOR 2001 WATER	YEAR	WATER YEARS 1	915 - 2001#
ANNUAL TOTAL	177723		172266			
ANNUAL MEAN	486		472		422	
HIGHEST ANNUAL MEAN					556	1992
LOWEST ANNUAL MEAN					302	1978
HIGHEST DAILY MEAN	3040	Aug 22	2910	Sep 23	4410	Oct 15 1961
LOWEST DAILY MEAN	89	Jan 26	80	Feb 26	20	Sep 9 1928
ANNUAL SEVEN-DAY MINIMUM	100	Jan 20	92	Feb 20	23	Sep 5 1928
MAXIMUM PEAK FLOW			3280	Sep 23	a5400	Oct 15 1961
MAXIMUM PEAK STAGE			4.16	Sep 23	b5.85	Oct 15 1961
INSTANTANEOUS LOW FLOW			76	Feb 26	20	Sep 9 1928
ANNUAL RUNOFF (AC-FT)	352500		341700		306000	
ANNUAL RUNOFF (CFSM)	15.1		14.7		13.2	
ANNUAL RUNOFF (INCHES)	205.96		199.64		178.79	
10 PERCENT EXCEEDS	896		906		864	
50 PERCENT EXCEEDS	406		375		319	
90 PERCENT EXCEEDS	179		150		98	

 $[\]begin{tabular}{ll} \# & See Period of Record \\ a & From rating curve extended above 3,600 ft^3/s \\ b & At site then in use \\ \end{tabular}$

15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK

LOCATION.--Lat $55^{\circ}43'58''$, long $132^{\circ}58'02''$, in $NE^{1}_{/4}$ $NE^{1}_{/4}$ sec. 10, T. 71 S., R. 81 E. (Craig C-4 quad), Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, on left bank, immediately upstream from bridge on Forest Road 2050, 6 mi upstream from Middle Fork Staney Creek and 12.4 mi north of Klawock.

DRAINAGE AREA.--3.07 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1990 to current year.

REVISED RECORDS.--WDR AK-92-1: 1991. WDR AK-00-1: 1990(M), 1991-92(P), 1993, 1994-99(P).

Discharge

GAGE.--Water-stage recorder. Elevation of gage is 600 ft above sea level, from topographic map.

Gage height

REMARKS.--Records good except for those above 200 ${\rm ft}^3/{\rm s}$ which are fair and estimated daily discharges which are poor.

Discharge

Gage height

EXTREMES FOR CURRENT YEAR.-- Peak discharges greater than base discharge of 350 ft³/s (revised) and maximum (*):

Da	te	Time	(ft ³ /		(ft)	-	Date	Time		(ft ³ /s)		neight t)
Sep	30	0015	*	612	*5.19		No oth	ner peak	greater	than base	discharg	ge
		DISCH	ARGE, CUB	IC FEET			YEAR OCTOBE	R 2000	TO SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	19 8.4 12 7.7 34	12 24 61 5.8	79 54 2.4 3.2 104	35 96 132 44 96	38 35 26 10 6.2	15 13 11 8.5 6.1	5.9 4.3 3.6 7.2 7.2	14 18 48 17 8.7	24 16 10 9.4 11	3.8 3.4 3.1 4.8 8.7	2.0 2.1 1.8 1.6 1.4	62 48 54 25 51
6 7 8 9 10	56 44 19 16 8.5	25 19 5.1 1.9 1.3	27 4.9 2.8 1.9 1.4	38 24 40 19 9.4	5.0 4.3 3.9 3.5 e3.0	6.9 24 9.7 12 87	6.0 5.7 5.2 5.6 5.6	5.9 15 47 16 13	12 11 10 14 13	32 20 19 19	1.4 1.3 1.2 1.2	19 9.9 9.3 5.4 3.9
11 12 13 14 15	46 40 20 9.8 47	3.0 22 4.3 1.8 1.3	1.2 e1.1 e.95 e.90 e.85	6.0 4.5 4.6 4.6 28	e2.8 e2.5 e14 e12 e15	141 19 10 6.4 7.2	6.0 8.2 6.2 6.3 7.1	22 19 14 14 15	8.7 7.0 8.4 14	5.4 5.3 15 11 7.0	1.0 1.0 1.0 .98	4.0 8.3 6.4 4.1 3.5
16 17 18 19 20	26 9.3 6.5 14 84	2.8 40 2.3 2.6 1.3	e.80 e.75 e.85 e1.0 e.90	59 24 23 15 16	e4.4 e3.2 e2.9 e2.7 e2.5	7.9 13 9.5 10 4.9	9.2 18 18 13	18 21 24 19 13	9.5 8.1 6.9 7.1 18	7.2 9.1 4.7 3.5 2.8	.97 .97 1.7 2.1 3.9	11 41 89 91 36
21 22 23 24 25	13 46 34 8.0 4.8	.83 41 48 29 21	e.80 e.70 e.55 e.60	24 19 26 25 13	e2.4 e2.2 e2.1 e2.0 2.2	e3.4 2.5 e2.2 2.5 12	9.2 10 43 30 19	19 41 14 10 8.0	21 13 10 17 13	2.4 2.2 2.4 2.4 2.1	45 8.0 10 15 24	45 126 40 14 14
26 27 28 29 30 31	3.3 5.7 8.4 3.3 9.2 27	8.3 11 4.4 1.4 1.4	6.6 5.5 5.2 12 24 8.6	7.7 49 26 9.8 7.2	5.2 80 22 	10 11 9.8 8.5 9.2 9.4	38 48 15 20 19	8.8 11 11 12 14 29	8.8 5.6 4.9 3.8 3.3	2.0 1.9 1.9 1.8 1.7	30 88 10 10 11	12 17 14 126 218
TOTAL MEAN MAX MIN AC-FT CFSM IN.	689.9 22.3 84 3.3 1370 7.25 8.36	413.83 13.8 61 .83 821 4.49 5.01	376.45 12.1 104 .55 747 3.96 4.56	1011.8 32.6 132 4.5 2010 10.6 12.26	315.0 11.2 80 2.0 625 3.66 3.82	502.6 16.2 141 2.2 997 5.28 6.09	409.5 13.6 48 3.6 812 4.45 4.96	559.4 18.0 48 5.9 1110 5.88 6.78	329.5 11.0 24 3.3 654 3.58 3.99	215.7 6.96 32 1.7 428 2.27 2.61	294.69 9.51 88 .97 585 3.10 3.57	1207.8 40.3 218 3.5 2400 13.1 14.64
		STATISTI	ICS OF MOI	NTHLY ME	AN DATA FOR	WATER	YEARS 1990 -	- 2001,	BY WATER	YEAR (WY)	#	
MEAN MAX (WY) MIN (WY)	34.3 61.1 2000 18.5 1993	24.1 40.2 1994 12.9 1997	27.7 49.1 1991 11.5 1997	26.7 48.9 1997 12.0 1996	20.4 51.7 1993 7.51 2000	16.7 35.1 1994 7.38 1991	17.8 29.7 1997 7.76 1998	14.4 33.8 1999 3.87 1998	9.03 21.0 1999 1.59 1993	5.94 11.8 1997 1.46 1993	9.80 17.9 1998 1.80 1993	25.2 45.1 1994 10.4 1993

See Period of Record; partial years used in monthly summary statistics ${\tt Estimated}$

15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK--Continued

SUMMARY STATISTICS FOR	R 2000 CALENDAR YE	AR FOR 2001 WATER	YEAR WA	TER YEARS 1990 - 2001#
ANNUAL TOTAL	5978.04	6326.17		
ANNUAL MEAN	16.3	17.3		19.5
HIGHEST ANNUAL MEAN				24.7 1994
LOWEST ANNUAL MEAN				15.4 1996
HIGHEST DAILY MEAN	218 Aug	21 218	Sep 30	793 Oct 26 1993
LOWEST DAILY MEAN	.55 Dec	23 .55	Dec 23	.38 Jul 21 1993
ANNUAL SEVEN-DAY MINIMUM	.77 Dec	18 .77	Dec 18	.49 Jul 15 1993
MAXIMUM PEAK FLOW		612	Sep 30	all10 Jan 29 1993
MAXIMUM PEAK STAGE		5.19	Sep 30	6.34 Jan 29 1993
INSTANTANEOUS LOW FLOW				b.37 Jul 20 1993
ANNUAL RUNOFF (AC-FT)	11860	12550		14100
ANNUAL RUNOFF (CFSM)	5.32	5.65		6.34
ANNUAL RUNOFF (INCHES)	72.44	76.66		86.11
10 PERCENT EXCEEDS	39	43		43
50 PERCENT EXCEEDS	9.6	9.7		9.2
90 PERCENT EXCEEDS	1.6	1.7		2.2

[#] See Period of Record; partial years used in monthly summary statistics a From rating extended above 140 ft $^3/s$ b Jul. 20 and 21, 1993

15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1991 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: November 1990 to current year.

INSTRUMENTATION.--Electronic water temperature recorder since November 20, 1990, set for 2-hour recording interval. New water temperature recorder installed April 11, 1996 with a 15-minute recording interval.

REMARKS.--Records represent water temperature at sensor within 0.5° C. Temperature at the sensor was compared with the stream average by cross section on August 27. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE.--Maximum recorded, 18.5° C, June 30, 1992, July 16, 1993, and July 2-4, 1998; minimum, 0.0°C, on many days during winters.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE.--Maximum, 17.0°C August 13; minimum, 0.0°C, on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)
AUG							
27	1332	28.5	1.5	2.64	45	10.5	14.0
27	1333	28.5	6.5	2.64	45	10.5	14.0
27	1334	28.5	11.5	2.64	45	10.5	14.0
27	1335	28.5	16.5	2.64	45	10.5	14.0
27	1336	28.5	21.5	2.64	45	10.5	14.0
27	1337	28.5	26.5	2.64	45	10.5	14.0

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DI	ECEMBER			JANUARY	
1 2 3 4 5	8.0 6.5 7.0 7.5	6.0 5.0 6.0 6.5 7.0	7.0 6.0 6.5 7.0	5.0 6.5 6.5 5.5	4.5 5.0 5.5 4.5 4.5	4.5 5.5 6.5 5.0 5.0	4.0 4.5 4.0 3.5 4.5	3.5 4.0 3.5 3.0 3.5	4.0 4.0 3.5 3.5 4.0	2.0 3.0 2.5 2.5 3.0	1.5 2.0 2.5 2.0 2.5	2.0 2.5 2.5 2.5 2.5
6 7 8 9 10	8.0 8.0 7.5 7.5	7.5 7.5 6.5 6.5	7.5 8.0 7.0 7.0	5.5 5.0 5.0 4.0 3.0	5.0 4.5 4.0 3.0 2.5	5.0 5.0 4.5 3.5 2.5	4.5 3.0 2.5 1.5	3.0 2.5 1.5 .5	4.0 2.5 2.5 1.0	2.5 3.0 3.0 2.5 1.5	2.0 2.0 2.5 1.5	2.5 2.5 2.5 2.0 1.5
11 12 13 14 15	8.0 8.5 8.0 7.0	7.0 7.5 7.0 6.5 7.0	7.5 8.0 7.5 7.0	4.0 4.5 4.0 3.5 3.5	2.5 4.0 3.0 3.0 3.0	3.0 4.5 4.0 3.0 3.5	.5 .0 .0 .0	.0.0.0.0	.0.0.0.0	1.0 .5 1.0 1.0	.0 .0 .5 .5	.5 .0 .5 1.0
16 17 18 19 20	7.0 7.0 7.0 6.5 6.0	6.0 6.5 6.5 6.0	6.5 7.0 7.0 6.0	4.5 4.5 3.5 4.5 5.0	3.5 3.0 2.5 3.5 4.5	4.0 4.0 3.0 4.0 5.0	.0 .0 .0	.0.0.0.0	.0.0.0.0	2.0 2.5 3.0 2.0 2.5	1.5 2.0 2.0 2.0 2.0	2.0 2.5 2.5 2.0 2.5
21 22 23 24 25	6.0 7.0 7.0 6.0 5.5	5.0 6.0 6.0 5.5 4.5	5.5 6.5 6.0 4.5	5.5 6.0 5.5 4.5	5.0 5.5 4.5 4.5 4.0	5.5 5.5 5.0 4.5 4.5	.0 .0 .0	.0.0.0.0	.0.0.0.0	2.5 2.5 3.0 3.5 3.5	2.0 2.0 2.5 3.0 3.0	2.0 2.5 3.0 3.0
26 27 28 29 30 31	5.0 5.5 5.0 4.5 5.0	4.0 5.0 5.0 3.5 3.5 4.5	4.5 5.0 5.5 4.5 4.0 5.0	4.0 3.5 3.0 2.5 3.5	3.5 3.0 2.0 2.0 2.5	4.0 3.5 2.5 2.5 2.5	.5 1.0 1.0 1.5 2.0	.0 .5 1.0 1.0	.0 .5 1.0 1.5 2.0	3.0 3.0 3.0 1.5 1.5	2.5 3.0 1.5 1.0 .5	3.0 3.0 2.0 1.5 1.0
MONTH	8.5	3.5	6.4	6.5	2.0	4.2	4.5	.0	1.2	3.5	.0	2.0

15081495 NORTH FORK STANEY CREEK NEAR KLAWOCK--Continued

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

MAX			TEMPER	RATURE,	WATER, D	EGREES C.	ELSIUS,	WATER YEAR	OCTOBER	2000 10	SEPTEMBER	2001	
1	DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
2 3.0 2.5 3.5 2.5 2.5 1.0 2.0 5.5 1.0 2.5 1.0 1.0 4.0 3.0 3.5 3.5 4.0 5.5 1.0 1.5 1.5 1.5 1.0 2.0 2.0 1.0 1.0 2.5 1.5 1.5 1.5 3.0 4.0 5.5 1.0 1.0 1.0 4.0 3.0 3.0 4.0 5.5 1.0 1.0 1.5 1.5 1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0			FEBRUARY			MARCH			APRIL			MAY	
7 1.0	2 3 4	3.0 2.5 1.5	2.5 1.5 .5	2.5 2.0 1.0	2.0 1.0 2.0	.5 .5 .5	1.0 1.0 1.0	2.5 3.0 2.5	.0 .0 .5	1.0 1.5 1.5	4.0 4.0 5.0	3.0 3.0 3.0	3.5 3.5 4.0
12	7 8 9	1.0 1.0 .5	.0 .5 .0	.5 .5 .5	2.0 2.0 2.0	1.0 1.0 1.0	1.5 1.5 1.5	3.5 2.5 3.5	.5 1.0 1.0	2.0 1.5 2.5	4.5 3.5 5.0	3.5 3.0 2.5	4.0 3.0 3.5
17	12 13 14	.0	.0.0	.0	2.5 2.5 2.0	1.5 1.0 .5	2.0 2.0 1.5	3.5 3.5 5.0	1.5 1.0 2.0	2.5 2.5 3.5	5.5 6.0 6.0	3.5 3.5 4.0	4.5 4.5 5.0
22	17 18 19	.0	.0.0	.0	3.0 2.5 2.0	1.5 2.0 1.0	2.5 2.0 1.5	3.0 4.0 4.5	2.0 2.0 2.0	2.5 2.5 3.0	5.5 4.5 6.0	3.5 3.5 3.5	4.5 4.0 4.5
27	22 23 24	.5 .5 .0	.0.0	.0	.5 .5 1.0	.0	.0 .0 .5	4.5 3.0 3.5	3.0 2.0 2.0	3.5 2.5 3.0	6.5 6.5 6.5	4.5 4.0 4.0	5.5 5.0 5.5
DAY MAX MIN MEAN JUNE JULY AUGUST SEPTEMBER 1 6.5 5.0 5.5 12.5 10.5 11.5 12.5 11.5 12.0 9.5 9.5 9.5 9.5 2 6.5 12.5 10.5 11.0 11.0 11.5 12.5 9.5 8.5 9.0 4 7.5 5.5 6.5 11.0 10.5 11.0 11.0 11.0 11.0 12.5 12.5 9.5 8.5 9.0 4 7.5 5.5 6.5 11.0 10.5 11.0 11.0 11.0 11.0 12.5 11.0 12.5 9.5 8.5 9.0 9.5 7.5 5.5 6.5 11.0 10.5 11.0 11.0 11.0 11.0 12.5 12.5 9.5 8.5 9.0 9.5 7.5 5.5 6.5 11.0 10.5 11.0 11.0 11.0 11.0 11.0 12.5 12.5 9.5 8.5 9.0 9.5 11.0 11.0 11.0 11.0 11.0 11.0 12.5 12.5 9.5 8.5 9.0 9.5 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11	27 28 29 30	.5 .5 	.0 .0 	.0 .5 	2.0 1.0 2.0 .5	.5 .0 .0	1.0 .5 1.0 .5	4.0 4.5 4.0 4.5	3.0 2.5 3.0 3.0	3.5 3.5 3.5 3.5	7.0 6.5 8.0 6.5	5.0 4.5 5.0 5.0	6.0 5.5 6.5 5.5
1 6.5 5.0 5.5 12.5 10.5 11.5 12.5 11.5 12.0 9.5	MONTH	3.0	.0	. 4	3.0	.0	1.1	5.5	.0	2.6	8.0	2.5	4.6
1 6.5 5.0 5.5 12.5 10.5 11.5 12.5 11.5 12.0 9.5													
2 6.5 5.0 5.0 5.5 12.0 10.0 11.0 13.5 11.5 12.5 9.5 8.5 9.0 4 7.5 5.5 6.0 12.5 10.5 11.0 14.0 10.5 12.5 9.5 8.5 9.0 4 7.5 5.5 6.5 11.0 10.5 11.0 14.0 11.5 12.5 9.5 8.5 9.0 9.5 5 7.5 5.5 6.5 11.0 10.5 11.0 14.0 11.5 12.5 9.5 9.5 9.0 9.5 5 7.5 5.5 6.5 10.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 14.0 11.5 12.5 9.5 9.0 9.5 9.0 9.5 12.5 9.0 14.5 11.0 13.0 9.5 9.0 9.0 9.0 14.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12	DAY	MAX		MEAN	MAX		MEAN	MAX		MEAN	MAX		
7 8.0 6.0 7.0 9.5 8.5 9.0 14.5 11.0 13.0 9.5 9.0 9.0 8 9.0 6.0 7.5 9.0 8.5 8.5 16.0 11.5 14.0 10.5 8.5 9.5 10 8.0 6.0 7.0 10.0 8.5 9.0 16.0 12.0 14.0 10.0 8.5 9.5 11 7.5 6.5 7.0 10.5 8.5 9.5 15.0 13.0 14.0 9.5 8.5 9.0 12 9.0 6.5 7.5 9.5 9.0 9.5 16.0 12.0 14.5 9.5 9.0 9.0 13 8.0 7.0 7.5 9.5 9.0 9.5 16.0 12.0 14.5 9.5 9.0 9.0 14 9.0 6.5 7.5 9.5 8.5 9.0 15.5 14.0 14.5 10.5 9.0 19.0 15 9.0 7.5 10.5 9.5 10.0 16.5	2 3 4	6.5 7.0 7.5	5.0 5.5 5.5	5.5 6.0 6.5	12.0 12.5 11.0	10.0 10.5 10.5	11.0 11.0 11.0	13.5 14.0 13.0	11.5 10.5 12.0	12.5 12.5 12.5	9.5 9.5 10.0	8.5 8.5 9.0	9.0 9.0 9.5
12 9.0 6.5 7.5 9.5 9.0 9.5 16.0 12.0 14.5 9.5 9.0 9.0 13 8.0 7.0 7.5 9.0 8.5 9.0 15.5 14.0 14.5 10.5 9.0 9.5 14 9.0 6.5 7.5 9.5 8.5 9.0 15.5 14.0 14.5 10.5 9.0 10.0 15 9.0 7.0 8.0 11.0 8.5 10.0 16.5 13.5 15.0 11.5 10.0 10.5 16 8.0 7.0 7.5 10.5 9.5 10.0 16.5 13.0 15.0 11.5 10.5 11.0 17 8.5 7.0 7.5 11.0 9.0 10.0 16.5 13.0 15.0 11.5 10.5 11.0 18 11.0 7.5 9.0 12.5 9.5 11.0 14.5 13.0 13.5 10.5 9.5 10.0 18 11.0 7.5 8.0 14.5 10.5	7 8 9	8.0 9.0 7.5	6.0 6.0 6.5	7.0 7.5 7.0	9.5 9.0 9.5	8.5 8.5 8.0	9.0 8.5 9.0	14.5 16.0 16.0	11.0 11.5 12.0	13.0 14.0 14.0	9.5 10.5 10.0	9.0 8.5 8.5	9.0 9.5 9.5
17 8.5 7.0 7.5 11.0 9.0 10.0 15.0 14.0 14.5 11.5 10.5 11.0 18 11.0 7.5 9.0 12.5 9.5 11.0 14.5 13.0 13.5 10.5 9.5 10.0 19 10.0 8.5 9.0 14.5 10.5 12.5 14.0 12.5 13.5 9.5 9.0 9.5 20 9.5 8.0 9.0 15.5 11.5 13.5 13.0 11.0 12.5 9.5 9.0 9.5 21 9.0 7.5 8.0 16.5 12.5 14.5 11.0 10.5 11.0 9.5 9.0 9.0 22 9.5 7.5 8.5 14.5 13.0 14.0 11.5 10.5 11.0 9.5 9.0 9.0 23 8.5 8.0 8.0 13.0 11.5 12.5 11.5 10.0 11.0 9.5 9.0 9.0 24 9.0 7.5 8.5 12.5 11.0 <t< th=""><th>12 13 14</th><th>9.0 8.0 9.0</th><th>6.5 7.0 6.5</th><th>7.5 7.5 7.5</th><th>9.5 9.0 9.5</th><th>9.0 8.5 8.5</th><th>9.5 9.0 9.0</th><th>16.0 17.0 15.5</th><th>12.0 12.5 14.0</th><th>14.5 15.0 14.5</th><th>9.5 10.5 10.5</th><th>9.0 9.0 9.0</th><th>9.0 9.5 10.0</th></t<>	12 13 14	9.0 8.0 9.0	6.5 7.0 6.5	7.5 7.5 7.5	9.5 9.0 9.5	9.0 8.5 8.5	9.5 9.0 9.0	16.0 17.0 15.5	12.0 12.5 14.0	14.5 15.0 14.5	9.5 10.5 10.5	9.0 9.0 9.0	9.0 9.5 10.0
22 9.5 7.5 8.5 14.5 13.0 14.0 11.5 10.5 11.0 9.5 9.0 9.0 23 8.5 8.0 8.0 13.0 11.5 12.5 11.5 10.0 11.0 9.0 8.0 8.5 24 9.0 7.5 8.5 12.5 11.0 12.0 10.5 10.0 10.0 8.5 8.0 8.5 25 9.0 8.0 8.5 13.5 11.0 12.0 10.5 10.0 10.0 9.0 8.0 8.5 26 11.5 7.5 9.5 14.0 11.5 12.5 10.5 9.5 10.0 8.5 8.0 8.5 27 11.0 8.5 10.0 13.0 12.0 12.5 11.0 10.0 10.5 8.5 8.0 8.5 28 11.0 9.5 10.0 13.0 11.5 12.0 11.5 10.0 10.5 8.5 8.0 8.5 29 11.5 9.5 10.5 13.0 11.5 <	17 18 19	8.5 11.0 10.0	7.0 7.5 8.5	7.5 9.0 9.0	11.0 12.5 14.5	9.0 9.5 10.5	10.0 11.0 12.5	15.0 14.5 14.0	14.0 13.0 12.5	14.5 13.5 13.5	11.5 10.5 9.5	10.5 9.5 9.0	11.0 10.0 9.5
27 11.0 8.5 10.0 13.0 12.0 12.5 11.0 10.0 10.5 8.5 8.0 8.5 28 11.0 9.5 10.0 13.0 11.5 12.0 11.5 10.0 10.5 8.5 8.0 8.5 29 11.5 9.5 10.5 13.0 11.5 12.0 11.0 10.5 10.5 8.0 7.5 8.0 30 13.0 9.0 11.0 13.0 11.5 12.5 11.5 10.0 10.5 8.0 7.5 8.0 31 12.5 12.0 12.0 10.5 9.5 10.0	22 23 24	9.5 8.5 9.0	7.5 8.0 7.5	8.5 8.0 8.5	14.5 13.0 12.5	13.0 11.5 11.0	14.0 12.5 12.0	11.5 11.5 10.5	10.5 10.0 10.0	11.0 11.0 10.0	9.5 9.0 8.5	9.0 8.0 8.0	9.0 8.5 8.5
	27 28	11.0	8.5 9.5	10.0 10.0	13.0 13.0	12.0 11.5	12.5 12.0	11.0 11.5	10.0 10.0	10.5 10.5	8.5 8.5	8.0 8.0	8.5 8.5
		11.5 13.0	9.0	11.0	13.0	11.5	12.5	11.5	10.0	10.5	8.0	7.5	8.0

SOUTHEAST ALASKA

15081497 STANEY CREEK NEAR KLAWOCK

LOCATION.--Lat $55^{\circ}48'05''$, long $133^{\circ}06'31''$, in $SW_{4}^{1}NW_{4}^{1}$ sec. 14, T. 70 S., R. 80 E. (Craig D-4 quad), Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, on right bank, approximately 2.9 mi upstream from mouth, and 17 mi north of Klawock.

DRAINAGE AREA. -- 50.6 mi².

Date

*Sep 30

0230

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1989 to current year. Equivalent daily discharge record collected at station No. 15081500 near Craig during water years 1964-81. Drainage area, 51.6 mi².

GAGE.--Water-stage recorder. Elevation of gage is 47 ft above sea level, by barometer.

Discharge

 (ft^3/s)

*11100

REMARKS.--Records fair, except for discharges above $6,000~{\rm ft}^3/{\rm s}$, and estimated daily discharges, which are poor.

Date

Discharge

(ft³/s)

No other peak greater than base discharge

Gage height

(ft)

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 7,000 $\mathrm{ft^3/s}$ and maximum (*):

Gage height

(ft)

*15.00

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES													
					DAII	LY MEAN V	ALUES							
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP		
1	478	481	2040	647	864	376	219	286	338	51	31	1380		
2	221	391	1990	1530	492	251	135	372	371	55	35	1390		
3	277	1160	342	2920	589	240	99	1290	156	51	33	847		
4	219	341	208	1030	246	223	162	489	129	76	29	500		
5	281	267	1540	1730	144	151	208	237	118	116	26	708		
6	1060	624	1010	949	107	177	154	141	171	314	24	523		
7	875	607	246	493	94	433	124	309	164	278	25	188		
8	496	357	143	1030	96	240	108	1090	138	220	23	177		
9	483	209	102	448	91	176	121	412	128	296	20	114		
10	275	157	e71	219	76	1520	105	211	178	168	18	86		
11 12 13 14 15	680 594 609 281 1150	137 866 345 192 146	e58 e55 e48 e42 e36	140 101 100 98 264	e70 e66 e320 480 142	3300 441 228 144 132	101 128 113 91 95	304 299 243 182 185	125 90 83 151 148	116 88 169 175 126	16 15 14 13	76 109 124 86 69		
16	589	150	e40	944	e82	154	102	238	128	98	12	62		
17	293	1400	e60	470	e65	223	187	355	96	168	12	75		
18	205	344	e360	406	e46	172	235	347	82	100	16	549		
19	228	287	216	363	e44	232	217	348	77	71	43	1260		
20	1270	226	105	221	e40	141	134	233	102	58	46	450		
21	484	207	e80	610	e36	e69	123	203	197	50	474	266		
22	1140	1730	e70	486	e34	e65	119	564	197	44	183	1350		
23	876	2100	e60	642	e30	e55	556	256	155	44	103	608		
24	407	1270	e60	570	e25	60	810	159	161	49	142	250		
25	230	763	683	242	51	170	421	121	179	43	224	344		
26 27 28 29 30 31	170 150 201 150 390 904	558 593 403 199 140	320 191 187 325 675 374	157 1190 821 260 214 2810	117 2170 682 	284 248 325 329 507 528	391 992 338 320 433	105 122 113 115 121 431	149 88 75 66 56	39 37 34 33 30 29	349 1610 284 140 147 179	198 282 196 1840 5200		
TOTAL MEAN MAX MIN AC-FT CFSM IN.	15666	16650	11737	22105	7299	11594	7341	9881	4296	3226	4298	19307		
	505	555	379	713	261	374	245	319	143	104	139	644		
	1270	2100	2040	2920	2170	3300	992	1290	371	314	1610	5200		
	150	137	36	98	25	55	91	105	56	29	12	62		
	31070	33030	23280	43850	14480	23000	14560	19600	8520	6400	8530	38300		
	9.99	11.0	7.48	14.1	5.15	7.39	4.84	6.30	2.83	2.06	2.74	12.7		
	11.52	12.24	8.63	16.25	5.37	8.52	5.40	7.26	3.16	2.37	3.16	14.19		

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1990 - 2001, BY WATER YEAR (WY)#

359

565

204

1994

319

559

1997

173

230

558

1999

79.0

1998

97.6

1997

22.1

200

121

252

1999

26.5

184

384

1998

26.6

448

783

1994

166

1995

407

983

1991

152

464

782

1992

240

688

1123

2000

1997

443

581

996

201

1992

1997

622

1270

1992

267

MEAN

(WY)

(WY)

MTN

MAX

See Period of Record Estimated

15081497 STANEY CREEK NEAR KLAWOCK--Continued

SUMMARY STATISTICS FOR	2000 CALENDA	R YEA	R	FOR 2001	WATER	YEAR		WATER YEARS 1	990 -	20	01#
ANNUAL TOTAL	131906			1334	100						
ANNUAL MEAN	360			3	365			377			
HIGHEST ANNUAL MEAN								506			1992
LOWEST ANNUAL MEAN								283			1995
HIGHEST DAILY MEAN	3530	Aug :	21	52	200	Sep	30	14900	Oct	26	1993
LOWEST DAILY MEAN	25	Aug	14	ā	12	Aug	15	4.4	Jul	21	1993
ANNUAL SEVEN-DAY MINIMUM	1 31	Aug	8		13	Aug	11	6.0	Jul	15	1993
MAXIMUM PEAK FLOW				111	.00	Sep	30	b19800			1993
MAXIMUM PEAK STAGE					15.00	Sep	30	17.20	Oct	26	1993
INSTANTANEOUS LOW FLOW					11	Aug	17	4.0	Jul	21	1993
ANNUAL RUNOFF (AC-FT)	261600			2646	00			272800			
ANNUAL RUNOFF (CFSM)	7.12				7.22			7.44			
ANNUAL RUNOFF (INCHES)	96.97				98.07			101.12			
10 PERCENT EXCEEDS	880				387			902			
50 PERCENT EXCEEDS	191			1	.96			173			
90 PERCENT EXCEEDS	61				44			37			

 $[\]begin{tabular}{lll} \# & See Period of Record \\ a & Aug. 15-17 \\ b & From rating curve extended above 3300 ft^3/s \\ \end{tabular}$

SOUTHEAST ALASKA

15081497 STANEY CREEK NEAR KLAWOCK--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1990 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: January 1990 to current year.

INSTRUMENTATION.--Electronic water temperature recorder since January 11, 1990, set for 2-hour recording interval.
As of April 9, 1996, recorder set to 15-minute recording interval.

REMARKS.--No record due to malfunctioning probe October 25-30, November 9-11, 14-16, 28-30, December 7 to January 1, 10-15, 29-30, February 4-11, 16-26, and March 17-24. Partial water temperature on November 12-13, January 28, February 12, March 16, and April 20. Records represent water temperature at sensor within 0.5°C.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE.--Maximum recorded, 26.0°C, June 29, 1990, but may have been higher during period of instrument malfunction July 9 to August 23, 1990; minimum, 0.0°C on many days during winter.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE.--Maximum, 19.5°C, August 13; minimum, 0.0°C on several days during the winter.

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN									
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	8.5 7.5 8.0 8.5 9.0	7.0 5.5 7.0 7.0 8.0	8.0 6.5 7.5 7.5	5.5 7.0 7.0 6.0 5.5	5.0 5.5 6.0 4.5 5.0	5.0 6.0 7.0 5.5 5.5	5.0 5.0 5.0 4.5 5.5	4.0 4.5 4.0 4.0 4.5	4.5 5.0 4.5 4.0 5.0	3.0 3.0 3.0 3.5	2.0 3.0 2.5 3.0	2.5 3.0 3.0
6 7 8 9 10	8.5 9.0 8.5 8.0	8.0 8.5 7.5 7.5	8.5 8.5 8.0 7.5	6.0 5.5 5.5 	5.5 5.5 4.0 	5.5 5.5 5.0 	5.5 	4.0	5.0 	3.0 3.5 3.5 3.0	3.0 3.0 3.0 2.5	3.0 3.0 3.0 3.0
11 12 13 14 15	8.5 9.5 9.0 8.0	7.5 8.5 8.0 7.5 7.5	8.0 9.0 8.5 7.5 8.0	5.0 4.5 		 	 		 	 	 	
16 17 18 19 20	8.0 8.0 8.0 7.5 7.0	7.0 7.0 7.5 6.0 6.5	7.5 7.5 7.5 6.5	4.5 4.0 4.5 5.5	4.0 3.0 3.5 4.5	4.5 3.5 4.0 5.0	 		 	2.5 3.0 3.5 3.0	2.0 2.5 3.0 2.5 2.5	2.5 3.0 3.0 2.5 3.0
21 22 23 24 25	6.5 7.5 7.5 7.0	5.5 6.5 7.0 6.0	6.0 7.0 7.0 6.5	6.0 6.5 6.0 5.5 5.5	5.5 6.0 5.5 5.0 4.5	5.5 6.0 6.0 5.5 5.0	 		 	3.0 3.5 3.5 4.0 4.0	2.5 2.5 3.0 3.5 3.5	2.5 3.0 3.5 3.5
26 27 28 29 30			 	4.5 4.5 	4.5 3.5 	4.5 4.0 	 		 	4.0 4.0 3.5 	3.5 3.5 	4.0 3.5
31 MONTH	5.5	5.0	5.5							3.5	2.0	2.5

15081497 STANEY CREEK NEAR KLAWOCK--Continued

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY		MA	RCH		APRII			MAY		
1 2 3 4 5	4.0 4.0 3.5 	3.0 3.5 2.5 	3.5 3.5 3.0 	2.0 2.5 2.5 3.0 2.5	1.0 1.5 1.5 1.5	1.5 2.0 2.0 2.0 2.0	3.5 4.0 4.0 4.0	1.5 1.5 1.5 2.5 2.0	2.5 2.5 3.0 3.0	7.5 6.0 6.0 6.5	5.0 5.0 4.5 4.5	6.0 5.5 5.0 5.5
6 7 8 9 10	 	 		3.0 3.0 3.0 3.0	2.0 2.0 1.5 2.0 2.5	2.5 2.5 2.5 2.5 2.5	5.0 4.5 3.5 5.0 5.5	2.0 2.0 2.0 2.0 2.5	3.5 3.5 3.0 3.5 4.0	6.0 5.0	4.0 5.0 4.5 4.0 5.0	5.5 4.5
11 12 13 14	.5 .5 1.5 2.0	 .0 .0	 .0 .5	3.0 3.5 3.5 3.5 4.0	2.5 3.0 2.0 1.0 2.5	3.0 3.0 3.0 2.5 3.5	4.0 5.5 5.0 7.5 7.0	3.0 3.0 2.5 3.5 3.0	3.5 4.0 4.0 5.0	7.0 8.0	5.5 5.5 5.0 6.0	6.0 6.5
16 17 18 19 20	 	 		3.5 	 	 	6.0 5.5 6.0 6.5 7.0	3.5 4.5 3.5 3.5	5.0 5.0 5.0 5.0	7.5 7.5 6.5 8.0 6.0	5.5 5.0 5.5 5.0	6.5 6.0
21 22 23 24 25	 	 		 3.5	 1.5	 2.5	7.5 7.0 6.0 5.0 6.0	3.5 4.5 4.0 3.5 4.0	5.5 5.5 5.0 4.5 5.0	8.5 9.0 8.5 8.0 10.5	5.5 6.5 6.0 6.0 5.5	7.5 7.0
26 27 28 29 30 31	1.0 1.0 	.0 .5 	.5 1.0 	2.5 3.5 2.5 3.0 2.0 3.0	1.5 1.5 1.5 1.0 1.5	2.0 2.0 2.0 2.0 1.5 2.0	6.0 6.0 7.0 6.0 7.0	4.5 4.5 4.0 5.0 4.5	5.5 5.0 5.5 5.5	8.5 9.5 8.5 11.0 8.5 9.0	6.0 6.5 6.5 7.5 7.5	7.5 7.5 7.5 8.5 8.0 8.5
							7.5			11.0	4 0	6.5
MONTH							7.3			11.0	4.0	0.5
MONTH	MAX	MIN	MEAN		MIN	MEAN	MAX	MIN	MEAN	MAX		MEAN
							MAX			MAX		MEAN
		MIN		MAX 13.5 13.0 12.5 12.0	MIN		MAX 14.5 16.0	MIN		MAX S	MIN SEPTEMBE 10.5 10.0 9.5	MEAN
DAY 1 2 3 4	9.0 9.0 9.0 9.0	MIN JUNE 7.5 7.0 7.0 7.0	MEAN 8.0 8.0 8.0 8.0	13.5 13.0 12.5 12.0 11.5 11.0 11.5	MIN JULY 10.5 10.0 10.5 10.5	MEAN 12.0 11.5 11.5	MAX 14.5 16.0 17.0 16.0	MIN 12.0 12.0 11.5 13.5 11.5	MEAN 13.0 14.0 14.5 14.0	MAX 10.5 10.5 10.5 11.0 10.5 10.5 10.5 10.	MIN SEPTEMBE 10.5 10.0 9.5 9.5 9.5 9.5 9.5	MEAN 10.5 10.0 10.0 10.5 10.0 10.5 10.0 10.0
DAY 1 2 3 4 5 5 6 7 8 8 9 9	9.0 9.0 9.0 9.5 9.5 10.5 11.0 9.0	MIN JUNE 7.5 7.0 7.0 7.0 7.0 8.0 8.0 8.0 8.0 8.0	MEAN 8.0 8.0 8.0 8.0 9.0 9.5 9.0 8.5	13.5 13.0 12.5 12.0 11.5 11.0 11.5	MIN JULY 10.5 10.0 10.5 10.5 9.5 9.5 10.0 9.5 10.0 9.0	MEAN 12.0 11.5 11.5 11.0 10.5 10.5 10.5 10.5	MAX 14.5 16.0 17.0 16.0 16.0 17.5 18.5 18.5	MIN AUGUST 12.0 12.0 11.5 13.5 11.5 13.0 12.0 13.0 13.0 13.0 13.0 13.0	MEAN 13.0 14.0 14.5 14.0 14.0 15.0 16.0 16.0	MAX 10.5 10.5 10.5 11.0 10.5 10.5 10.5 10.	MIN SEPTEMBE 10.5 10.0 9.5 9.5 9.5 9.5 9.5	MEAN 10.5 10.0 10.0 10.5 10.0 10.5 10.0 10.0
DAY 1 2 3 4 5 5 6 7 7 8 9 10 11 12 13 14	9.0 9.0 9.0 9.5 9.5 11.0 11.0 10.0	MIN JUNE 7.5 7.0 7.0 7.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	MEAN 8.0 8.0 8.0 8.0 9.0 9.5 9.0 9.5 9.0 9.5 9.0	13.5 13.0 12.5 12.0 11.5 11.0 11.5 10.5 11.0 10.5 10.5	MIN JULY 10.5 10.0 10.5 10.5 9.5 10.0 9.5 10.0 9.5 10.0 9.5 10.0 9.5 9.5	MEAN 12.0 11.5 11.5 11.0 10.5 10.5 10.0 10.5 10.0 10.0	MAX 14.5 16.0 17.0 16.0 16.0 17.5 18.5 18.5 18.5 18.5 19.5 17.0	MIN AUGUST 12.0 12.0 11.5 13.5 11.5 13.0 12.0 13.0 13.0 13.0 13.5	MEAN 13.0 14.0 14.5 14.0 14.0 15.0 16.0 16.0 16.0 16.0 17.0 16.0	MAX 10.5 10.5 10.5 11.0 10.5 10.5 10.5 10.	MIN SEPTEMBE 10.5 10.0 9.5 9.5 9.5 9.5 9.0 9.0 8.0 8.5 9.0 9.5 9.5	MEAN 10.5 10.0 10.0 10.5 10.0 10.0 10.0 9.5 9.0 9.5 10.5 10.5
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	9.0 9.0 9.0 9.5 9.5 10.5 11.0 9.0 10.0 11.0 11.5 9.5 10.0 11.5	MIN JUNE 7.5 7.0 7.0 7.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	MEAN 8.0 8.0 8.0 8.0 9.0 9.5 9.0 8.5 9.0 9.0 9.5 9.5 10.0	13.5 13.0 12.5 12.0 11.5 11.0 11.5 11.0 10.5 11.0 10.5 11.0 10.5 12.5 12.5 12.5	MIN JULY 10.5 10.0 10.5 10.5 9.5 10.0 9.5 10.0 9.5 10.0 9.0 9.0 9.5 9.5 9.5 9.5 10.0 10.0 10.0	MEAN 12.0 11.5 11.5 11.5 11.0 10.5 10.0 10.5 10.0 10.5 10.0 10.0	MAX 14.5 16.0 17.0 16.0 17.5 18.5 18.5 18.5 18.0 18.5 17.0 18.5 18.0 17.0 16.0 17.5	MIN AUGUST 12.0 11.5 13.5 11.5 11.5 13.0 12.0 13.0 13.0 13.0 14.0 15.0 14.5 14.5 15.0 13.0 14.5	MEAN 13.0 14.0 14.5 14.0 14.5 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	MAX 10.5 10.5 10.5 11.0 10.5 10.5 10.5 10.	MIN SEPTEMBE 10.5 10.0 9.5 9.5 9.5 9.0 9.0 8.0 8.5 9.0 9.5 10.0	MEAN R 10.5 10.0 10.0 10.5 10.0 10.0 10.0 9.5 9.0 9.5 10.5 10.5 10.5 11.0 11.0 11.0 11.0
DAY 1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	9.0 9.0 9.0 9.5 10.5 11.0 11.0 11.0 11.0 11.5 12.0 11.5 12.0 12.5	MIN JUNE 7.5 7.0 7.0 7.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 10.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	MEAN 8.0 8.0 8.0 8.0 9.0 9.5 9.0 9.0 9.5 9.0 9.1 10.5 11.5 11.0	MAX 13.5 13.0 12.5 12.0 11.5 11.0 11.5 10.5 11.0 10.5 11.0 10.5 11.0 10.5 13.0 12.5 12.5 15.0 17.0 18.5	MIN JULY 10.5 10.0 10.5 10.5 9.5 10.0 9.5 10.0 9.0 9.5 9.5 9.5 10.0 10.0 10.0 10.0 10.5 11.5	MEAN 12.0 11.5 11.5 11.5 11.0 10.5 10.0 10.5 10.0 10.0	MAX 14.5 16.0 17.0 16.0 17.5 18.5 18.5 18.5 18.5 18.5 17.0 18.5 17.0 18.5 18.0 17.0 16.0 17.5 18.0 17.0 18.5 18.0 17.0 18.5	MIN AUGUST 12.0 12.0 11.5 13.5 11.5 11.5 13.0 12.0 13.0 13.0 14.0 14.0 15.0 14.5 14.5 15.0 14.5 12.0 13.0 13.0	MEAN 13.0 14.0 14.5 14.0 14.5 15.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	MAX 10.5 10.5 10.5 11.0 10.5 10.5 10.5 10.	MIN SEPTEMBE 10.5 10.0 9.5 9.5 9.5 9.0 9.0 9.0 9.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10	MEAN R 10.5 10.0 10.0 10.5 10.0 10.0 10.0 10.

15081610 THREEMILE CREEK NEAR KLAWOCK

LOCATION.--Lat $53^{\circ}32'06''$, long $132^{\circ}57'17''$, in $SW^{1}_{/4}$ $SW^{1}_{/4}$ SE $^{1}_{/4}$ sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic Unit 19010103, on Prince of Wales Island, approximately 2.0 mi upstream from the mouth at Klawock Lake, and 5.2 mi east of the city of Klawock.

DRAINAGE AREA.--6.62 mi²

PERIOD OF RECORD. -- March 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 295 ft above sea level, from topographic map.

REMARKS.--No estimated daily discharges. Records fair except for those above 250 ft³/s, which are poor.

REPRINCES.	. 110 656	DISCHARG	=	_		_	YEAR OCTOBE		TO SEPTEME		re poor.	
		DIBCHING	n, cobic			ILY MEAN		2000	TO DELTERE	,ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2	56 36	51 57	173 132	67 156	85 88	31 26	26 21	51 66	138 108	43 45	24 24	179 158
3 4	66 44	114 61	67 54	155 93	70 43	25 20	19 34	136 68	75 81	50 65	20 18	175 143
5 6	42 55	56 63	120 97	142 87	34 28	16 22	23 20	40 29	91 98	82 102	17 17	138 96
7 8	100 64	66 46	56 43	104 85	28 26	47 23	22 19	79 105	102 104	151 115	16 15	60 57
9 10	51 41	36 30	33 28	60 39	23 21	19 136	21 18	43 36	102 85	112 84	15 14	38 26
11 12	78 72	28 60	25 23	31 27	18 18	240 72	18 19	50 58	61 51	55 51	13 12	23 24
13 14	73 73	38 31	20 16	27 24	68 37	36 24	16 16	56 54	78 101	68 133	12 11	20 17
15	117	27	15	37	19	28	16	55	95	80	11	15
16 17	72 48	30 80	16 22	66 72	15 14	32 42	20 47	56 83	78 72	72 63	10 9.9	14 17
18 19	47 58	45 45	71 31	66 49	13 13	28 26	51 36	89 103	65 92	45 40	10 12	43 83
20 21	90 67	55 49	21 19	48 61	12 12	19 14	27 29	55 63	133 115	42 41	36 101	54 66
22 23	91 68	143 112	17 17	69 74	12 11	13 12	38 128	142 81	87 84	37 38	41 42	172 88
24 25	51 40	106 82	27 71	58 44	9.9 10	15 77	90 56	53 45	81 67	48 33	52 50	64 56
26 27	33 33	68 65	41 32	36 104	27 164	44 38	141 139	49 60	52 55	25 23	98 215	39 37
28 29	38 29	43 33	35 41	66 41	58	29 28	67 87	63 65	65 52	22 22	72 47	38 221
30 31	54 62	51	78 50	38 139		76 47	66 	93 190	42	20 19	38 98	200
TOTAL	1849		1491	2165	976.9	1305	1330	2216	2510	1826	1170.9	2361
MEAN MAX MIN	59.6 117 29	59.0 143 27	48.1 173 15	69.8 156 24	34.9 164 9.9	42.1 240 12	44.3 141 16	71.5 190 29	83.7 138 42	58.9 151 19	37.8 215 9.9	78.7 221 14
AC-FT CFSM	3670 9.00	3510	2960 7.25	4290 10.5	1940 5.26	2590 6.35	2640 6.69	4400 10.8	4980 12.6	3620 8.88	2320 5.70	4680 11.9
IN.	10.37		8.37	12.15	5.48	7.32	7.46	12.43	14.08	10.25	6.57	13.25
		STATISTICS (OF MONTH	ILY MEA	N DATA FO	R WATER Y	ZEARS 1999 -	- 2001,	BY WATER Y	EAR (WY)	#	
MEAN MAX	86.2 113		52.7 57.3	52.9 69.8	30.8 34.9	32.7 42.1	43.5 50.1	72.2 88.8	85.7 108	62.3 68.3	50.4 58.6	76.4 92.9
(WY) MIN	2000 59.6	2000	2000 48.1	2001 36.0	2001 26.8	2001	1999 36.0	1999 56.1	1999 65.8	1999 58.9	2000 37.8	1999 57.5
(WY)	2001		2001	2000	2000	1999	2000	2000	2000	2001	2001	2000
SUMMARY	STATIST	ICS FOR	2000 Ci 18215.:		YEAR	FOR 2001 2097	L WATER YEAR	!	WATER	YEARS 199	99 - 2001#	
ANNUAL		MEAN	49.				57.5		56 57		2001	
LOWEST	ANNUAL M	EAN	272	Aug	21	24	10 Mar 1	.1	55 482	. 8	2000 et 21 1999	
LOWEST ANNUAL	DAILY ME. SEVEN-DA	EAN AN Y MINIMUM	7.: 9.:	3 Mar 2 Mar	9 6	a 1	19.9 Feb 2 11 Aug 1	.2	7 9	.3 Ma	r 9 2000 r 4 1999	
MAXIMUM	PEAK FL	AGE				53	10 Mar 1 19.9 Feb 2 11 Aug 1 30 Sep 2 29.79 Jan 9.1 Feb 2	2	b1390 11	.55 Au	ig 21 2000 ig 21 2000	
ANNUAL	RUNOFF (RUNOFF (AC-FT)	36130	5.1			9.1 Feb 2 00 8.67	**	41020 8		t 10 2000	
ANNUAL		INCHES) EDS	7.! 102.: 79 47	20			L7.67		116 104	.03		
50 PERC	CENT EXCE	EDS EDS	47 16			4	19 L7		52 17			

See Period of Record Feb. 24 and Aug. 17

From rating curve extended above 130 ${\rm ft}^3/{\rm s}$ Result of backwater from log on control. Maximum stage after log was removed, 9.69 ft Sep. 29.

15081614 HALFMILE CREEK ABOVE DIVERSION NEAR KLAWOCK

LOCATION.--Lat $55^{\circ}33'26''$, long $133^{\circ}01'01''$, in $NW^{1}_{/4}$ $SW^{1}_{/4}$ $NW^{1}_{/4}$ sec. 7, T. 73 S., R. 82 E. (Craig C-3 quad), Hydrologic Unit 19010103, on Prince of Wales Island, approximately 1.1 mi upstream from the mouth at Klawock Lake, and 2.9 mi east of the city of Klawock.

DRAINAGE AREA. -- 4.73 mi².

PERIOD OF RECORD. -- December 2000 to September 2001.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 400 ft above sea level, from topographic map. REMARKS.--Records poor.

EXTREMES FOR CURRENT YEAR:-- Maximum discharge during period December to September 597 ${\rm ft}^3/{\rm s}$; September 29, gage height 10.07 ft. from rating curve extended above 53.8 ${\rm ft}^3/{\rm s}$; minimum daily discharge about 5.0 ${\rm ft}^3/{\rm s}$, Feb. 24-25.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	 	 	 	e46 e152 e150 e80 e120	e70 e75 e55 e40 e28	26 17 18 15 12	17 12 12 27 20	31 46 100 39 17	e120 e80 e50 e65 e80	e37 e38 e41 e48 e55	7.9 8.2 7.7 7.4 7.1	158 96 135 105 94
6 7 8 9	 	 	e20 14 11 10	e80 e100 e70 e48 e34	e20 e19 e16 e12 e9.5	14 58 26 21 200	16 17 18 24 19	12 51 112 35 23	e90 e95 e100 e75 e60	e80 e138 e100 e80 e36	6.9 6.7 6.5 6.3	59 24 23 15 11
11 12 13 14 15			9.8 e9.3 e9.0 e8.5 e8.0	e25 e18 e13 e12 e27	e8.0 e7.0 e10 e8.0 e7.0	288 61 24 14 16	18 21 16 15 18	e36 e50 e48 e50 e52	e50 e36 e48 e97 e85	16 21 40 65 24	6.0 5.9 5.8 e5.7 e5.5	14 18 12 10 9.4
16 17 18 19 20			9.9 11 91 28 14	e60 e65 e50 e40 e38	e6.5 e6.3 e6.0 e5.9 e5.7	18 33 25 22 14	22 53 54 38 24	e55 e75 e85 e95 e40	e75 e65 e50 e70 e120	28 24 13 10 9.2	e5.3 e5.3 e5.3 e6.5	8.9 16 68 122 45
21 22 23 24 25	 	 	11 10 8.8 11 80	e46 e55 e70 e50 e38	e5.5 e5.5 e5.3 e5.0	13 11 9.2 10 58	20 22 113 89 50	e42 e120 e70 e44 e36	e100 e80 e70 e60 e50	8.5 8.8 13 12	e80 e34 e36 e44 e42	45 157 57 26 26
26 27 28 29 30 31	 	 	37 24 e26 e28 e65 e44	e30 e95 e50 e30 e29 e120	36 221 69 	37 27 25 20 57 38	112 95 33 46 51	e38 e46 e55 e60 e110 e185	e36 e46 e50 e40 e36	9.0 8.5 8.1 7.8 7.6 7.5	e95 e195 e100 e50 e19 97	18 19 25 247 201
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.			 	1841 59.4 152 12 50 3650 12.6 14.48	767.2 27.4 221 5.0 8.8 1520 5.79 6.03	1227.2 39.6 288 9.2 22 2430 8.37 9.65	1092 36.4 113 12 22 2170 7.70 8.59	1858 59.9 185 12 50 3690 12.7 14.61	2079 69.3 120 36 68 4120 14.7 16.35	1004.0 32.4 138 7.5 21 1990 6.85 7.90	939.1 30.3 195 5.3 7.4 1860 6.40 7.39	1864.3 62.1 247 8.9 26 3700 13.1 14.66

e Estimated

15081995 REYNOLDS CREEK BELOW LAKE MELLEN NEAR HYDABURG

LOCATION.--Lat $55^{\circ}13'05''$, long $132^{\circ}34'50''$, in SW^{1}_{4} SE^{1}_{4} sec. 3, T. 77 S., R. 84 E.(Craig A-2 quad), Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, 0.1 mi below Lake Mellen, approximately 1 mi upstream from mouth at Copper Harbor in Hetta Inlet, and 10 mi east of Hydaburg.

DRAINAGE AREA. -- 5.20 mi².

PERIOD OF RECORD.--July 1982 to September 1985, October 1997 to current year

GAGE.--Water-stage recorder. Elevation of gage is 860 ft above sea level, from topographic map. Prior to January 1, 1984, at datum 2.00 ft higher.

REMARKS.--Records good, except for estimated daily discharges which are poor. GOES satellite telemetry at station. Streamflow affected by storage in lakes, which cover 30 percent of the basin.

		DISCHA	RGE, CUBI	C FEET PE		, WATER Y LY MEAN V	EAR OCTOBE ALUES	R 2000	TO SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	58 49 48 46 45	75 80 109 92 82	162 200 128 107 118	71 106 169 134 184	133 146 133 107 92	57 53 45 39 35	33 33	81 83 113 102 87	107 92 81 82 85	e54 e51 e50 e60 e83	e33 e34 e32 e33 e34	151 164 199 169 136
6 7 8 9 10	57 108 88 80 68	84 88 77 67 59	128 103 89 79 70	161 138 169 136 112	82 74 68 62 57	39 48 42 37 55	30 29 28 28 27	78 100 99 85 79	82 78 76 71	e90 e95 e100 e102 e95	e35 e36 e34 e33 e32	136 114 104 93 83
11 12 13 14 15	80 89 91 78 126	54 87 85 67 58	64 58 52 46 42	97 86 78 70 68	51 46 46 53 44		27 26 25 25		62 63 72 70	e90 e85 e75 e84 e77	e30 e29 e28 e26 e25	76 73 65 58 52
16 17 18 19 20	105 88 79 80 92	55 82 70 61 58	42 41 74 57 44	104 115 102 93 87	38 34 32 30 29	58 65 58 58 50	25 29 36 35 30	92 96 102 98 85	62 58 54 58 89	e74 e70 e65 e60 e56	e24 e23 e22 e30 e42	47 52 73 84 71
21 22 23 24 25	91 124 111 95 82	58 125 180 163 150	38 34 32 33 68	89 89 99 94 81	28 27 26 25 25	42 37 34 32 46	31 35 68 95 75	82 110 99 86 78		e54 e50 e48 e45 e43	e46 e48 e55 e70 e95	75 127 118 98 103
26 27 28 29 30 31	73 69 68 61 68 87	129 122 107 91 86	71 67 54 51 75 78	72 95 107 86 77 107	26 68 76 	58 52 50 43 46 51	75 74 100 86 98 93	74 73 70 67 68 122	e65 e63 e60 e57 e55	e40 e38 e36 e34 e33 e32	e120 e140 e98 80 75 94	85 87 91 121 170
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2484 80.1 126 45 4930 15.4 17.77	2701 90.0 180 54 5360 17.3 19.32			1658 59.2 146	1635 52.7 125 32	1353 45.1 100	2749 88.7 122 67 5450 17.1 19.67	2175 72.5 107 54 4310 13.9 15.56	1969 63.5 102 32 3910 12.2 14.09	1536 49.5 140 22 3050 9.53 10.99	3075 102 199 47 6100 19.7 22.00
		STATISTIC	S OF MONT	THLY MEAN	DATA FOR	R WATER Y	EARS 1982	- 2001,	BY WATER	YEAR (WY)	#	
MEAN MAX (WY) MIN (WY)	95.9 172 2000 71.6 1986	75.6 142 2000 44.1 1986	70.5 131 1998 20.7 1984	90.4 129 1985 61.4 1998	74.2 107 1984 47.7 1999	61.5 97.9 1984 38.3 1999	66.4 90.9 2000 45.1 2001	81.3 128 1999 40.4 1998	65.8 103 1999 22.9 1998	46.5 63.5 2001 20.2 1998	49.3 78.7 1983 19.3 1982	64.2 102 2001 32.2 1982
SUMMAR	RY STATIS	TICS FOR	2000 CAI	ENDAR YE	AR F	OR 2001 W	NATER YEAR		WATER Y	EARS 1982	- 2001#	
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN F ANNUAL M ANNUAL M F DAILY M DAILY ME	EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS	27633 75. 250 29 33 54810 14. 197. 118 71 38	Aug 2 Aug 1 Jan 2	L4	200 22 25 225 6 53390	Dec 2 Aug 1 Aug 1 Dec 5.70 Dec 6.70 Dec	2 8 2 2 2 2		Oc. 0.0 Ju 1.8 Ju 1.8 Oc. 0.1 Oc. 0.1 Oc. 0.1 Ju 1.8 S.8 S.90	2000 1983 t 23 1999 1 9 1998 1 4 1998 t 23 1999 t 23 1999 1 9 1998	

See Period of Record; partial years used in monthly summary statistics and break in record Not determined; see lowest daily mean Jul. 9 and 10, 1998 Estimated

Discharge

(ft³/s)

499

529

548

799

631

605

Gage Height

(ft)

4.30

4.40

4.46

5.20

4.72

4.64

15085100 OLD TOM CREEK NEAR KASAAN

LOCATION.--Lat $55^{\circ}23'44''$, long $132^{\circ}24'25''$, in NN_{4}^{1} SN_{4}^{1} sec. 6, T. 75 S., R. 86 E. (Craig B-2 quad) Hydrologic Unit 19010103, on Prince of Wales Island, in Tongass National Forest, on left bank 1,000 ft upstream from mouth at Skowl Arm of Kasaan Bay, 0.4 mi downstream from unnamed tributary, and 10 mi south of Kasaan.

DRAINAGE AREA. -- 5.90 mi².

Date

Oct 15

Nov 23

Dec 1

Dec 18

Jan 2

Jan 4

WATER-DISCHARGE RECORDS

Date

Jan 20

Feb 2

Aug 21

Aug 31

Sept 2

Sept 29

Time

1630

0430

0730

1915

2200

2145

PERIOD OF RECORD. -- June 1949 to current year.

Time

0500

0330

1545

0545

2330

2315

REVISED RECORDS. -- WDR AK-85-1: 1950-1983 (P), 1984.

GAGE.--Water-stage recorder. Elevation of gage is 10 ft above sea level, from topographic map.

Gage Height

(ft)

4.63

4.35

*5.60

4.26

4.80

4.45

REMARKS.--Records fair except estimated daily discharges, which are poor.

Discharge

(ft³/s)

602

514

*951

487

658

545

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 450 ft³/s and maximum (*):

Jan 4		2315	545		4.45		Sept 29	2145	,	005	4.0	04
Jan 7		2315	496		4.29							
		DISCH	ARGE, CUBI	C FEET 1	PER SECOND, DAII	WATER		BER 2000 TO	O SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.7 5.8 8.5 7.5	59 54 78 35 28	683 212 60 36 51	108 310 362 231 295	166 387 128 48 29	84 87 42 24 18	30 19 14 16 16	69 64 139 58 34	69 48 32 33 32	11 9.7 10 11 10	3.2 4.4 3.7 3.4 3.0	338 311 265 96 55
6 7 8 9 10	16 97 42 37 21	32 56 29 21 17	99 41 27 20 16	132 150 212 150 e55	21 17 17 16 13	23 62 29 20 56	14 12 11 11 9.9	32 158 84 47 39	27 26 24 22 19	16 18 17 22 16	3.4 3.1 2.8 2.5 2.2	40 26 20 16 13
11 12 13 14 15	31 36 36 50 291	15 87 38 24 19	13 11 9.2 e8.0 e7.5	e34 24 19 15 18	8.9 8.3 11 18 11	190 63 33 23 47	9.9 10 9.4 9.6 10	40 39 52 81 53	18 16 17 20 18	12 12 22 17 12	2.0 1.7 1.6 1.4	12 13 9.9 7.9 6.8
16 17 18 19 20	87 42 31 60 126	26 93 33 25 43	e7.0 10 201 48 24	52 153 110 62 201	8.9 e7.7 7.0 6.4 6.0	43 46 63 65 32	12 21 25 18 15	51 55 75 68 40	17 15 14 20 44	13 19 13 10 8.3	1.2 1.2 4.6 4.8	6.1 9.2 34 44 29
21 22 23 24 25	67 134 80 43 27	36 291 288 200 150	17 13 11 25 132	113 150 165 79 45	5.6 5.4 4.9 e4.4 4.4	18 14 12 11 133	15 23 135 109 56	39 52 34 26 22	42 30 22 44 38	7.2 6.4 6.1 5.7 5.0	266 84 231 108 109	71 145 104 75 67
26 27 28 29 30 31	21 21 37 22 91 110	96 77 45 29 65	62 44 31 59 158 71	30 217 100 40 32 203	6.2 151 82 	71 54 44 30 73 66	108 117 70 208 108	20 24 21 21 27 146	23 18 17 15 13	4.5 4.1 3.8 3.6 3.2 2.9	103 187 52 35 37 229	70 95 147 414 268
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1692.7 54.6 291 5.8 3360 9.25 10.67	2089 69.6 291 15 4140 11.8 13.17	2206.7 71.2 683 7.0 4380 12.1 13.91	3867 125 362 15 7670 21.1 24.38	1199.1 42.8 387 4.4 2380 7.26 7.56	1576 50.8 190 11 3130 8.62 9.94	1241.8 41.4 208 9.4 2460 7.02 7.83	1710 55.2 158 20 3390 9.35 10.78	793 26.4 69 13 1570 4.48 5.00	331.5 10.7 22 2.9 658 1.81 2.09	1578.6 50.9 266 1.2 3130 8.63 9.95	2807.9 93.6 414 6.1 5570 15.9 17.70

e Estimated

15085100 OLD TOM CREEK NEAR KASAAN--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1949 - 2001, BY WATER YEAR (WY)#

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	70.9	66.1	57.5	48.4	45.4	39.1	48.7	43.1	26.1	13.3	15.1	31.7
MAX	163	166	136	128	117	86.3	122	99.1	56.1	31.0	50.9 2001	93.6
(WY) MIN	1978 28.4	2000 17.1	1992 8.29	1992 3.00	1998 5.00	1984 10.1	1980 19.1	1999 15.0	1950 5.45	1991 2.66	1.81	2001
(WY)	1952	1966	1984	1950	1950	1956	19.1	1996	1958	1958	1993	1965
(WI)	1002	1000	1704	1000	1000	1000	1007	1000	1000	1000	1000	1703
SUMMARY	STATISTI	ICS FOR	2000 CALE	NDAR YEAR	}	FOR 2001 W	ATER YEA	R	WATER Y	EARS 1949	- 2001#	
ANNUAL			18221.0			21093.						
ANNUAL			49.8			57.	8		42.			
	' ANNUAL N								63.		2000	
	ANNUAL ME		683	Dec 1		683	Dog	1	25. 858		1951 23 1990	
	DAILY ME		3.9			a1.					14 1965	
		MINIMUM	5.0			1.					13 1965	
	PEAK FLO		5.0	1103		951			b1490		16 1952	
MAXIMUM	PEAK STA	AGE					60 Dec				16 1952	
INSTANT	ANEOUS LO	OW FLOW					73 Aug	18			15 1965	
ANNUAL	RUNOFF (A	AC-FT)	36140			41840			30480)		
	RUNOFF (C		8.4			9.				13		
		INCHES)		8		133.	00		96.	88		
	ENT EXCEE		120			150			93			
	ENT EXCE		27			30	2		24 6.	_		
90 PERC	ENT EXCEE	פתז	9.0			6.	4		6.	5		

[#] See Period of Record; partial years used in monthly summary statistics a Aug. 16 and 17 $$\rm b$$ From rating curve extended above 330 ${\rm ft}^3/{\rm s}$

15085100 OLD TOM CREEK NEAR KASAAN--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1956, 1959, and 1965 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: October 1964, April 1965 to February 1975, June 1975 to April 1978, and November 1978 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for 15-minute recording interval since April 11,1996.

REMARKS.--Records represent water-temperature at the sensor within 0.5° C. Temperature at the sensor was compared with the stream average by cross section on August 28. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum, 18.5°C, July 3, 1998; minimum, 0.0°C, on many days during most winter periods.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 15.5°C, August 13; minimum, 0.0°C, on many days during the winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)
AUG 2001 28 28 28	1108 1107 1106 1105	39.1 39.1 39.1	1.50 11.50 21.50 31.50	2.30 2.30 2.30 2.30	48.7 48.7 48.7 48.7	11.5 11.5 11.5 11.5	13.0 13.0 13.0

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	OVEMBER		DI	ECEMBER			JANUARY	
1 2 3 4 5	8.5 7.0 8.0 8.5 9.0	7.0 6.0 7.0 7.5 8.0	8.0 6.5 7.5 8.0 8.5	6.5 7.0 7.5 6.5 6.5	6.0 6.5 6.5 5.5	6.0 6.5 7.0 6.0	5.0 5.5 5.0 4.5 5.5	4.5 5.0 4.5 4.0 4.5	5.0 5.0 4.5 4.5	3.5 4.0 4.0 3.5 4.0	3.0 3.0 3.5 3.0 3.5	3.0 3.5 4.0 3.5 4.0
6 7 8 9 10	9.0 9.0 8.5 8.5	8.5 8.5 8.0 7.5 7.0	8.5 9.0 8.0 8.0 7.5	6.0 6.0 6.0 5.0 4.5	5.5 5.5 5.0 4.0 4.0	6.0 6.0 5.5 4.5	5.5 4.0 3.5 3.0 1.5	4.0 3.5 3.0 1.5	5.0 4.0 3.5 2.0 1.5	3.5 4.0 4.0 3.5 3.0	3.5 3.0 3.5 3.0 2.5	3.5 3.5 3.5 3.5 2.5
11 12 13 14 15	8.5 9.5 9.0 8.5 9.0	8.0 8.5 8.0 7.5 8.0	8.0 9.0 8.5 8.0	5.0 5.5 5.0 5.0	4.0 5.0 5.0 4.5 4.5	4.5 5.0 5.0 4.5 5.0	1.5 1.0 1.0 .5	1.0 1.0 .5 .0	1.5 1.0 .5 .0	2.5 2.0 2.5 2.0 2.5	1.5 1.5 2.0 2.0	2.0 2.0 2.0 2.0 2.5
16 17 18 19 20	8.5 8.5 8.5 7.5	7.5 8.0 7.5 7.0	8.0 8.0 8.0 7.0	5.5 5.5 5.0 5.5 6.0	5.0 4.5 4.5 5.0 5.0	5.0 5.0 4.5 5.0 5.5	.0 .5 2.5 2.5 2.5	.0 .0 .0 2.0 2.0	.0 .5 1.5 2.5 2.0	3.0 3.5 3.5 3.0 3.5	2.5 2.5 3.0 3.0	2.5 3.0 3.5 3.0
21 22 23 24 25	7.0 8.0 8.0 7.0 6.5	6.5 7.0 7.0 6.5 5.5	7.0 7.5 7.5 7.0 6.0	6.0 6.5 6.5 6.0 5.5	6.0 6.0 5.5 5.5	6.0 6.5 6.0 5.5	2.0 2.0 2.0 2.5 2.5	1.0 1.0 1.0 2.0 2.0	1.5 1.5 1.5 2.0 2.5	3.5 3.5 3.5 4.0 4.0	3.0 3.5 3.5 3.5 3.5	3.5 3.5 3.5 3.5 4.0
26 27 28 29 30 31	6.5 6.5 6.5 6.5 6.0	5.5 6.0 6.0 5.0 5.0	6.0 6.5 6.5 5.5 5.5	5.0 5.0 4.0 4.0 4.5	4.5 4.0 3.5 3.5 4.0	5.0 4.5 4.0 4.0	2.5 2.5 2.5 3.0 3.5 3.0	2.5 2.5 2.5 2.5 3.0 3.0	2.5 2.5 2.5 3.0 3.0	4.0 4.0 4.0 3.0 2.5 3.5	3.5 3.5 2.5 2.0 2.0	3.5 3.5 3.0 2.5 2.5 3.0
MONTH	9.5	5.0	7.4	7.5	3.5	5.2	5.5	.0	2.4	4.0	1.5	3.1

SOUTHEAST ALASKA

15085100 OLD TOM CREEK NEAR KASAAN--Continued

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	1	FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	3.5 4.0 3.5 2.5	3.5 3.5 2.5 2.0 2.0	3.5 3.5 3.0 2.5 2.0	2.0 2.5 2.5 2.5 2.5	1.5 2.0 2.0 2.0 1.5	2.0 2.0 2.5 2.5 2.0	3.0 3.0 3.0 3.5 3.0	2.5 2.0 2.0 2.5 2.5	3.0 2.5 2.5 3.0 3.0	5.5 5.0 5.0 5.0	4.5 4.0 4.0 4.5 4.5	4.5 4.5 4.5 5.0
6 7 8 9 10	2.5	2.0 2.0 2.0 1.0	2.0 2.0 2.0 2.0 1.5	3.0 3.0 3.0 3.0	2.0 2.0 2.0 2.5 2.5	2.5 2.5 2.5 2.5 2.5	3.5 3.5 3.5 3.5 3.5	2.5 2.5 2.5 3.0 3.0	3.0 3.0 3.0 3.5 3.0	5.0 5.5 5.5 5.5	4.5 4.0 5.0 5.0	4.5 4.5 5.0 5.0
11 12 13 14 15	.5 1.5 1.5 1.5	.0 .5 1.0 1.0	.5 1.0 1.5 1.0	3.0 3.5 3.0 3.0	2.5 3.0 2.5 2.0 2.5	2.5 3.0 3.0 2.5 3.0	3.5 4.0 3.5 4.5 4.0	3.0 3.5 3.0 3.5 3.0	3.5 3.5 3.5 4.0 3.5	5.5 5.5 5.0 5.5 5.0	5.0 5.0 4.5 5.0 5.0	5.0 5.0 5.0 5.0
16 17 18 19 20	.5 .5 1.0 2.0 1.0	.0 .5 .5	.0 .0 .5 1.0	3.0 3.5 3.5 3.5 3.0	2.5 2.5 2.5 2.5 1.5	3.0 3.0 3.0 3.0 2.5	4.0 4.5 4.5 5.5	3.5 3.5 3.5 3.5 3.5	3.5 4.0 3.5 4.0 4.0	5.0 5.5 5.0 5.5 5.5	4.5 4.5 5.0 5.0	5.0 5.0 5.0 5.0
21 22 23 24 25	1.5 2.0 1.0 1.0 2.0	.5 1.0 .0 .0	1.0 1.5 .5 .5	1.5 1.5 2.0 2.0	1.0 1.0 1.0 1.5	1.0 1.0 1.5 2.0 2.0	4.5 5.0 4.0 5.0 5.5	3.0 3.5 3.5 3.5 4.0	3.5 4.0 3.5 4.5	5.5 6.0 6.0 6.0	5.0 5.5 5.5 5.0 5.5	5.5 5.5 5.5 5.5 5.5
26 27 28 29 30 31	2.0 2.0 2.0 	1.5 1.0 .0 	1.5 1.5 1.5 	3.0 3.0 3.5 3.5 3.0	2.0 2.5 2.0 2.5 2.0 2.0	2.5 2.5 2.5 2.5 2.5 3.0	5.0 4.5 5.0 5.5 5.0	4.5 4.0 3.5 4.0 4.5	4.5 4.5 4.5 4.5 4.5	6.0 6.5 6.5 6.5 7.0	5.5 5.5 6.0 6.0 6.5	6.0 6.0 6.5 6.5 6.5
MONTH	4.0	.0	1.4	3.5	1.0	2.4	5.5	2.0	3.6	7.0	4.0	5.2
DAY	MAX	MTN	MEAN	MAX	MTN	MEAN	MAX	MTN	MEAN	MAX	MTN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	MEAN R
DAY 1 2 3 4 5	6.5		MEAN 6.5 6.5 6.5 7.0 7.0	MAX 10.5 10.5 10.5 10.5		MEAN 10.0 10.5 10.5 10.5 10.6	1		MEAN 11.5 11.5 11.0 11.0			
1 2 3 4	6.5 6.5 7.0 7.0	JUNE 6.5 6.0 6.5 6.5	6.5 6.5 7.0 7.0	10.5 10.5 10.5 10.5 10.5	JULY 10.0 10.0 10.5 10.5 10.0	10.0 10.5 10.5 10.5	11.5 13.0 11.5 11.5 12.0	11.0 11.0 10.5 11.0	11.5 11.5 11.0 11.0	11.0 10.5 11.0 11.0 11.0 11.0	10.5 9.5 10.0 10.0	10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9	6.5 6.5 7.0 7.0 7.5 7.5 7.5 7.5	JUNE 6.5 6.0 6.5 6.5 7.0 7.0 7.5 7.5	6.5 6.5 7.0 7.0	10.5 10.5 10.5 10.5 10.5	JULY 10.0 10.0 10.5 10.5 10.0 10.0 9.5 9.5 9.5	10.0 10.5 10.5 10.5 10.0 10.0 9.5 9.5	11.5 13.0 11.5 11.5 12.0 12.0 13.0 13.5 14.5	11.0 11.0 10.5 11.0 11.0 11.0 11.0 11.0	11.5 11.5 11.0 11.0 11.5 11.5 12.0 12.0 12.5	11.0 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.5 9.5 10.0 10.0 10.5 10.0 10.5	10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	6.5 6.5 7.0 7.0 7.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0	JUNE 6.5 6.0 6.5 6.5 6.5 7.0 7.5 7.5 7.5 8.0 8.0	6.5 6.5 7.0 7.0 7.5 7.5 7.5 7.5 7.5 8.0 8.0	10.5 10.5 10.5 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5	JULY 10.0 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5	10.0 10.5 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5	11.5 13.0 11.5 11.5 12.0 12.0 13.0 13.5 14.5 14.5 14.5	AUGUST 11.0 11.0 10.5 11.0 11.0 11.0 11.0 11.	11.5 11.5 11.0 11.0 11.5 12.0 12.0 12.5 13.0 13.0 13.0 13.5	11.0 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.5 9.5 10.0 10.0 10.5 10.0 10.0 10.0 9.5 8.5 9.5 9.5 9.5	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	6.5 6.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.5 8.5 9.0	JUNE 6.5 6.0 6.5 6.5 6.5 7.0 7.0 7.5 7.5 7.5 8.0 8.0 8.0 8.0 8.0 8.5 9.0	6.5 6.5 7.0 7.0 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.0 8.5 8.5 9.0	10.5 10.5 10.5 10.5 10.5 10.0 10.0 9.5 9.5 9.5 10.5 11.0	JULY 10.0 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 10.0 10.0 10.0 10.0	10.0 10.5 10.5 10.5 10.0 10.0 10.0 9.5 9.5 9.5 9.5 10.0 10.0	11.5 13.0 11.5 11.5 12.0 12.0 13.0 13.5 14.5 14.5 15.0 15.5 15.0 15.5 13.5 13.5 13.5	AUGUST 11.0 11.0 10.5 11.0 11.0 11.0 11.0 11.	11.5 11.5 11.0 11.0 11.5 11.5 12.0 12.0 12.5 13.0 13.0 13.0 13.5 13.5	11.0 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.5 9.5 10.0 10.0 10.5 10.0 10.0 10.0 9.5 8.5 9.5 9.5 10.0 9.5 10.0	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	6.5 6.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.5 8.5 9.0 9.5 9.0 9.0	JUNE 6.5 6.0 6.5 6.5 6.5 7.0 7.5 7.5 7.5 7.5 8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0	6.5 6.5 7.0 7.0 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.0 8.5 8.5 9.0 9.0 9.0	10.5 10.5 10.5 10.5 10.0 10.0 10.0 9.5 9.5 9.5 10.5 11.0 11.0 11.0 11.0 11.0 11.0 11	JULY 10.0 10.5 10.5 10.0 10.0 9.5 9.5 9.5 9.5 9.5 9.5 10.0 10.0 10.5 11.0 11.5 12.0 12.5 11.0	10.0 10.5 10.5 10.5 10.0 10.0 10.0 9.5 9.5 9.5 9.5 10.0 10.0	11.5 13.0 11.5 11.5 12.0 12.0 13.0 13.5 14.5 14.5 15.0 15.5 15.0 15.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5	AUGUST 11.0 11.0 10.5 11.0 11.0 11.0 11.0 11.	11.5 11.5 11.0 11.0 11.5 11.5 12.0 12.5 13.0 13.0 13.5 13.5 13.5 13.5 13.5 13.0 13.5 13.5	11.0 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.5 9.5 10.0 10.0 10.5 10.0 10.0 10.0 10.0 9.5 8.5 9.5 10.0 9.5 10.0 10.0 10.0 10.0 10.0	10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5

15086960 SUNRISE LAKE OUTLET NEAR WRANGELL

LOCATION.--Lat $56^{\circ}24'44''$, long $132^{\circ}29'30''$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 17, T. 63 S., R. 83 E.(Petersburg B-2 quad), Hydrologic Unit 19010202, on Woronkofski Island, in the Tongass National Forest, on the right bank, 75 ft downstream from Sunrise Lake outlet and 6.5 mi southwest of Wrangell.

DRAINAGE AREA.--1.17 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--September 1977 to September 1980, October 1997 to current year. Prior to October 1997 at a site 350 ft upstream at different datum (discontinued).

REVISED RECORDS. -- WDR-AK-99-1: 1977-80 and 1998.

GAGE.--Water-stage recorder. Elevation of gage is 1950 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DICCULARCE CURTO FEET DED CECOND MATER VEAR OCTORER 2000 TO CERTEMBER 2001

EXTREMES FOR CURRENT YEAR.--Maximum discharge during period October to August, $106~{\rm ft}^3/{\rm s}$, January 3, 2001, gage height 9.24 ft; minimum daily discharge during period October to August, $1.0~{\rm ft}^3/{\rm s}$, February 25, 2001.

		DISCHA	RGE, CUBIO	C FEET P			YEAR OCTOB VALUES	ER 2000	TO SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e11 e7.0 e6.5 e5.5 e9.0	5.7 13 40 18 9.8	13 32 19 12 35	4.8 12 76 24 15	14 11 9.1 5.5 3.9	3.4 2.6 2.1 1.9	2.9 2.2 1.8 1.9 2.3	4.8 e5.0 e5.5 e5.7 e6.0	41 22 20 23 23	14 15 16 35 27	e5.4 e5.7 e5.0 e4.4 e4.1	
6 7 8 9 10	e13 e14 e15 e11 e7.5	13 15 13 8.1 5.4	45 18 11 8.2 6.4	15 8.5 7.2 5.8 4.3	3.1 2.7 2.4 e2.3 2.1	1.9 2.0 1.7 2.0 2.8	2.0 1.6 1.4 1.4	5.6 4.6 4.4 3.8 3.4	22 22 21 23 25	43 47 31 35 23	e3.8 e3.3 e3.0	
11 12 13 14 15	e12 e17 e28 e14 e18	e5.2 e7.8 6.0 4.4 3.6	5.2 4.4 3.6 3.1 e2.8	3.3 e2.7 e3.3 e2.9 e2.3	1.9 1.7 2.3 3.6 2.9	4.9 5.6 4.1 2.9 2.5	1.2 1.3 1.3 1.1	4.8 6.1 7.4 7.1	17 17 e23 24 20	15 15 42 31 17	 	
16 17 18 19 20	e13 e9.5 11 e12 e13	4.1 7.9 6.3 8.3	e3.4 e3.6 e3.8 e4.6 e3.2	e3.0 e6.7 e5.7 5.0 3.5	2.3 1.9 1.6 1.5	2.6 3.0 2.6 2.7 2.2	1.1 1.4 2.7 3.7 e3.8	11 10 8.6 6.7 6.6	17 16 17 23 e47	13 14 11 9.9		
21 22 23 24 25	15 30 22 13 7.9	18 51 41 25 18	e2.5 e1.9 e1.7 e1.6 e2.4	e3.1 e2.5 5.2 8.3 7.1	1.3 1.2 1.2 1.1 e1.0	1.8 1.5 1.4 1.2	e3.6 e3.8 e5.7 e6.1 e5.4	11 e27 e23 13 9.9	36 24 21 19 16	11 9.8 7.8 6.4 5.5	 	
26 27 28 29 30 31	5.6 4.4 3.5 3.0 4.1 5.5	13 9.8 6.9 5.2 4.5	e2.9 e2.7 e2.4 e2.7 e4.4 6.1	4.8 e5.8 e7.0 e5.5 e5.0 e6.2	e1.3 3.8 7.3 	e2.8 3.6 3.3 2.9 2.4 3.3	5.2 e12 11 7.2 5.9	10 12 15 20 21 47	14 17 24 19 14	4.8 4.4 4.0 3.7 3.3 e4.1		
TOTAL MEAN MAX MIN AC-FT CFSM IN.	361.0 11.6 30 3.0 716 9.95 11.48	398.0 13.3 51 3.6 789 11.3 12.65	268.6 8.66 45 1.6 533 7.41 8.54	271.5 8.76 76 2.3 539 7.49 8.63	95.4 3.41 14 1.0 189 2.91 3.03	80.7 2.60 5.6 1.2 160 2.22 2.57	103.4 3.45 12 1.1 205 2.95 3.29	338.0 10.9 47 3.4 670 9.32 10.75	667 22.2 47 14 1320 19.0 21.21	529.7 17.1 47 3.3 1050 14.6 16.84	 	
		STATISTIC	CS OF MONT	HLY MEAN	DATA FOR	WATER	YEARS 1977	- 2001,	BY WATER	YEAR (WY)#		
MEAN MAX (WY) MIN (WY)	17.7 24.8 2000 11.6 2001	8.97 13.3 2001 4.24 1999	8.52 15.0 2000 4.20 1999	5.97 9.55 1999 2.26 1979	3.48 6.86 1980 1.60 1979	3.79 6.59 1980 2.44 1978	6.66 9.81 1980 3.45 2001	17.4 19.9 1978 10.9 2001	20.9 31.6 1999 9.88 1998	14.9 26.7 2000 5.91 1998	10.1 15.2 2000 3.47 1979	11.6 17.5 1999 7.04 1977

See period of record Estimated

15086960 SUNRISE LAKE OUTLET NEAR WRANGELL--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	WATER YEARS 1977 - 2001#
ANNUAL TOTAL	4613.8	
ANNUAL MEAN	12.6	11.1
HIGHEST ANNUAL MEAN		14.2 2000
LOWEST ANNUAL MEAN		8.66 1978
HIGHEST DAILY MEAN	110 Aug 22	110 Aug 22 2000
LOWEST DAILY MEAN	al.2 Mar 9	b.93 Feb 24 1979
ANNUAL SEVEN-DAY MINIMUM	1.3 Mar 7	.94 Feb 23 1979
MAXIMUM PEAK FLOW		c205 Aug 21 2000
MAXIMUM PEAK STAGE		9.83 Aug 21 2000
INSTANTANEOUS LOW FLOW		.93 Feb 23 1979
ANNUAL RUNOFF (AC-FT)	9150	8010
ANNUAL RUNOFF (CFSM)	10.8	9.45
ANNUAL RUNOFF (INCHES)	146.70	128.43
10 PERCENT EXCEEDS	28	25
50 PERCENT EXCEEDS	8.0	7.3
90 PERCENT EXCEEDS	2.0	2.1

[#] See Period of Record
a Mar. 9 to Mar. 12
b Feb. 24 to Feb. 28
c From rating curve extended above 50 ft³/s

15086960 SUNRISE LAKE OUTLET NEAR WRANGELL--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1978, 1980, January 1998 to October 2000 (Discontinued).

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: June 1998 to October 2000 (discontinued)

INSTRUMENTATION.--Electronic water-temperature recorder with 15-minute recording interval, started on January 27,

REMARKS.--No record after October 17. Records represent water temperature at the sensor within 0.5°C .

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum, 20.0°C, July 4-5, 1998: minimum, 0.0°C, on many days during winter periods.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum recorded for October, 8.0°C, October 1-3; minimum recorded, 6.0°C, October 10-11,14-16.

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	00	CTOBER		NOVE	MBER		DECE	EMBER		J	ANUARY	
1	8.0	7.5	8.0									
2	8.0	7.0	8.0									
3	8.0	6.5	8.0									
4	7.5	7.0	7.5									
5	7.0	7.0	7.0									
6	7.0	7.0	7.0									
7	7.0	7.0	7.0									
8	7.0	6.5	7.0									
9	7.0	6.5	7.0									
10	7.0	6.0	7.0									
11	6.5	6.0	6.5									
12	6.5		6.5									
		6.5										
13	7.0	6.5	7.0									
14	6.5	6.0	6.5									
15	6.5	6.0	6.5									
16	6.0	6.0	6.0									
17	6.5	6.0	6.0									
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
MONTH												

▲ 1	Discharge s	site and map number			
Map No.	Station No.	Station Name	Map No.	Station No.	Station Name
* 1	15087690	Indian River near Sitka	5	15087735	Indian River Diversion Return
2	15087695	Indian River above CBS pumphouse near Sitka			Flow from Sheldon Jackson College at Sitka
* 3	15087700	Indian River at Sitka	6	15087740	Indian River Diversion Return
4	15087730	Indian River Diversion to			Flow at Mouth at Sitka
		Sheldon Jackson College at Sawmill Cr Rd at Sitka	7	15087750	Indian River at Mouth at Sitka

Locations of gaging stations in the Sitka area.

15087690 INDIAN RIVER NEAR SITKA

LOCATION.--Lat $57^{\circ}04'01''$, long $135^{\circ}17'42''$, in $SW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 30, T. 55 S., R. 64 E. (Sitka A-4 quad), Hydrologic Unit 19010203, in Tongass National Forest, on Baranof Island, on right bank 2 mi upstream from mouth, and 1 mi northeast of Sitka.

DRAINAGE AREA.--10.1 mi²

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--August 1980 to September 1993. October 1998 to current year.

REVISED RECORD. -- WDR-82-1: 1980-81.

GAGE.--Water-stage recorder. Elevation of gage is 125 ft above sea level, from topographic map. Prior to October 1998, at site 200 ft upstream and at different datum

REMARKS .-- Records fair except for estimated daily discharges, which are poor.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of November 19, 1993, reached a stage of 14.04 ft, site and datum then in use, from recorder, discharge, 6.460 ft $^3/s$.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $1200~{\rm ft}^3/{\rm s}$ and maximum(*):

Dat	te	Time	Dischar (ft ³ /s		Gage height	:	Date	Time		ischarge (ft ³ /s)	Gage l	neight t)
Oct	11	0200	*3080		*12.78		Dec 5	0615	5	1670	11	.71
		DISCHAF	GE, CUBIC	FEET			YEAR OCTOBE	R 2000	TO SEPTEM	IBER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	50 42 56 43 54	73 62 250 111 83	71 71 61 75 648	37 58 131 82 101	e149 e97 e113 e77 e62	e70 e56 e47 e44 e45	e35 e29 e30 e72 e57	58 79 130 96 72	124 99 100 105 98	57 56 60 63 107	72 56 58 56 45	46 104 71 42 193
6 7 8 9 10	134 136 121 206 184	74 92 76 62 55	170 108 92 80 72	89 70 73 67 56	e56 e59 e52 e48 e40	e47 e53 e59 e75 e412	39 35 51 54 42	65 77 132 97 83	92 94 103 102 110	86 159 100 85 85	36 32 31 32 32	125 106 90 79 74
11 12 13 14 15	757 247 216 171 213	119 113 74 61 66	65 59 52 46 42	51 47 52 50 55	e38 e36 e190 e120 e65	e500 e221 e131 e100 e88	44 40 38 35 36	79 82 80 e80 e80	87 85 90 87 82	81 82 81 80 80	29 28 25 22 25	80 159 407 369 160
16 17 18 19 20	139 106 91 85 84	62 104 68 68 72	39 38 45 42 35	67 56 e51 e48 e44	e51 e48 e43 e40 e38	e80 e77 e73 e66 e57	41 53 55 47 49	79 71 73 63 69	81 81 84 99	81 73 63 62 63	24 21 20 21 33	152 159 137 128 117
21 22 23 24 25	84 101 113 93 77	155 194 178 138 115	32 29 28 28 32	e54 e65 e76 e57 e47	e37 e35 e33 e32 e31	e52 e47 e43 e41 e43	53 58 58 71 57	79 100 109 84 79	80 72 76 74 66	64 60 69 108 89	17 15 12 12 14	110 92 79 76 61
26 27 28 29 30 31	67 60 55 49 52 101	119 126 91 76 67	32 28 27 26 34 39	e43 e122 e110 e62 e80 e160	e80 e178 e138 	e47 e41 e43 e39 e41 e48	61 65 62 61 52	85 97 101 98 102 153	68 77 71 61 59	81 70 64 69 75 70	19 72 36 29 27 39	55 56 52 72 328
TOTAL MEAN MAX MIN AC-FT CFSM IN.	3987 129 757 42 7910 12.7 14.68	3004 100 250 55 5960 9.91 11.06	2246 72.5 648 26 4450 7.17 8.27	2161 69.7 160 37 4290 6.90 7.96	1986 70.9 190 31 3940 7.02 7.31	2786 89.9 500 39 5530 8.90 10.26	1480 49.3 72 29 2940 4.88 5.45	2732 88.1 153 58 5420 8.73 10.06	2599 86.6 124 59 5160 8.58 9.57	2423 78.2 159 56 4810 7.74 8.92	990 31.9 72 12 1960 3.16 3.65	3779 126 407 42 7500 12.5 13.92
MEAN MAX (WY) MIN (WY)	190 293 1988 104 1985	103 218 1990 37.0 1999	104 207 1990 21.7 1984	101 184 1984 46.3 1988	81.6 154 1993 24.8 1999	64.2 122 1986 19.9 1989	YEARS 1980 - 69.4 111 1983 39.1 1981	108 167 1983 53.3 1981	90.7 166 1985 28.8 1993	YEAR (WY) 64.1 111 1985 20.6 1993	# 86.3 238 1983 30.0 1989	174 295 1991 52.8 1986

See period of record; partial years used in monthly summary statistics and break in record

Estimated

15087690 INDIAN RIVER NEAR SITKA--Continued

SUMMARY STATISTICS	FOR 2000 CAL	ENDAR	YEAR	FOR 2001	WATE	R YEAR	WATER YEARS	1980	- 2	2001#
ANNUAL TOTAL	33073			30173						
ANNUAL MEAN	90.4			82.7			103			
HIGHEST ANNUAL MEAN							123			1987
LOWEST ANNUAL MEAN							82.7			2001
HIGHEST DAILY MEAN	1150	Sep	4	757	Oct	11	2000	Oct :	12	1982
LOWEST DAILY MEAN	20	Mar	9	a12	Aug	23	8.6	Jan	18	1989
ANNUAL SEVEN-DAY MINIMUM	21	Mar	7	17	Aug	20	10	Jan	13	1989
MAXIMUM PEAK FLOW				b3080	Oct	11	c5710	Sep	4	1990
MAXIMUM PEAK STAGE				12.78	Oct	11	d13.51	Sep	4	1990
INSTANTANEOUS LOW FLOW				11	Aug	24	8.2	Jan	19	1989
ANNUAL RUNOFF (AC-FT)	65600			59850			74860			
ANNUAL RUNOFF (CFSM)	8.95			8.18			10.2			
ANNUAL RUNOFF (INCHES)	121.81			111.13			139.00			
10 PERCENT EXCEEDS	157			133			190			
50 PERCENT EXCEEDS	74			69			69			
90 PERCENT EXCEEDS	31			34			29			

[#] See period of record; partial years used in monthly summary statistics and break in record a Aug. 23 and 24 b From rating curve extended above $300 \text{ ft}^3/\text{s}$ c From rating curve extended above $3,100 \text{ ft}^3/\text{s}$, at site and datum then in use d At site and datum then in use

15087690 INDIAN RIVER NEAR SITKA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.-- Water years 1983, January 2001 to September 2001.

PERIOD OF DAILY RECORD. -

SPECIFIC CONDUCTANCE: July 2001 to September 2001 WATER TEMPERATURE: May 2001 to September 2001.

INSTRUMENTATION.--Electronic water temperature recorder since May 16, 2001, recorder set to 1 hour recording interval.

REMARKS. -

EMPHANS.-SPECIFIC CONDUCTANCE: Probe installed May 16, no record May 16 to July 24, due to program error. Records represent specific conductance at sensor within 3 us/cm. No variation was found within the cross sections measured on April 4 and July 25. No variation was found between the mean stream specific conductance and specific conductance at the sensor.

WATER TEMPERATURE: Probe installed on May 16. Records represent water temperature at sensor within 0.5°C. No variation was found within the cross sections measured on April 4 and July 25. No variation was found between the mean stream temperature and temperature at the sensor.

SAMPLE

EXTREMES OUTSIDE PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: Minimum recorded, A specific conductance value of 21 us/cm was measured on October 12, 1982. WATER TEMPERATURE: Minimum recorded, A water temperature of 2.5°C was measured on April 4, 2001.

EXTREMES FOR CURRENT YEAR .--

SPECIFIC CONDUCTANCE: Maximum recorded, 54 us/cm, August 20, and 23-25; minimum recorded, 27 us/cm, September 5

WATER TEMPERATURE: Maximum recorded, 10.0°C, August 27, 2001, minimum recorded, 4.5°C several days in May and June.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

BARO-

OXYGEN,

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	SPE- CIFIC CON- DUCT- ANCE (US/CM)		WATER (DEG C	(MM OF) HG)	OXYGEN DIS- SOLVE (MG/I	CENT D SATUR D ATION	ED				
APR 04 04 04 04 04 04	0945 0946 0947 0948 0949	15.0 20.0 25.0 30.0 35.0 40.0	40 40 40 40 40 40	7.2 7.2 7.2 7.2 7.2 7.2	2.5 2.5 2.5 2.5 2.5 2.5	750 750 750 750 750 750	14.1 14.1 14.1 14.1 14.1	105 105 105 105 105					
JUL 25 25 25 25 25 25 25 25 25 25 25	0902 0903 0904 0905 0906 0907 0908 0909	5.0 9.0 13.0 17.0 21.0 24.0 28.0 32.0	39 39 39 39 40 40 39	6.6 6.6 6.6 6.7 6.7 6.7	7.5 7.5 7.5 7.5 7.5 7.5 7.5	763 763 763 763 763 763 763	12.5 12.6 12.7 12.7 12.7 12.7 12.8 12.8	104 105 106 106 106 106 107					
DATE	TIME	MEDIUM CODE	SAMPLE TYPE	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
JAN 04	1020	9	9	8.24	86	10	3045	42	7.4			14	4.75
APR 04 MAY	0930	9	9	8.15	65	10	3045	40	7.2	2.5	14.1	15	4.93
16	0900	9	9	8.24	78	10	3045	42	7.7	5.0	12.4	17	5.80
16 16	1130 1200	9 H	9 9				8010						
JUL 25	0930	9	9	8.38	88	10	3045	40	6.6	7.5	12.7	15	5.07
DATE JAN	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	TOT IT FIELD	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	CONSTI-	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
04	.505	1.8		<.24			1.4	3.6	<.2	2.8	30		<.001
APR 04	.540	2.1		<.09	14	11	1.6	3.9	<.2	3.0	29		.002
MAY 16	.571	2.0	15	.12	18	14	1.4	3.8	<.2	3.2	28	26	<.001
16 16													
JUL 25	.513	1.7		.10	18	15	1.6	2.3	<.2	3.1		24	<.001

SOUTHEAST ALASKA

15087690 INDIAN RIVER NEAR SITKA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	H-2 / H-1 STABLE ISOTOPE RATIO PER MIL (82082)	O-18 / O-16 STABLE ISOTOPE RATIO PER MIL (82085)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688)
JAN 04	.132	<.002	<.08	<.10	.009	E.004	<.007	10	<3.2			1.4	<.1
APR 04	.076	.003	<.08	<.10	E.002	<.006	<.007	30	E2.9			1.8	<.1
MAY 16	.102	<.002	<.08	<.10	<.004	<.006	<.007	10	<3.0			.50	<.1
16 16										-79.30 	-11.09		
JUL 25	.055	.002	<.08	<.10	E.003	E.003	<.007	40	E1.9			3.2	<.1
DATE	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	BENZENE HEXA- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49343)	PENTA- CHLORO- ANISOLE SED, BM WS,<2MM DW, REC (UG/KG) (49460)	ALUM- INUM BOT MAT <63U WS FIELD PERCENT (34790)	ANTI- MONY BOT MAT <63U WS FIELD (UG/G) (34795)	ARSENIC BOT MAT <63U WS FIELD (UG/G) (34800)	BARIUM BOT MAT <63U WS FIELD (UG/G) (34805)	BERYL- LIUM BOT MAT <63U WS FIELD (UG/G) (34810)	BISMUTH BOT MAT <180UWS FIELD (UG/G) (34816)
JAN 04	<.1	<.1	<.022	2	.46								
APR 04	<.1	<.1	<.022	1	.18								
MAY 16	.1	.1	.024										
16 16 JUL						<50	<50	7.3	1.1	47	620	1.2	<1
25	<.1	<.1	.030	<1									
DATE JAN	CADMIUM BOT MAT <63U WS FIELD (UG/G) (34825)	CHRO- MIUM BOT MAT <63U WS FIELD (UG/G) (34840)	COPPER BOT MAT <63U WS FIELD (UG/G) (34850)	CALCIUM BOT MAT <63U WS FIELD PERCENT (34830)	COBALT BOT MAT <63U WS FIELD (UG/G) (34845)	CERIUM BOT MAT <63U WS FIELD (UG/G) (34835)	EURO- PIUM BOT MAT <63U WS FIELD (UG/G) (34855)	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)	HOLMIUM BOT MAT <63U WS FIELD (UG/G) (34875)	IRON BOT MAT <63U WS FIELD PERCENT (34880)	LANTHA- NUM BOT MAT <63U WS FIELD (UG/G) (34885)	LEAD BOT MAT <63U WS FIELD (UG/G) (34890)
04 APR													
04 MAY													
16 16													
16 JUL	. 2	180	100	1.8	46	31	1	<1	16	1	7.7	15	14
25													
	LITHIUM	MACINE											
DATE	BOT MAT <63U WS FIELD (UG/G) (34895)		MANGA- NESE BOT MAT <63U WS FIELD (UG/G) (34905)	MERCURY BOT MAT <63U WS FIELD (UG/G) (34910)	<63U WS FIELD (UG/G)	<63U WS FIELD (UG/G)	FIELD (UG/G)	<63U WS FIELD (UG/G)	<63U WS FIELD PERCENT	<63U WS FIELD (UG/G)	SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	<63U WS FIELD (UG/G)	SODIUM BOT MAT <63U WS FIELD PERCENT (34960)
JAN 04	BOT MAT <63U WS FIELD (UG/G)	SIUM BOT MAT <63U WS FIELD PERCENT	NESE BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G)	DENUM BOT MAT <63U WS FIELD (UG/G)	IUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G)	PHORUS BOT MAT <63U WS FIELD PERCENT	DIUM BOT MAT <63U WS FIELD (UG/G)	NIUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD PERCENT
JAN 04 APR 04	BOT MAT <63U WS FIELD (UG/G) (34895)	SIUM BOT MAT <63U WS FIELD PERCENT	NESE BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G)	DENUM BOT MAT <63U WS FIELD (UG/G)	IUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G)	PHORUS BOT MAT <63U WS FIELD PERCENT	DIUM BOT MAT <63U WS FIELD (UG/G)	NIUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD PERCENT
JAN 04 APR 04 MAY 16	BOT MAT <63U WS FIELD (UG/G) (34895)	SIUM BOT MAT <63U WS FIELD PERCENT (34900)	NESE BOT MAT <63U WS FIELD (UG/G) (34905)	BOT MAT <63U WS FIELD (UG/G) (34910)	DENUM BOT MAT <63U WS FIELD (UG/G) (34915)	IUM BOT MAT <63U WS FIELD (UG/G) (34920)	BOT MAT <63U WS FIELD (UG/G) (34925)	BOT MAT <63U WS FIELD (UG/G) (34930)	PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	BOT MAT <63U WS FIELD (UG/G) (34955)	BOT MAT <63U WS FIELD PERCENT (34960)
JAN 04 APR 04 MAY 16 16	BOT MAT <63U WS FIELD (UG/G) (34895)	SIUM BOT MAT <63U WS FIELD PERCENT (34900)	NESE BOT MAT <63U WS FIELD (UG/G) (34905)	BOT MAT <63U WS FIELD (UG/G) (34910)	DENUM BOT MAT <63U WS FIELD (UG/G) (34915)	IUM BOT MAT <63U WS FIELD (UG/G) (34920)	BOT MAT <63U WS FIELD (UG/G) (34925)	BOT MAT <63U WS FIELD (UG/G) (34930)	PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	BOT MAT <63U WS FIELD (UG/G) (34955)	BOT MAT <63U WS FIELD PERCENT (34960)
JAN 04 APR 04 MAY 16	BOT MAT <63U WS FIELD (UG/G) (34895)	SIUM BOT MAT <63U WS FIELD PERCENT (34900)	NESE BOT MAT <63U WS FIELD (UG/G) (34905)	BOT MAT <63U WS FIELD (UG/G) (34910)	DENUM BOT MAT <63U WS FIELD (UG/G) (34915)	IUM BOT MAT <63U WS FIELD (UG/G) (34920)	BOT MAT <63U WS FIELD (UG/G) (34925)	BOT MAT <63U WS FIELD (UG/G) (34930)	PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	BOT MAT <63U WS FIELD (UG/G) (34955)	BOT MAT <63U WS FIELD PERCENT (34960)
JAN 04 APR 04 MAY 16 16 15 JUL 25	BOT MAT <63U WS FIELD (UG/G) (34895)	SIUM BOT MAT <63U WS FIELD PERCENT (34900)	NESE BOT MAT <63U WS FIELD (UG/G) (34905)	BOT MAT <63U WS FIELD (UG/G) (34910)	DENUM BOT MAT <63U WS FIELD (UG/G) (34915)	IUM BOT MAT <63U WS FIELD (UG/G) (34920) 18 NITA- NIUM,	BOT MAT <63U WS FIELD (UG/G) (34925) 72 URANIUM	BOT MAT <63U WS FIELD (UG/G) (34930)	PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	BOT MAT <63U WS FIELD (UG/G) (34955)	BOT MAT <63U WS FIELD PERCENT (34960)
JAN 04 APR 04 MAY 16 16 15 JUL 25 DATE JAN 04	BOT MAT <63U WS FIELD (UG/G) (34895) 38 STRON- TIUM BOT MAT <63U WS FIELD (UG/G)	SIUM BOT MAT <63U WS FIELD PERCENT (34900) 2.5 SULFUR BOT MAT <63U WS FIELD	NESE BOT MAT <63U WS FIELD (UG/G) (34905) 2200 TANTA- LUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34910) 07 THORIUM BOT MAT <63U WS FIELD (UG/G)	DENUM DENUM SOT MAT C63U WS FIELD (UG/G) (34915) 1.7 TIN BOT MAT C63U WS FIELD (UG/G)	IUM BOT MAT <63U WS FIELD (UG/G) (34920) 18 18 TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT	BOT MAT <63U WS FIELD (UG/G) (34925) 72 URANIUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34930) 13 VANA- DIUM BOT MAT <63U WS FIELD (UG/G)	PHORUS BOT MAT <63U WS FIELD PERCENT (34935) 110 YTTRIUM BOT MAT <63U WS FIELD (UG/G)	DIUM BOT MAT <63U WS FIELD (UG/G) (34945) 26 YTTER- BIUM BOT MAT <63U WS FIELD (UG/G)	NIUM BOT MAT <63U WS FIELD (UG/G) (34950) 9 S9 ZINC BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34955) 3 CARBON, ORGANIC SED, BM WS, 663U DW, REC (PER- CENT)	BOT MAT <63U WS FIELD PERCENT (34960) 1.3 CARBON, INORG, SED, BM WS, <63U DW, REC (PER- CENT)
JAN 04 APR 04 MAY 16 16 25 DATE JAN 04 APR 04	BOT MAT <63U WS FIELD (UG/G) (34895) 38 STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	SIUM BOT MAT <63U WS FIELD PERCENT (34900) 2.5 SULFUR BOT MAT <63U WS FIELD	NESE BOT MAT <63U WS FIELD (UG/G) (34905) 2200 TANTA- LUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34910) 07 THORIUM BOT MAT <63U WS FIELD (UG/G) (UG/G) (34980)	DENUM DENUM BOT MAT 630 WS FIELD (UG/G) (34915) 1.7 1.7 TIN BOT MAT <630 WS FIELD (UG/G) (34985)	IUM BOT MAT <63U WS FIELD (UG/G) (34920) 18 18 TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT (49274)	BOT MAT <63U WS FIELD (UG/G) (34925) 7 72 URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)	BOT MAT <63U WS FIELD (UG/G) (34930) 13 VANA- DIUM BOT MAT <63U WS FIELD (UG/G)	PHORUS BOT MAT <63U WS FIELD PERCENT (34935) 110 YTTRIUM BOT MAT <63U WS FIELD (UG/G)	DIUM BOT MAT <63U WS FIELD (UG/G) (34945) 26 YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015)	NIUM BOT MAT <63U WS FIELD (UG/G) (34950) 9 S9 ZINC BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34955) 3 CARBON, ORGANIC SED, BM WS,<63U DW, REC (PER- CENT) (49266)	BOT MAT <63U WS FIELD PERCENT (34960) 1.3 CARBON, INORG, SED, BM WS,<63U DW, REC (PER- CENT) (49269)
JAN 04 APR 04 MAY 16 16 JuL 25 DATE JAN 04 APR 04 MAY 16	BOT MAT <63U WS FIELD (UG/G) (34895) 38 STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	SIUM BOT MAT <63U WS FIELD PERCENT (34900) 2.5 SULFUR BOT MAT <63U WS FIELD	NESE BOT MAT <63U WS FIELD (UG/G) (34905) 2200 TANTA- LUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34910) 07 THORIUM BOT MAT <63U WS FIELD (UG/G) (UG/G) (34980)	DENUM BOT MAT <63U WS FIELD (UG/G) (34915) 1.7 TIN BOT MAT <63U WS FIELD (UG/G) (34985)	IUM BOT MAT <63U WS FIELD (UG/G) (34920) 18 18 TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT (49274)	BOT MAT <63U WS FIELD (UG/G) (34925) 72 72 URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)	BOT MAT <63U WS FIELD (UG/G) (34930) 13 VANA- DIUM BOT MAT <63U WS FIELD (UG/G)	PHORUS BOT MAT <63U WS FIELD PERCENT (34935) 110 YTTRIUM BOT MAT <63U WS FIELD (UG/G)	DIUM BOT MAT <63U WS FIELD (UG/G) (34945) 26 YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015)	NIUM BOT MAT <63U WS FIELD (UG/G) (34950) 9 S9 ZINC BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34955) 3 CARBON, ORGANIC SED, BM WS,<63U DW, REC (PER- CENT) (49266)	BOT MAT <63U WS FIELD PERCENT (34960) 1.3 CARBON, INORG, SED, BM WS,<63U DW, REC (PER- CENT) (49269)
JAN 04 APR 04 MAY 16 16 15 JUL 25 DATE JAN 04 APR 04 MAY	BOT MAT <63U WS FIELD (UG/G) (34895) 38 38 STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	SIUM BOT MAT <63U WS FIELD PERCENT (34900) 2.5 SULFUR BOT MAT <63U WS FIELD PERCENT (34970)	NESE BOT MAT <63U WS FIELD (UG/G) (34905) 2200 TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)	BOT MAT <63U WS FIELD (UG/G) (34910) 07 THORIUM BOT MAT <63U WS FIELD (UG/G) (34980)	DENUM BOT MAT <63U WS FIELD (UG/G) (34915) TIN BOT MAT <63U WS FIELD (UG/G) (34985)	IUM BOT MAT <63U WS FIELD (UG/G) (34920) 18 18 TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT (49274)	BOT MAT <63U WS FIELD (UG/G) (34925) 7 72 URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)	BOT MAT <63U WS FIELD (UG/G) (34930) 13 13 VANA- DIUM BOT MAT <63U WS FIELD (UG/G) (35005)	PHORUS BOT MAT <pre> </pre>				

15087690 INDIAN RIVER NEAR SITKA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	CARBON, ORG + INORG, SED, BM WS,<63U DW, REC PERCENT (49267)	CARBON, ORG + INORG SED, BM WS,<2MM DW, REC (G/KG) (49272)	CARBON, INORG, SED, BM WS,<2MM DW, REC (G/KG) (49270)	CARBON, ORGANIC SED, BM WS,<2MM DW, REC (G/KG) (49271)	BENZENE 124TRI- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49438)	BENZENE O-DI- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49439)	NAPTHAL ENE, 12 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49403)	BENZENE M-DI- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49441)	BENZENE P-DI- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49442)	NAPTHAL ENE, 16 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49404)	9H-FLU- ORENE, 1METHYL SED, BM WS,<2MM DW, REC (UG/KG) (49398)	PHENAN THRENE 1METHYL SED, BM WS,<2MM DW, REC (UG/KG) (49410)	PYRENE, 1- METHYL, SED, BM WS,<2MM DW, REC (UG/KG) (49388)
JAN 04													
APR 04													
MAY 16													
16 16	3.9	3.8	<.2	3.7	<50	<50	<50	<50	<50	<50	<50	<50	 <50
JUL 25													
DATE	QUINO- LINE,	NAPTHAL ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405)	TOLUENE 2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395)	NAPTHAL ENE, 26 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49406)	TOLUENE 2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396)	NAPTHAL ENE, 2- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49407)	PHENOL, 2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467)	NAPTHAL ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948)	ANTHRA- CENE, 2- METHYL- SED, BM WS, <2MM DW, REC (UG/KG) (49435)	3,5- XYLENOL SED, BM WS,<2MM DW, REC (UG/KG) (49421)	4-BROMO PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454)	M-CRE- SOL, 4- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49422)	4CHLORO PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455)
JAN 04 APR													
04 MAY													
16		 		 						 			
16 JUL	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
25													
DATE	4HCYPEN PHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG) (49411)	ACENAPH THENE SED, BM WS,<2MM DW, REC (UG/KG) (49429)	ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG) (49428)	ACRI- DINE SED, BM WS,<2MM DW, REC (UG/KG) (49430)	ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG) (49434)	9,10- ANTHRA- QUINONE SED, BM WS,<2MM DW, REC (UG/KG) (49437)	AZO- BENZENE SED, BM WS,<2MM DW, REC (UG/KG) (49443)	BENZ(A) ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG) (49436)	BENZO (A) PYRENE SED, BM WS,<2MM DW, REC (UG/KG) (49389)	BENZOB FLUOR- ANTHENE SED, BM WS,<2MM DW, REC (UG/KG) (49458)	BENZOCI NNOLINE BED MAT WS <2MM DRY WGT REC (UG/KG) (49468)	BENZO(G HI)PERY LENE SED, BM WS,<2MM DW, REC (UG/KG) (49408)	BENZO K FLUOR- ANTHENE SED, BM WS,<2MM DW, REC (UG/KG) (49397)
JAN 04													
04 APR 04													
04 APR 04 MAY 16		 	 22	 :::	 	 	 	 	 -:	 	 :::	 	
04 APR 04 MAY 16 16	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50			 <50
04 APR 04 MAY 16 16													
04 APR 04 MAY 16 16 16 JUL	PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC	<pre><50 PHTHALA TEBUTYL BENZYL- SED, BM</pre>	 <50 PHENOL C8- ALKYL- SED, BM WS,<2MM DW, REC	 <50 CARBA- ZOLE SED, BM WS,<2MM DW, REC	CHRY- SENE SED, BM WS, C2MM DW, REC (UG/KG)	<pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG)</pre>	<pre>PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC</pre>	<50 DIBENZ (AH),AN THRACEN SED, BM WS,<2MM	<50 THIOPH ENE,DI- BENZO- SED,BM WS,<2MM DW,REC	PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG)	PHTHAL- ATE,DI- METHYL SED, BM WS,<2MM DW, REC	 <50 FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG)	
04 APR 04 MAY 16 16 15 25	PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG)	PHTHALA TEBUTYL BENZYL- SED, BM WS,<2MM DW, REC (UG/KG)	 <50 PHENOL C8- ALKYL- SED, BM WS,<2MM DW, REC (UG/KG)	CARBA- ZOLE SED, BM WS,<2MM DW, REC (UG/KG)	CHRY- SENE SED, BM WS, C2MM DW, REC (UG/KG)	<pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG)</pre>	PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC (UG/KG)	<pre>CODIBENZ (AH),AN THRACEN SED, BM WS,<2MM DW, REC (UG/KG)</pre>	<pre>THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG)</pre>	PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG)	PHTHAL- ATE,DI- METHYL SED, BM WS, < 2MM DW, REC (UG/KG)	 <50 FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG)	9H-FLU- ORENE SED, BM WS, 2MM DW, REC (UG/KG)
04 APR 04 MAY 16 16 15 JUL 25 DATE JAN 04 APR 04	PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426)	PHTHALA TEBUTYL BENZYL- SED, BM WS,<2MM DW, REC (UG/KG)	 <50 PHENOL C8- ALKYL- SED, BM WS,<2MM DW, REC (UG/KG)	CARBA- ZOLE SED, BM WS,<2MM DW, REC (UG/KG)	CHRY- SENE SED, BM WS, C2MM DW, REC (UG/KG)	<pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG)</pre>	PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC (UG/KG)	<pre>CODIBENZ (AH),AN THRACEN SED, BM WS,<2MM DW, REC (UG/KG)</pre>	<pre>THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG)</pre>	PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG)	PHTHAL- ATE,DI- METHYL SED, BM WS, < 2MM DW, REC (UG/KG)	 <50 FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG)	9H-FLU- ORENE SED, BM WS, 2MM DW, REC (UG/KG)
04 APR 04 MAY 16 16 JUL 25 DATE JAN 04 APR 04 APR 16	PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426)	PHTHALA TEBUTYLL BENZYL- SED, BM WS, <2MM DW, REC (UG/KG) (49427)	PHENOL C8- ALKYL- SED, BM WS,<2MM DW, REC (UG/KG) (49424)	CARBA-ZOLE SED, BM WS, <2MM DW, REC (UG/KG) (49449)	 CHRY- SENE SED, BM WS,<2MM DW, REC (UG/KG) (49450) 	<pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG) (49381)</pre>	<pre>PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC (UG/KG) (49382)</pre>	<pre>DIBENZ (AH), AN THRACEN SED, BM WS, <2MM DW, REC (UG/KG) (49461)</pre>	<pre>THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452)</pre>	PHTHAL- ATE, D IETHYL SED, BM WS, <2MM DW, REC (UG/KG) (49383)	PHTHAL- ATE, DI- METHYL SED, BM WS, <2MM DW, REC (UG/KG) (49384)	FLUOR- FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG) (49466)	9H-FLU- ORENE SED, BM WS,<2MM DW, REC (UG/KG) (49399)
04 APR 04 MAY 16 16 15 DATE DATE JAN 04 APR 04 MAY 16 16 16	PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426)	PHTHALA TEBUTYLL BENZYL- SED, BM WS,<2MM DW, REC (UG/KG) (49427)	PHENOL C8- ALKYL- SED, BM WS,<2MM DW, REC (UG/KG) (49424)	CARBA-ZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449)	CHRY- SENE SED, BM WS,<2MM DW, REC (UG/KG) (49450)	<pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG) (49381)</pre>	PHTHAL ATE, D IOCTYL SED, BM WS, <2MM DW, REC (UG/KG) (49382)	<50 DIBENZ (AH), AN THRACEN SED, BM WS, <2MM DW, REC (UG/KG) (49461)	<pre>THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452)</pre>	<pre>PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG) (49383)</pre>	PHTHAL- ATE,DI- METHYL SED, BM WS,<2MM DW, REC (UG/KG) (49384)	FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG) (49466)	9H-FLU- ORENE SED, BM WS,<2MM DW, REC (UG/KG) (49399)
04 APR 04 MAY 16 16 15 DATE DATE JAN 04 APR 04 MAY 16 16	PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426)	PHTHALA TEBUTYL BENZYL- SED, BM WS,<2MM DW, REC (UG/KG) (49427)		CARBA-ZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449)	 CHRY- SENE SED, BM WS,<2MM DW, REC (UG/KG) (49450) 	PHTHAL- ATE, DIBUTYL, SED, BM WS,<2MM DW, REC (UG/KG) (49381)	PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC (UG/KG) (49382)	CIBENZ (AH),AN THRACEN SED, BM WS,<2MM DW, REC (UG/KG) (49461)	<pre>THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452)</pre>	PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG) (49383)	PHTHAL- ATE, DI- METHYL SED, BM WS, < 2MM DW, REC (UG/KG) (49384)	FLUOR- ANTHENE BED MAT WS < 2MM DRY WGT REC (UG/KG) (49466)	9H-FLU- ORENE SED, BM WS, < 2MM DW, REC (UG/KG) (49399)
04 APR 04 16 16 15 DATE DATE JAN 04 APR 04 MAY 16 16 16 16 DATE	PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426)	PHTHALA TEBUTYLL SED, BM WS,<2MM DW, REC (UG/KG) (49427) E10 ISOPHOR ONE	PHENOL C8- ALKYL- SED, BM WS,<2MM DW, REC (UG/KG) (49424) <50 ISO- QUINO- LINE, SED, BM	CARBA-ZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449)	 CHRY- SENE SED, BM WS,<2MM DW, REC (UG/KG) (49450) <50 DIPHNYL	<50 PHTHAL- ATE, DIBUTYL, SED, BM WS,<2MM DW, REC (UG/KG) (49381) <50	<pre>PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC (UG/KG) (49382) <50</pre>	<50 DIBENZ (AH), AN THRACEN SED, BM WS, <2MM DW, REC (UG/KG) (49461) <50 BENZENE PNTCHLR NITRO- SED, BM	<pre>THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452)</pre>	PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG) (49383)	PHTHAL- ATE, DI- METHYL SED, BM WS, < 2MM DW, REC (UG/KG) (49384)	FLUOR- ANTHENE BED MAT WS < 2MM DRY WGT REC (UG/KG) (49466)	9H-FLU- ORENE SED, BM WS, < 2MM DW, REC (UG/KG) (49399)
04 APR 04 MAY 16 16 15 DATE DATE JAN 04 APR 04 MAY 16 16 16 16 16 16 16 16 16 17	PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426) M INDENO 123-CD PYRENE SED, BM WS,<2MM DW, REC (UG/KG)	PHTHALA TEBUTYLL BENZYL- SED, BM WS,<2MM DW, REC (UG/KG) (49427) E10 ISOPHOR ONE SED, BM WS,<2MM DW, REC (UG/KG)	<50 PHENOL C8- ALKYL- SED, BM WS,<2MM DW, REC (UG/KG) (49424) <-50 ISO- QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG)	CARBA-ZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449) <50 DPROPYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG)	CHRY-SENE SED, BM WS,<2MM DW, REC (UG/KG) (49450) <50 DIPHNYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG)	<pre></pre>	<pre>PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC (UG/KG) (49382) <50 BENZENE NITRO- SED, BM WS,<2MM DW, REC (UG/KG)</pre>	<pre> CONTROL CONTRO</pre>	<pre> THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452) <50 PHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG) (UG/KG)</pre>	<pre>PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG) (49383) <50 PHENAN- THRI- DINE SED, BM WS,<2MM DW, REC (UG/KG)</pre>	PHTHAL- ATE, DI- METHYL SED, BM WS, <2MM DW, REC (UG/KG) (49384) <50 PHENOL SED, BM WS, <2MM DW, REC (UG/KG)	FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG) (49466) <-50 PYRENE, SED, BM WS,<2MM DW, REC (UG/KG)	9H-FLU- ORENE SED, BM WS,<2MM DW, REC (UG/KG) (49399) < < < < < <
04 APR 04 16 16 15 DATE DATE JAN 04 APR 04 MAY 16 16 JUL 25 DATE	M PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426) M M INDENO 123-CD PYRENE SED, BM WS,<2MM DW, REC (UG/KG) (49390)	PHTHALA TEBUTYLL BENZYL- SED, BM WS,<2MM DW, REC (UG/KG) (49427) E10 ISOPHOR ONE SED, BM WS,<2MM DW, REC (UG/KG)	PHENOL C8- ALKYL- SED, BM WS,<2MM DW, REC (UG/KG) (49424) <-50 UINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49394)	CARBAZOLE SED, BM WS, <2MM DW, REC (UG/KG) (49449)	CHRY- SENE SED, BM WS,<2MM DW, REC (UG/KG) (49450) <50 DIPHNYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) (49433)	<pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG) (49381) < < < < < < < < <-</pre>	<pre>PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC (UG/KG) (49382) <50 BENZENE NITRO- SED, BM WS,<2MM DW, REC (UG/KG)</pre>	<pre> CONTROL CONTRO</pre>	<pre> THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452) <50 PHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG) (UG/KG)</pre>	<pre>PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG) (49383) <50 PHENAN- THRI- DINE SED, BM WS,<2MM DW, REC (UG/KG)</pre>	PHTHAL- ATE, DI- METHYL SED, BM WS, <2MM DW, REC (UG/KG) (49384) <50 PHENOL SED, BM WS, <2MM DW, REC (UG/KG)	FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG) (49466) <-50 PYRENE, SED, BM WS,<2MM DW, REC (UG/KG)	9H-FLU- ORENE SED, BM WS,<2MM DW, REC (UG/KG) (49399) < < < < < <
04 APR 04 MAY 16 16 17 DATE DATE JAN 04 APR 04 MAY 16 16 JUL 25 DATE DATE	PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426) M INDENO 123-CD PYRENE SED, BM WS,<2MM DW, REC (UG/KG) (49390)	<pre></pre>		CARBA-ZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449)	CHRY- SED, BM WS,<2MM DW, REC (UG/KG) (49450) <50 DIPHNYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) (49433)	<50 PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG) (49381) <50 NAPHTH- ALENE, SED, BM WS,<2MM DW, REC (UG/KG) (49402)	<pre></pre>	<50 DIBENZ (AH), AN THRACEN SED, BM WS, <2MM DW, REC (UG/KG) (49461) <50 BENZENE PNTCHLR NITRO- SED, BM WS, <2MM DW, REC (UG/KG) (49446)	<50 THIOPH ENE, DI- BENZO- SED, BM WS, <2MM DW, REC (UG/KG) (49452) < < < < < < < < <-	<50 PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG) (49383) <50 PHENAN- THRI- DINE SED, BM WS,<2MM DW, REC (UG/KG) (49393)			9H-FLU- ORENE SED, BM WS,<2MM DW, REC (UG/KG) (49399) <-50 QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49392)
04 APR 04 MAY 16 16 16 JUL 25 DATE JAN 04 APR 04 MAY 16 16 JUL 25		PHTHALA TEBUTYLL SED, BM WS,<2MM DW, REC (UG/KG) (49427) E10 ISOPHOR ONE SED, BM WS,<2MM DW, REC (UG/KG) (49400)		CARBAZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449)	CHRY- SENE SED, BM WS,<2MM DW, REC (UG/KG) (49450) <50 DIPHNYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) (49433)	<pre>PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG) (49381) <50 NAPHTH- ALENE, SED, BM WS,<2MM DW, REC (UG/KG) (49402)</pre>	PHTHAL ATE, D IOCTYL SED, BM WS, <2MM DW, REC (UG/KG) (49382) <-50 BENZENE NITRO- SED, BM WS, <2MM DW, REC (UG/KG) (49444)	<50 DIBENZ (AH), AN THRACEN SED, BM WS, <2MM DW, REC (UG/KG) (49461) <-50 SED, BM WS, <2MM NITRO- SED, BM WS, <2MM DW, REC (UG/KG) (49446)	<50 THIOPH ENE, DI- BENZO- SED, BM WS, <2MM DW, REC (UG/KG) (49452) < < < < < ENERGY CONTROL PHENAN THRENE SED, BM WS, <2MM DW, REC (UG/KG) (49409)	PHTHAL- ATE, D IETHYL SED, BM WS, <2MM DW, REC (UG/KG) (49383) <-50 PHENAN- THRI- DINE SED, BM WS, <2MM DW, REC (UG/KG) (49393)	PHTHAL- ATE, DI- METHYL SED, BM WS, < 2MM DW, REC (UG/KG) (49384) <50 PHENOL SED, BM WS, < 2MM DW, REC (UG/KG) (49413)	FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG) (49466) <50 PYRENE, SED, BM WS,<2MM DW, REC (UG/KG) (49387)	9H-FLU- ORENE SED, BM WS,<2MM DW, REC (UG/KG) (49399) <50 QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49392)

SOUTHEAST ALASKA

15087690 INDIAN RIVER NEAR SITKA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	METHANE	BIS2CHL	
	2CHLORO	ETHYL	P-
	ETHOXY	ETHER	CRESOL
	SED, BM	SED, BM	SED, BM
	WS,<2MM	WS,<2MM	WS,<2MM
DATE	DW, REC	DW, REC	DW, REC
	(UG/KG)	(UG/KG)	(UG/KG)
	(49401)	(49456)	(49451)
JAN			
04			
APR			
04			
MAY			
16			
16			
16	< 50	< 50	< 50
JUL			
25			

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		P	AUGUST		S	EPTEMBE	R
1							46	46	46	51	42	50
2							47	46	46	44	36	41
3							47	47	47	45	39	42
4							48	47	47	47	45	46
5							48	47	48	47	27	39
6							48	48	48	43	36	41
7							49	48	48	44	41	43
8							49	48	49	45	42	43
9							49	49	49	47	45	46
10							50	49	49	48	47	48
11							50	49	50	49	48	48
12							50	50	50	49	31	45
13							51	50	50	37	30	34
14							51	50	51	42	28	36
15							51	50	51	43	37	41
16							51	51	51	45	38	42
17							52	51	51	45	39	43
18							53	51	52	44	42	44
19							53	51	52	44	39	42
20							54	52	52	46	42	44
21							53	52	53	47	43	46
22							53	53	53	46	42	44
23							54	53	53	47	46	46
24							54	53	53	48	47	47
25				42	41	41	54	53	53	48	48	48
26				43	42	42	53	51	52	49	48	48
27				45	43	44	51	41	44	48	46	47
28				45	45	45	49	46	47	48	48	48
29				45	43	44	50	49	49	48	39	47
30				45	44	44	51	50	50	39	29	34
31				46	45	45	51	50	50			
MONTH							54	41	50	51	27	44

15087690 INDIAN RIVER NEAR SITKA--Continued

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1												
2 3												
4 5												
6												
7												
8 9												
10												
11												
12 13												
14												
15												
16 17										5.5 5.0	4.5 4.5	4.0 4.5
18										5.0	4.5	5.0
19 20										6.0 5.0	4.5 4.5	5.0 5.0
21 22										5.5 5.0	4.5 4.5	5.0 4.5
23										5.0	4.5	4.5
24 25										5.5 6.0	4.5 4.5	4.5 5.0
26 27										6.0 6.0	4.5 5.0	5.0 5.5
28										6.0	5.0	5.5
29 30										5.5 5.5	4.5 4.5	5.0 5.0
31										5.5	4.5	5.0
MONTH												
												_
		JUNE			JULY			AUGUST			SEPTEMBE	
1 2	5.5 5.5	4.5	5.0 5.0	8.5 8.5	6.5	7.0 7.5	8.0	7.0	7.5 7.5	9.0	8.0	8.0
2	5.5 5.5	4.5 5.0 5.0	5.0 5.0	8.5 8.0	6.5 7.0 7.0	7.5 7.5	8.0 8.0 7.5	7.0 7.0 7.0	7.5 7.0	9.0 9.0 8.5	8.0 8.0 8.0	8.0 8.5 8.0
2	5.5	4.5 5.0	5.0	8.5	6.5 7.0	7.5	8.0 8.0	7.0 7.0	7.5	9.0 9.0	8.0	8.0 8.5
2 3 4 5	5.5 5.5 6.0 5.5	4.5 5.0 5.0 5.0 5.0	5.0 5.0 5.5 5.5	8.5 8.0 7.5 7.5	6.5 7.0 7.0 7.0 7.0	7.5 7.5 7.5 7.5	8.0 8.0 7.5 7.5 8.0	7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5	9.0 9.0 8.5 8.5 9.5	8.0 8.0 8.0 7.5 8.0	8.0 8.5 8.0 8.0
2 3 4	5.5 5.5 6.0	4.5 5.0 5.0 5.0	5.0 5.0 5.5	8.5 8.0 7.5	6.5 7.0 7.0 7.0	7.5 7.5 7.5	8.0 8.0 7.5 7.5	7.0 7.0 7.0 7.0	7.5 7.0 7.5	9.0 9.0 8.5 8.5	8.0 8.0 8.0 7.5	8.0 8.5 8.0 8.0
2 3 4 5 6 7 8	5.5 5.5 6.0 5.5 6.0 6.0 6.5	4.5 5.0 5.0 5.0 5.0 5.0	5.0 5.5 5.5 5.5 5.5 6.0	8.5 8.0 7.5 7.5 7.0 7.5 7.0	6.5 7.0 7.0 7.0 7.0 7.0	7.5 7.5 7.5 7.5 7.5 7.0 7.5 7.0	8.0 8.0 7.5 7.5 8.0 8.0 7.5 8.5	7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.0 8.0	8.0 8.0 7.5 8.0 7.5 7.5	8.0 8.5 8.0 8.5 8.5 7.5
2 3 4 5 6 7	5.5 5.5 6.0 5.5 6.0	4.5 5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.5 5.5 5.5	8.5 8.0 7.5 7.5 7.0 7.5	6.5 7.0 7.0 7.0 7.0 7.0	7.5 7.5 7.5 7.5 7.5	8.0 8.0 7.5 7.5 8.0 8.0	7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5	8.0 8.0 7.5 8.0 7.5	8.0 8.5 8.0 8.0 8.5
2 3 4 5 6 7 8 9	5.5 5.5 6.0 5.5 6.0 6.5 5.5	4.5 5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.5 5.5 5.5 5.5 6.0 5.5	8.5 8.0 7.5 7.5 7.0 7.0 7.0	6.5 7.0 7.0 7.0 7.0 7.0 6.5	7.5 7.5 7.5 7.5 7.0 7.5 7.0 7.0	8.0 7.5 7.5 8.0 8.0 7.5 8.5	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.0 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.0 7.0	8.0 8.0 7.5 8.0 7.5 7.5 7.5 7.0 6.5	8.0 8.5 8.0 8.5 8.5 8.0 7.5 7.5 6.5
2 3 4 5 6 7 8 9 10	5.5 5.5 6.0 5.5 6.0 6.5 5.5 5.5 6.0	4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.5 5.0	5.0 5.5 5.5 5.5 5.5 6.0 5.5 5.5 5.5	8.5 8.0 7.5 7.5 7.0 7.5 7.0 7.0 7.0 7.0	6.5 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 6.5	8.0 7.5 7.5 8.0 8.0 7.5 8.5 8.5 8.5	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.0 7.0 7.0 7.0	8.0 8.0 7.5 8.0 7.5 7.0 6.5 6.0	8.0 8.0 8.0 8.5 8.0 7.5 6.5 6.5
2 3 4 5 6 7 8 9 10	5.5 5.5 6.0 5.5 6.0 6.0 6.5 5.5 5.5	4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.5 5.5 5.5 6.0 5.5 5.5	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0	6.5 7.0 7.0 7.0 7.0 7.0 6.5 6.5	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0	8.0 7.5 7.5 8.0 7.5 8.0 7.5 8.5 8.5 8.7	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.0 7.0 7.0	8.0 8.0 7.5 8.0 7.5 7.5 7.0 6.5 6.0	8.0 8.5 8.0 8.5 8.5 8.0 7.5 7.5 6.5 6.5
2 3 4 5 6 7 8 9 10 11 12 13	5.5 5.5 6.0 5.5 6.0 6.5 5.5 5.5 5.5 6.5 6.5	4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.5 5.5	5.0 5.5 5.5 5.5 5.5 6.0 5.5 5.5 6.0	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0	6.5 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 6.5 6.5	8.0 8.0 7.5 7.5 8.0 8.0 7.5 8.5 8.5 8.5	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.0 7.0 7.0 6.5 9.0	8.0 8.0 7.5 8.0 7.5 7.5 7.5 6.0 6.5 6.0	8.0 8.0 8.0 8.5 7.5 7.5 6.5 6.5 8.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15	5.5 5.5 6.0 6.5 5.5 5.5 5.5 6.5 6.5 6.5 6.5	4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.5 5.5 5.5 5	5.0 5.0 5.5 5.5 5.5 6.0 5.5 5.5 6.0 6.0 6.0	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.5 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 6.5 6.5 7.0 7.0	8.0 7.5 7.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.0 7.0 7.0 6.5 9.0 9.0 8.5	8.0 8.0 7.5 8.0 7.5 7.5 7.0 6.5 6.0 6.5 6.5 7.5 7.5	8.0 8.5 8.0 8.5 8.5 7.5 6.5 6.5 7.0 8.5 8.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15	5.5 5.5 6.0 6.0 6.5 5.5 5.5 6.5 6.5 6.5 6.5	4.5 5.0 5.0 5.0 5.0 5.0 5.5 5.5 5.5 5.5 5	5.0 5.0 5.5 5.5 5.5 6.0 5.5 5.5 6.0 6.0 6.0	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.5 7.0 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 6.5 6.5 7.0 7.0	8.0 7.5 7.5 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.0 7.0 7.0 6.5 9.0 9.0 8.5	8.0 8.0 7.5 8.0 7.5 7.5 6.5 6.5 8.0 6.5 8.0 7.5 7.5	8.0 8.0 8.0 8.5 8.0 7.5 6.5 6.5 6.5 8.0 8.5 8.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	5.5 5.5 6.0 6.5 5.5 5.5 5.5 6.5 6.5 6.5 7.0	4.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	5.0 5.0 5.5 5.5 5.5 6.0 5.5 5.5 6.0 6.0 6.0 6.5 6.5	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.5 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 6.5 7.0	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 6.5 6.5 7.0 7.0 7.0 7.0	8.0 7.5 7.5 8.0 8.0 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.5 8.0 7.0 7.0 6.5 9.0 9.0 8.5 8.5 8.5 8.6 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.0 8.0 7.5 8.0 7.5 7.5 7.5 6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5	8.5 8.0 8.5 8.5 8.5 6.5 6.5 7.5 8.0 8.5 7.5 8.0 8.0 7.5 8.0 8.0 7.5 8.0 8.0 7.5 8.0 8.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	5.5 5.5 6.0 6.5 5.5 5.5 5.5 6.5 6.5 6.5 6.5 6.5	4.50 5.00 5.00 5.00 5.00 5.05 5.55 5.55	5.0 5.5 5.5 5.5 5.5 6.0 5.5 5.5 6.0 6.0 6.0 6.5	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.5 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 7.0	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 6.5 6.5 7.0 7.0 7.0	8.0 8.0 7.5 7.5 8.0 8.0 7.5 8.5 8.5 8.0 9.0 8.5 8.5	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.0 7.0 7.0 6.5 9.0 9.0 9.0 8.5 8.5	8.0 8.0 7.5 8.0 7.5 7.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5	8.5 8.0 8.5 8.5 8.5 7.5 6.5 6.5 8.0 8.5 7.5 8.0 8.5 7.5 7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	5.5 5.5 6.0 6.5 5.5 5.5 6.5 6.5 6.5 6.5 7.0 6.5 6.5	4.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	5.0 5.0 5.5 5.5 5.5 5.5 6.0 5.5 5.5 6.0 6.0 6.0 6.5 6.5 6.5 6.5	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.5 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 7.0 7.0 7.0	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	8.0 7.5 7.5 8.0 8.0 7.5 8.5 8.5 8.0 9.0 8.5 8.5 8.0 9.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.0 7.0 7.0 6.5 9.0 9.0 9.0 8.5 8.5 7.5 8.5 7.5 7.5	8.0 8.0 7.5 8.0 7.5 7.5 7.5 6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.0 8.5 8.0 8.5 8.5 6.5 6.5 6.5 8.0 7.5 8.5 8.0 7.5 7.5 7.0 7.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	5.5 5.5 6.0 6.5 5.5 5.5 5.5 6.5 6.5 6.5 6.5 7.0 6.5	4.50 5.00 5.00 5.00 5.00 5.00 5.05 5.55 5.55 5.55 6.00 6.00	5.0 5.5 5.5 5.5 5.5 6.0 5.5 5.5 6.0 6.0 6.5 6.5	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.5 8.5	6.5 7.0 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 7.0 7.0	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	8.0 8.0 7.5 7.5 8.0 8.0 7.5 8.5 8.5 8.0 9.0 8.5 8.5 8.0 9.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.0 7.0 7.0 6.5 9.0 9.0 9.0 8.5 8.5 8.5	8.0 8.0 7.5 8.0 7.5 7.0 6.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5	8.5 8.0 8.5 8.5 8.5 7.5 6.5 6.5 8.0 8.5 7.5 8.0 8.5 7.5 7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	5.5 5.5 6.0 6.5 5.5 5.5 5.5 6.5 6.5 6.5 6.5 6.5 6.5	4.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	5.0 5.0 5.5 5.5 5.5 5.5 5.5 5.5 6.0 6.0 6.0 6.5 6.5 6.5 6.5 6.5 6.6 6.6 6.6 6.6 6.6	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.5 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5	8.0 8.0 7.5 7.5 8.0 8.5 8.5 8.5 8.0 9.0 8.5 8.0 9.0 8.5 8.0 8.0 9.0 8.5 8.0 8.0 9.0 8.0 8.0 9.0 8.0 9.0 8.0 9.0 8.0 8.0 9.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.5 8.0 7.0 7.0 6.5 9.0 9.0 9.0 8.5 8.5 7.5 8.5 7.5 7.5 7.5 7.5	8.0 8.0 7.5 8.0 7.5 7.5 7.0 6.5 6.0 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.0 6.5 6.5 6.0	8.5 8.0 8.5 8.0 8.5 6.5 6.5 6.5 7.5 8.0 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	5.5 5.5 6.0 6.5 5.5 5.5 6.5 6.5 6.5 7.0 6.5 6.5 7.0 7.0	4.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00	5.0 5.5 5.5 5.5 5.5 6.0 5.5 5.5 6.0 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.6 6.5 6.6 6.5 6.6 6.6	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.5 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 7.0 7.0 7.5 8.0 7.5 8.0 7.5	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5 8.5	8.0 8.0 7.5 7.5 8.0 8.0 7.5 8.5 8.5 8.0 9.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.0 7.0 7.0 6.5 9.0 9.0 9.0 8.5 8.5 7.5 8.5 7.5 7.5 7.5 7.0 7.0	8.0 8.0 7.5 8.0 7.5 7.5 6.5 6.5 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.5 8.0 8.5 8.5 7.5 6.5 6.5 7.5 8.5 8.0 7.5 7.5 7.0 7.0 7.0 6.5 6.5
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	5.5 5.5 6.0 6.5 5.5 5.5 5.5 6.5 6.5 6.5 7.0 6.5 6.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	4.00000 5.00050 5.00050 5.00555 5.555 5.6666 6.00066 6.00066	5.0 5.0 5.5 5.5 5.5 5.5 5.5 6.0 5.5 5.5 6.0 6.0 6.0 6.5 6.5 6.5 6.5 6.5 6.7	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.50 7.00 7.00 7.00 7.00 6.55 6.55 6.55 6.55 7.00 7.55 7.5 7.5	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5 8.5 8.0	8.0 8.0 7.5 7.5 8.0 8.0 7.5 8.5 8.5 8.0 9.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 9.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.5 8.0 7.0 7.0 6.5 9.0 9.0 9.0 8.5 8.5 7.5 8.0 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	8.0 8.0 7.5 7.5 7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	8.5005 8.055 8.055 8.055 8.055 6.555 8.005 77.55 77.000 77.005 6.55 6.55 77.55
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	5.5 5.5 6.0 6.5 5.5 6.5 6.5 6.5 7.0 6.5 7.0 8.0 8.0 8.0	4.50 5.00 5.00 5.00 5.00 5.00 5.00 5.00	5.0 5.0 5.5 5.5 5.5 5.5 6.0 5.5 5.5 6.0 6.0 6.5 6.5 6.5 6.0 6.5 6.5 7.0 7.5	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.5 8.5 9.0 9.0 8.5	6.5 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 7.0 7.0 7.5 8.0 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5 8.5 8.0 8.0 7.5	8.0 8.0 7.5 7.5 8.0 8.5 8.5 8.5 8.0 9.0 8.5 8.0 8.5 8.0 9.0 8.5 8.0 8.0 9.0 8.5 8.0 8.0 9.0 8.0 8.0 9.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.0 7.0 7.0 6.5 9.0 9.0 9.0 8.5 7.5 7.5 7.0 7.0 7.0 7.0	8.0 8.0 7.5 7.5 7.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	8.5 8.0 8.5 8.0 8.5 6.5 6.5 6.5 6.5 8.5 7.5 7.5 7.5 6.5 6.5 7.5 7.5 6.5 6.5 7.5 7.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	5.5 5.5 6.0 6.5 5.5 5.5 5.5 6.5 6.5 6.5 6.5 7.0 6.5 6.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0 7.0 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	45.0000 55.000 55.55 55.55 55.55 56.66 66.00 66.00 66.76 66.76	5.0 5.0 5.5 5.5 5.5 6.0 6.0 6.0 6.5 6.5 7.0 7.0	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	6.5 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 6.5 7.0 7.0 7.5 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5 8.5 8.0 8.0 7.5	8.0 8.0 7.5 7.5 8.0 8.0 7.5 8.5 8.5 8.0 9.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.5 9.0 7.0 6.5 9.0 9.0 9.0 8.5 8.5 7.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0	8.0 8.0 7.5 7.5 7.0 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	8.5 8.0 8.5 8.5 6.5 6.5 7.5 6.5 8.0 7.5 7.0 7.0 7.0 6.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	5.5 5.5 6.0 6.5 5.5 6.5 6.5 6.5 7.0 6.5 7.0 8.0 8.0 8.0	4.50 5.00 5.00 5.00 5.00 5.00 5.00 5.00	5.0 5.0 5.5 5.5 5.5 5.5 6.0 5.5 5.5 6.0 6.0 6.5 6.5 6.5 6.0 6.5 6.5 7.0 7.5	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.5 8.5 9.0 9.0 8.5	6.5 7.0 7.0 7.0 7.0 6.5 6.5 6.5 6.5 7.0 7.0 7.5 8.0 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5 8.5 8.0 8.0 7.5	8.0 8.0 7.5 7.5 8.0 8.5 8.5 8.5 8.0 9.0 8.5 8.0 8.5 8.0 9.0 8.5 8.0 8.0 9.0 8.5 8.0 8.0 9.0 8.0 8.0 9.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.0 7.0 7.0 6.5 9.0 9.0 9.0 8.5 7.5 7.5 7.0 7.0 7.0 7.0	8.0 8.0 7.5 7.5 7.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	8.5 8.0 8.5 8.0 8.5 6.5 6.5 6.5 6.5 8.5 7.5 7.5 7.5 6.5 6.5 7.5 7.5 6.5 6.5 7.5 7.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	5.5 5.5 6.0 6.0 5.5 5.5 6.0 6.5 5.5 6.5 6.5 7.0 6.5 7.0 6.5 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8	4.0000 0.0050 0.5555 5.0050 0.0000 0.5055 5.555 5.6666 6.6666 6.7655	5.0 5.5 5.5 5.5 5.5 6.0 5.5 5.5 6.0 6.0 6.0 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	8.5 8.0 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5	6.50 7.00 7.00 7.00 7.00 6.55 6.55 6.55 7.00 7.55 7.00 7.00 7.00 7.00 7.00 7	7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5 8.0 8.0 7.5 7.5	8.0 7.5 7.5 8.0 8.0 7.5 8.5 8.5 8.0 9.0 8.5 8.0 8.0 8.0 8.0 8.5 8.0 8.0 9.0 8.5 8.5 8.0 8.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.0 9.0 8.5 8.5 9.5 8.5 8.0 7.0 7.0 6.5 9.0 9.0 8.5 8.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	8.0 8.0 7.5 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5005 8.5005 8.5555 6.5555 6.5555 7.555 8.00055 7.7566 6.7755 7.77566 6.7755 7.77566 7.77566

15087700 INDIAN RIVER AT SITKA

LOCATION.--Lat $57^{\circ}03'12''$, long $135^{\circ}18'52''$, in $NE^{1}_{/4}$ SW $^{1}_{/4}$ SE $^{1}_{/4}$ sec. 36, T. 55 S., R. 63 E. (Sitka A-4 quad), Hydrologic Unit 19010203, Greater Sitka Borough, in Tongass National Forest, on Baranof Island, on right bank 500 ft upstream from Sawmill Creek Road, 600 ft downstream from Sheldon Jackson College Diversion, and 0.6 mi above mouth.

DRAINAGE AREA.--12.0 mi²

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1998 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 30 ft above sea level, from topographic map.

REMARKS. Records good. Flow is diverted 600 ft upstream to Sheldon Jackson College.

		DISCHARG	E, CUBIC	FEET PE		WATER Y MEAN		BER 2000	TO SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	49 39 53 41 51	53 40 280 93 60	52 58 56 74 1110	39 56 159 85 107	175 93 118 76 64	69 54 48 44 44	33 29 28 75 53	51 66 156 111 69	118 91 91 91 93	49 49 49 50 102	31 29 27 27 25	20 84 53 30 241
6 7 8 9 10	142 134 107 218 171	52 70 56 43 36	199 98 76 61 53	90 65 69 63 51	56 60 53 47 42	47 57 60 74 619	41 35 46 54 40	55 64 154 103 70	88 91 94 93 113	71 134 88 71 75	24 23 23 23 22	101 69 71 47 36
11 12 13 14 15	1140 322 276 213 289	104 100 53 41 47	47 42 37 32 29	45 42 48 47 51	37 36 257 105 61	797 247 134 103 88	37 39 37 34 34	69 71 70 e70 70	78 72 77 76 66	68 65 50 40 40	21 21 20 20 19	30 118 566 502 130
16 17 18 19 20	151 102 77 68 65	43 90 50 48 51	28 27 34 32 25	62 56 50 49 43	51 46 43 41 38	84 79 72 63 55	36 45 52 44 45	66 60 58 53 53	61 59 62 78 76	37 34 32 30 29	19 18 18 18 17	121 105 87 111 83
21 22 23 24 25	65 86 100 76 59	151 221 201 134 100	23 25 30 30 34	52 68 78 57 46	37 36 33 31 29	50 47 43 41 44	46 48 49 63 52	63 95 118 83 63	55 51 62 61 58	29 30 33 56 63	17 16 16 15 15	58 73 53 44 39
26 27 28 29 30 31	50 44 38 33 35 80	106 120 71 54 46	34 30 29 28 35 43	41 124 108 60 61 185	92 235 96 	47 41 43 39 39 50	49 57 51 48 47	59 71 87 93 90 149	56 59 63 56 51	48 35 32 37 41 33	17 57 27 20 18 18	33 38 32 35 420
TOTAL MEAN MAX MIN MED AC-FT	4374 141 1140 33 77 8680	87.1 280 36 58	2511 81.0 1110 23 34 4980	2157 69.6 185 39 57 4280	2088 74.6 257 29 52 4140	3322 107 797 39 54 6590	1347 44.9 75 28 46 2670	2510 81.0 156 51 70 4980	2240 74.7 118 51 74 4440	1600 51.6 134 29 48 3170	681 22.0 57 15 20 1350	3430 114 566 20 70 6800
	5	STATISTICS	OF MONTH	ILY MEAN	DATA FOR	WATER	YEARS 1999	- 2001,	BY WATER YE	CAR (WY)#		
MEAN MAX (WY) MIN (WY)	204 248 1999 141 2001	38.0	129 240 2000 66.8 1999	84.6 125 1999 59.4 2000	42.4 74.6 2001 23.6 1999	63.1 107 2001 28.2 1999	68.7 108 1999 44.9 2001	97.4 139 1999 72.3 2000	95.1 130 1999 74.7 2001	60.6 67.7 2000 51.6 2001	42.7 59.4 2000 22.0 2001	150 209 2000 114 2001
SUMMARY	STATISTIC	CS FOR	2000 CA	LENDAR Y	EAR	FOR 2	001 WATER	YEAR	WATER Y	EARS 199	9 - 2001	
LOWEST A		AN	30341 82.9 1590	Sep		114	9.1 10 Oct	11	92.6 103 79.1 2390	Oct	2000 2001 19 1998	
ANNUAL S MAXIMUM MAXIMUM INSTANTS	DAILY MEAI SEVEN-DAY PEAK FLOI PEAK STAG ANEOUS LOI	MINIMUM W GE W FLOW	17 17	Mar Mar		b1	5 Aug 6 Aug 70 Oct 86.08 Oct 4 Aug	24 20 11 11	14 16 a5740 26.8 c14 67090	Mar Mar Oct	8 1999 4 1999 19 1998 19 1998	
10 PERCI 50 PERCI	RUNOFF (ACEE) ENT EXCEE) ENT EXCEE)	DS DS	60180 151 53 23						167 55 23			

e Estimated

From rating curve extended above 1050 ft³/s Aug. 24 and 25 Mar. 9, 1999 and Aug. 24 and 25, 2001

15087700 INDIAN RIVER AT SITKA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1967-68, January to September 2001.

PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: July to September 2001. WATER TEMPERATURE: May to September 2001.

INSTRUMENTATION. -- Electronic water temperature and specific conductance recorder set to 15-minute recording interval.

SPECIFIC CONDUCTANCE: Probe installed May 16, no record May 16 to July 25 due to recorder problems. Record represents specific conductance at sensor within 3us/cm. No variation was found within the cross section measured on July 25. No variation was found between the mean stream specific conductance and specific conductance at

the sensor.

WATER TEMPERATURE: Probe installed on May 16. Record represents water temperature at sensor within 0.5°C. No variation was found within the cross section on July 25. Temperaure at the sensor was compared with stream average by cross sections on May 15 and July 25. No variation was found within the cross section. No variation was found between the mean stream temperature and temperature at the sensor.

EXTREMES OUTSIDE PERIOD OF DAILY RECORD. --

SAMPLE

WATER TEMPERATURE.--Minimum observed, a temperature of 3.0°C was measured on April 4.

PH

EXTREMES FOR CURRENT YEAR. --

SPECIFIC CONDUCTANCE.--Maximum recorded, 66 us/cm, August 25; minimum recorded, 30 us/cm September 5, 14, 30. WATER TEMPERATURE.--Maximum recorded, 10.0°C, several days in July and August; minimum recorded, 4.0°C May 25.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

BARO-

OXYGEN,

		SAMPLE LOC- ATION, CROSS SECTION	SPE- CIFIC CON- DUCT-	PH WATER WHOLE FIELD (STAND-	TEMPER-	BARO- METRIO PRES- SURE (MM	C OXYGEN DIS-		D				
DATE	TIME	(FT FM L BANK) (00009)	ANCE (US/CM) (00095)	ARD UNITS)	WATER (DEG C	OF HG)	SOLVE (MG/L	D SATUR) ATION	_)				
JUL 25 25 25 25 25 25 25 25	1201 1202 1203 1204 1205 1206 1207 1208	15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0	40 40 40 40 40 40 40 40	7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1	8.5 8.5 8.5 8.5 8.5 8.5 8.5	760 760 760 760 760 760 760 760	11.7 11.8 12.0 12.3 12.0 12.1 12.3	100 101 103 105 103 104 105					
DATE	TIME	MEDIUM CODE	SAMPLE TYPE	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	OXYGEN, DIS- SOLVED (MG/L) (00300)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
JAN 04	1420	9	9	22.12	76	10	3045	42	7.4			14	4.73
APR 04	1215	9	9	22.12	78	10	3045	40	7.3	3.0	14.1	14	4.71
MAY													
15 15	1500 1530	9 9	9 9	22.08	75 	10 8010	3045 8010	42	7.6	5.5	12.0	17	6.00
15	1600	H	9			8010	8010						
JUL 25	1145	9	9	22.05	63	10	3045	40	7.1	8.5	12.0	15	5.22
==		-	-										***
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	WATER DIS IT FIELD MG/L AS HCO3	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	AT 180	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
JAN 04 APR	.534	2.0		<.24			1.5	3.9	<.2	3.1	31		.001
04	.554	2.2		.21	13	11	1.7	4.0	<.2	3.3	34	23	.001
MAY 15	.570	2.0	16	.12	18	14	1.3	3.8	<.2	3.0	30	26	<.001
15													
15 JUL													
25	.559	2.3		.82	16	14	1.6	2.5	<.2	3.5		25	<.001

SOUTHEAST ALASKA

15087700 INDIAN RIVER AT SITKA--Continued

DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	H-2 / H-1 STABLE ISOTOPE RATIO PER MIL (82082)	O-18 / O-16 STABLE ISOTOPE RATIO PER MIL (82085)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688)
JAN 04	.124	<.002	<.08	<.10	<.004	<.006	<.007	30	E2.0			1.9	<.1
APR 04	<.005	.004	E.06	E.07	E.002	<.006	.009	60	4.6			2.4	<.1
MAY 15 15	.112	<.002	<.08	<.10	<.004	<.006	<.007	M 	<3.0	 -78.80	 -11.07	.70	<.1
JUL													
25	.088	.004	E.04	E.06	E.003	E.003	<.007	70	E1.9			2.4	<.1
DATE		CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	TICULTE		SUS-	SED, BM	CHLORO- ANISOLE SED, BM WS,<2MM DW, REC (UG/KG)	ALUM- INUM BOT MAT	ANTI- MONY BOT MAT <63U WS FIELD (UG/G) (34795)	ARSENIC BOT MAT <63U WS FIELD (UG/G) (34800)	BARIUM BOT MAT <63U WS FIELD (UG/G) (34805)	BERYL- LIUM BOT MAT <63U WS FIELD (UG/G) (34810)	BISMUTH BOT MAT <180UWS FIELD (UG/G) (34816)
JAN 04	<.1	<.1	<.022	1	.21								
APR 04	. 4	. 4	.106	1	.21								
MAY 15	<.1	<.1	<.022										
15 15						<50	<50	7.6	1.0	33	630	1.1	<1
JUL 25	. 2	. 2	<.022	1	.17								
JAN 04 APR 04 MAY 15 15 JUL 25	CADMIUM BOT MAT <63U WS FIELD (UG/G) (34825)	CHRO-MIUM BOT MAT <63U WS FIELD (UG/G) (34840)	COPPER BOT MAT <63U WS FIELD (UG/G) (34850)	CALCIUM BOT MAT <63U WS FIELD PERCENT (34830)	COBALT BOT MAT <63U WS FIELD (UG/G) (34845)	CERIUM BOT MAT <63U WS FIELD (UG/G) (34835)	EURO- PIUM BOT MAT <63U WS FIELD (UG/G) (34855)	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)	HOLMIUM BOT MAT <63U WS FIELD (UG/G) (34875)	IRON BOT MAT <63U WS FIELD PERCENT (34880) 6.8	LANTHA- NUM BOT MAT <63U WS FIELD (UG/G) (34885)	LEAD BOT MAT <63U WS FIELD (UG/G) (34890) 13
JAN 04 APR 04 MAY 15 15 JUL 25	BOT MAT <63U WS FIELD (UG/G) (34825) 22 LITHIUM BOT MAT	MIUM BOT MAT <63U WS FIELD (UG/G) (34840) 180 180 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT	BOT MAT <63U WS FIELD (UG/G) (34850)	BOT MAT <63U WS FIELD PERCENT (34830)	BOT MAT <63U WS FIELD (UG/G) (34845) 41 MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34835)	PIUM BOT MAT <63U WS FIELD (UG/G) (34855) 1 1 NICKEL BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34870) <1 <11 NIOBIUM BOT MAT <63U WS FIELD (UG/G) (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34860) 16 PHOS-PHORUS	BOT MAT <63U WS FIELD (UG/G) (34875) 1 SCAN- DIUM	BOT MAT <63U WS FIELD PERCENT (34880) 6.8 SELE- NIUM BOT MAT <63U WS FIELD (UG/G)	NUM BOT MAT <63U WS FIELD (UG/G) (34885) 16 SILVER BOT MAT	BOT MAT <63U WS FIELD (UG/G) (34890) 13 13 SODIUM BOT MAT <63U WS FIELD PERCENT
JAN 04 APR 04 MAY 15 15 15 JUL 25	BOT MAT <63U WS FIELD (UG/G) (34825) 22 LITHIUM BOT MAT <63U WS FIELD (UG/G)	MIUM BOT MAT <63U WS FIELD (UG/G) (34840) 180 180 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT	BOT MAT <63U WS FIELD (UG/G) (34850) 84 MANGA- NESE BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD PERCENT (34830) 2.0 MERCURY BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34845) 41 MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34835) 32 NEODYM- IUM BOT MAT <63U WS FIELD (UG/G)	PIUM BOT MAT <63U WS FIELD (UG/G) (34855) 1 1 NICKEL BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34870) <1 <11 NIOBIUM BOT MAT <63U WS FIELD (UG/G) (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34860) 16 16 PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT	BOT MAT <63U WS FIELD (UG/G) (34875) 1 1 SCAN- DIUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD PERCENT (34880) 6.8 SELE- NIUM BOT MAT <63U WS FIELD (UG/G)	NUM BOT MAT <63U WS FIELD (UG/G) (34885) 16 SILVER BOT MAT <63U WS FIELD (UG/G) (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34890) 13 13 SODIUM BOT MAT <63U WS FIELD PERCENT
JAN 04 APR 04 MAY 15 15 JUL 25 DATE JAN 04	BOT MAT <63U WS FIELD (UG/G) (34825) 2 -2 LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	MIUM BOT MAT <63U WS FIELD (UG/G) (34840) 180 180 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT	BOT MAT <63U WS FIELD (UG/G) (34850) 84 MANGA- NESE BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD PERCENT (34830) 2.0 MERCURY BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34845) 41 MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34835) 32 NEODYM- IUM BOT MAT <63U WS FIELD (UG/G)	PIUM BOT MAT <63U WS FIELD (UG/G) (34855) 1 1 NICKEL BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34870) <1 <11 NIOBIUM BOT MAT <63U WS FIELD (UG/G) (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34860) 16 16 PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT	BOT MAT <63U WS FIELD (UG/G) (34875) 1 1 SCAN- DIUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD PERCENT (34880) 6.8 SELE- NIUM BOT MAT <63U WS FIELD (UG/G)	NUM BOT MAT <63U WS FIELD (UG/G) (34885) 16 SILVER BOT MAT <63U WS FIELD (UG/G) (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34890) 13 13 SODIUM BOT MAT <63U WS FIELD PERCENT
JAN 04 APR 04 MAY 15 15 JUL 25 DATE JAN 04 APR 04	BOT MAT <63U WS FIELD (UG/G) (34825) 22 LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	MIUM BOT MAT <63U WS FIELD (UG/G) (34840) 180 180 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900)	BOT MAT <63U WS FIELD (UG/G) (34850) 84 84 MANGA- NESE BOT MAT <63U WS 63EUD (UG/G) (34905)	BOT MAT <63U WS FIELD PERCENT (34830) 2.0 2.0 WERCURY BOT MAT <63U WS FIELD (UG/G) (34910)	BOT MAT <63U WS FIELD (UG/G) (34845) 41 MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) (34915)	BOT MAT <63U WS FIELD (UG/G) (34835) 32 NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920)	PIUM BOT MAT <63U WS FIELD (UG/G) (34855) 1 1 NICKEL BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G) (34870) <1 <1 NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)	BOT MAT <63U WS FIELD (UG/G) (34860) 16 PHOS- PHORUS BOT MAT <63U WS BOT MAT <63U WS C3U WS C3U WS C3U WS C4U C5U	BOT MAT <63U WS FIELD (UG/G) (34875) 1 1 SCAN- DIUM BOT MAT <63U WS 63IU WS 63IU WS (34945)	BOT MAT <63U WS FIELD PERCENT (34880) 6.8 SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	NUM BOT MAT <63U WS FIELD (UG/G) (34885) 16 16 SILVER BOT MAT <63U WS FIELD (UG/G) (34955)	BOT MAT <63U WS FIELD (UG/G) (34890) 13 13 SODIUM BOT MAT <63U WS 63U WS FIELD PERCENT (34960)
JAN 04 APR 04 15 15 JUL 25 DATE JAN 04 APR 04 APR 04 MAY 15	BOT MAT <63U WS FIELD (UG/G) (34825) 22 LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	MIUM BOT MAT <63U WS FIELD (UG/G) (34840) 180 180 MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900)	BOT MAT <63U WS FIELD (UG/G) (34850) 84 84 MANGA- NESE BOT MAT <63U WS FIELD (UG/G) (34905)	BOT MAT <63U WS FIELD PERCENT (34830) 2.0 2.0 MERCURY BOT MAT <63U WS FIELD (UG/G) (34910)	BOT MAT <63U WS FIELD (UG/G) (34845) 41 MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) (34915)	BOT MAT <63U WS FIELD (UG/G) (34835) 32 NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920)	PIUM BOT MAT <63U WS FIELD (UG/G) (34855) 1 NICKEL BOT MAT <63U WS FIELD (UG/G) (34925)	BOT MAT <63U WS FIELD (UG/G) (34870) <1 <1 <1 NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)	BOT MAT <63U WS FIELD (UG/G) (34860) 16 16 PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	BOT MAT <63U WS FIELD (UG/G) (34875) 1 1 SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	BOT MAT <63U WS FIELD PERCENT (34880) 6.8 6.8 SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	NUM BOT MAT <63U WS FIELD (UG/G) (34885) 16 SILVER BOT MAT <63U WS FIELD (UG/G) (34955)	BOT MAT <63U WS FIELD (UG/G) (34890) 13 13 SODIUM BOT MAT <63U WS FIELD PERCENT (34960)

15087700 INDIAN RIVER AT SITKA--Continued

DATE JAN	STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	SULFUR BOT MAT <63U WS FIELD PERCENT (34970)	TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)	THORIUM BOT MAT <63U WS FIELD (UG/G) (34980)	TIN BOT MAT <63U WS FIELD (UG/G) (34985)	TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT (49274)	URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)	VANA- DIUM BOT MAT <63U WS FIELD (UG/G) (35005)	YTTRIUM BOT MAT <63U WS FIELD (UG/G) (35010)	YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015)	ZINC BOT MAT <63U WS FIELD (UG/G) (35020)	CARBON, ORGANIC SED, BM WS,<63U DW, REC (PER- CENT) (49266)	CARBON, INORG, SED, BM WS,<63U DW, REC (PER- CENT) (49269)
04 APR													
04													
MAY 15													
15 15	260	<.05	1	4	2	.740	1.3	240	22	2	140	3.0	.06
JUL 25			_	-	_					_			
25													
DATE	CARBON, ORG + INORG, SED, BM WS,<63U DW, REC	CARBON, ORG + INORG SED, BM WS,<2MM DW, REC	CARBON, INORG, SED, BM WS,<2MM DW, REC	CARBON, ORGANIC SED, BM WS,<2MM DW, REC	124TRI- CHLORO-	O-DI- CHLORO-	NAPTHAL ENE, 12 DIMETHL SED, BM WS,<2MM DW, REC	SED, BM WS,<2MM	BENZENE P-DI- CHLORO- SED, BM WS,<2MM DW, REC	NAPTHAL ENE, 16 DIMETHL SED, BM WS,<2MM DW, REC	9H-FLU- ORENE, 1METHYL SED, BM WS,<2MM DW, REC	THRENE	PYRENE, 1- METHYL, SED, BM WS,<2MM DW, REC
	PERCENT (49267)	(G/KG) (49272)	(G/KG) (49270)	(G/KG) (49271)	(UG/KG) (49438)	(UG/KG) (49439)	(UG/KG) (49403)	(UG/KG) (49441)		(UG/KG) (49404)	(UG/KG) (49398)	(UG/KG) (49410)	(UG/KG) (49388)
JAN 04 APR													
04 MAY													
15 15													
15	3.1	2.4	<.2	2.3	<50	<50	<50	<50	<50	<50	<50	<50	<50
JUL 25													
DATE	QUINO- LINE, SED, BM WS,<2MM	ENE,236 TRIMETH SED, BM WS,<2MM DW, REC	2,4-DI- NITRO- SED, BM WS,<2MM	NAPTHAL ENE, 26 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49406)	TOLUENE 2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396)	NAPTHAL ENE, 2- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49407)		NAPTHAL ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948)	ANTHRA- CENE,2- METHYL- SED, BM WS,<2MM DW, REC (UG/KG) (49435)	3,5- XYLENOL SED, BM WS,<2MM DW, REC (UG/KG) (49421)	4-BROMO PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454)		4CHLORO PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455)
JAN	QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG)	ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG)	2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG)	ENE, 26 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG)	2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG)	ENE, 2- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG)	2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG)	ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG)	CENE, 2- METHYL- SED, BM WS,<2MM DW, REC (UG/KG)	XYLENOL SED, BM WS,<2MM DW, REC (UG/KG)	PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG)	SOL, 4- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG)	PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG)
JAN 04 APR	QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391)	ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405)	2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395)	ENE, 26 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49406)	2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396)	ENE, 2- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49407)	2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG)	ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948)	CENE, 2- METHYL- SED, BM WS,<2MM DW, REC (UG/KG)	XYLENOL SED, BM WS,<2MM DW, REC (UG/KG) (49421)	PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454)	SOL, 4- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49422)	PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455)
JAN 04 APR 04 MAY	QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391)	ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405)	2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395)	ENE, 26 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49406)	2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396)	ENE, 2- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49407)	2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467)	ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948)	CENE, 2- METHYL- SED, BM WS, <2MM DW, REC (UG/KG) (49435)	XYLENOL SED, BM WS,<2MM DW, REC (UG/KG) (49421)	PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454)	SOL, 4- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49422)	PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455)
JAN 04 APR 04 MAY 15	QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391)	ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405)	2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395)	ENE, 26 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49406)	2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396)	ENE, 2- CHLORO- SED, BM WS, 2MM DW, REC (UG/KG) (49407)	2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467)	ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948)	CENE,2- METHYL- SED,BM WS,<2MM DW,REC (UG/KG) (49435)	XYLENOL SED, BM WS,<2MM DW, REC (UG/KG) (49421)	PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454)	SOL, 4- CHLORO- SED, BM WS, <2MM DW, REC (UG/KG) (49422)	PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455)
JAN 04 APR 04 MAY 15	QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391)	ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405)	2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395)	ENE, 26 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49406)	2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396)	ENE, 2- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49407)	2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467)	ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948)	CENE, 2- METHYL- SED, BM WS,<2MM DW, REC (UG/KG) (49435)	XYLENOL SED, BM WS,<2MM DW, REC (UG/KG) (49421)	PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454)	SOL, 4- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49422)	PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455)
JAN 04 APR 04 MAY 15 15	QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391)	ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405)	2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395)	ENE, 26 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49406)	2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396)	ENE, 2- CHLORO- SED, BM WS, 2MM DW, REC (UG/KG) (49407)	2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467)	ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948)	CENE,2- METHYL- SED,BM WS,<2MM DW,REC (UG/KG) (49435)	XYLENOL SED, BM WS,<2MM DW, REC (UG/KG) (49421)	PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454)	SOL, 4- CHLORO- SED, BM WS, <2MM DW, REC (UG/KG) (49422)	PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455)
JAN 04 APR 04 MAY 15 15 JUL	OUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391) <50 4HCYPEN PHENAN THRENE	ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) < < < < < < <	2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395) <50 ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG)	ENE, 26 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49406)	2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396)	ENE, 2- CHLORO- SED, BM WS, 2MM DW, REC (UG/KG) (49407)	2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467)	ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948) < < < < < < < < <-	CENE,2- METHYL- SED,BM WS,<2MM DW,REC (UG/KG) (49435)	XYLENOL SED, BM WS,<2MM DW, REC (UG/KG) (49421)	PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454)	SOL, 4- CHLORO- SED, BM WS, <2MM DW, REC (UG/KG) (49422)	PHNPHN LETHER SED, BM WS, < 2MM DW, REC (UG/KG) (49455) <50 BENZO K FLUOR- ANTHENE
JAN 04 APR 04 MAY 15 15 JUL 25 DATE	QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391) <50 <50 4HCYPEN PHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG)	ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) < < <-50 ACENAPH THENE SED, BM WS,<2MM DW, REC (UG/KG)	2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395) <50 ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG)	ENE, 26 DIMETHL SED, BM WS, <2MM DW, REC (UG/KG) (49406) <50 ACRI- DINE SED, BM WS, <2MM DW, REC (UG/KG)	2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396) <50 ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG)	ENE, 2-CHLORO-SED, BM WS, <2MM DW, REC (UG/KG) (49407)	2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467) <50 BENZENE SED, BM WS,<2MM DW, REC (UG/KG) (YG)	ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948) <50 BENZ(A) ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG)	CENE, 2- METHYL- SED, BM WS, <2MM DW, REC (UG/KG) (49435) <50 BENZO (A) PYRENE SED, BM WS, <2MM DW, REC (UG/KG)	XYLENOL SED, BM WS, <2MM DW, REC (UG/KG) (49421) <-50 BENZOB FLUOR- ANTHENE SED, BM WS, <2MM DW, REC (UG/KG)	PHNPHNL ETHER SED, BM WS, <2MM DW, REC (UG/KG) (49454) <50 BENZOCI NNOLINE BED MAT WS <2MM DRY WGT REC (UG/KG)	SOL, 4-CHLORO-SED, BM WS, <2MM DW, REC (UG/KG) (49422)	PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455) < <-50 BENZO K FLUOR- ANTHENE SED, BM WS,<2MM DW, REC (UG/KG) (UG/KG)
JAN 04 APR 04 MAY 15 15 JUL 25 DATE	QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391) <50 <50 <50 WHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG) (49411)	ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) < < <-50 ACENAPH THENE SED, BM WS,<2MM DW, REC (UG/KG)	2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395) <50 ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG)	ENE, 26 DIMETHL SED, BM WS, <2MM DW, REC (UG/KG) (49406) <50 ACRI- DINE SED, BM WS, <2MM DW, REC (UG/KG) (49430)	2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396) <50 <50 <50 SED, BM WS,<2MM DW, REC (UG/KG) (49434)	ENE, 2- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49407) <50 <50 MTHRA- QUINONE SED, BM WS,<2MM DW, REC (UG/KG) (49437)	2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467) <50 BENZENE SED, BM WS,<2MM DW, REC (UG/KG) (YG)	ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948) <50 BENZ(A) ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG)	CENE, 2- METHYL- SED, BM WS, <2MM DW, REC (UG/KG) (49435) < < < < < < < < <-	XYLENOL SED, BM WS, <2MM DW, REC (UG/KG) (49421)	PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454) <-50 BENZOCI NNOLINE BED MAT TWS <2MM DRY WGT REC (UG/KG) (49468)	SOL, 4-CHLORO-SED, BM WS, <2MM DW, REC (UG/KG) (49422)	PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455) < <-50 BENZO K FLUOR- ANTHENE SED, BM WS,<2MM DW, REC (UG/KG) (UG/KG)
JAN 04 APR 04 MAY 15 15 JUL 25 DATE JAN 04 APR 04 APR 04 MAY	QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391) < <-50 4HCYPEN PHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG) (49411)	ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) < < <-50 ACENAPH THENE SED, BM WS,<2MM DW, REC (UG/KG)	2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395) <50 ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG)	ENE, 26 DIMETHL SED, BM WS, <2MM DW, REC (UG/KG) (49406) <50 ACRI- DINE SED, BM WS, <2MM WS, <2MM CUG/KG) (49430)	2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396) <50 <50 <ene SED, BM WS,<2MM DW, REC (UG/KG) (49434)</ene 	ENE, 2- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49407) <50 <50 MTHRA- QUINONE SED, BM WS,<2MM DW, REC (UG/KG) (49437)	2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467) <50 BENZENE SED, BM WS,<2MM DW, REC (UG/KG) (YG)	ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948) <50 BENZ(A) ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG)	CENE, 2- METHYL- SED, BM WS, <2MM DW, REC (UG/KG) (49435) < < < < < < < < <-	XYLENOL SED, BM WS, <2MM DW, REC (UG/KG) (49421)	PHNPHNL ETHER SED, BM WS, <2MM DW, REC (UG/KG) (49454) <50 BENZOCI NNOLINE BED MAT WS <2MM DRY WGT REC (UG/KG) (49468)	SOL, 4-CHLORO-SED, BM WS, <2MM DW, REC (UG/KG) (49422)	PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455) < <-50 BENZO K FLUOR- ANTHENE SED, BM WS,<2MM DW, REC (UG/KG) (UG/KG)
JAN 04 APR 04 MAY 15 15 JUL 25 DATE JAN 04 APR 04 MAY 15 15	QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391)	ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) <50 ACENAPH THENE SED, BM WS,<2MM DW, REC (UG/KG) (49429)	2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395) <50 ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG) (49428)	ENE, 26 DIMETHL SED, BM WS, <2MM WS, <2MM COMMON (49406) < < < ACRI- DINE SED, BM WS, <2MM DW, REC (UG/KG) (49430)	2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396) <50 <50 (SED, BM WS,<2MM DW, REC (UG/KG) (49434)	ENE, 2- CHLORO- SED, BM WS, <2MM DW, REC (UG/KG) (49407) <50 <50 WS, <2MM DW, REC (UG/KG) (49437)	2CHLORO BED MAT WS < 2MM DRY WGT REC (UG/KG) (49467) < < < < < < <	ENE, 2- ETHYL- SED BM WS < 2MM DW REC (UG/KG) (49948) <50 BENZ(A) ANTHRA- CENE SED, BM WS, < 2MM DW, REC (UG/KG) (49436)	CENE, 2- METHYL- SED, BM WS, <2MM DW, REC (UG/KG) (49435) < < < < < < < < <-	XYLENOL SED, BM WS,<2MM DW, REC (UG/KG) (49421)	PHNPHNL ETHER SED, BM WS, <2MM DW, REC (UG/KG) (49454) < < < < UG/KG) (19454) BENZOCI NNOLINE BED MAT WS <2MM DRY WG REC (UG/KG) (49468)	SOL, 4-CHLORO-SED, BM WS, <2MM WS, <2MM DW, REC (UG/KG) (49422)	PHNPHN LETHER SED, BM WS, < 2MM DW, REC (UG/KG) (49455) < < < < < < UG/KG) (49455) BENZO K FLUOR- ANTHENE SED, BM WS, < 2MM DW, REC (UG/KG) (49397)
JAN 04 APR 04 15 15 JUL 25 DATE JAN 04 APR 04 APR 04 MAY 15	QUINO_ LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391) <50 <50 <50 <50 <50 (49411)	ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405) < <-50 < <-50 ACENAPH THENE SED, BM WS,<2MM DW, REC (UG/KG) (49429)	2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395) <50 ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG) (49428)	ENE, 26 DIMETHL SED, BM WS, <2MM DW, REC (UG/KG) (49406) <50 DINE SED, BM WS, <2MM DW, REC (UG/KG) (49430)	2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396) <50 <50 <50 <ene SED, BM WS,<2MM DW, REC (UG/KG) (49434)</ene 	ENE, 2-CHLORO-SED, BM WS,<2MM DW, REC (UG/KG) (49407)	2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467) <50 AZO- BENZENE SED, BM WS,<2MM DW, REC (UG/KG) (49443)	ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948) < <-50 BENZ(A) ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG) (49436)	CENE, 2- METHYL- SED, BM WS, <2MM DW, REC (UG/KG) (49435) < < < < < < < < <-	XYLENOL SED, BM WS, <2MM DW, REC (UG/KG) (49421)	PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454) <-50 BENZOCI NNOLINE BED MAT WS <2MM DRY WGT REC (UG/KG) (49468)	SOL, 4-CHLORO-SED, BM WS, <2MM DW, REC (UG/KG) (49422)	PHNPHN LETHER SED, BM WS,<2MM WS,<2MM DW, REC (UG/KG) (49455) <50 S50 SED, BM WS,<2MM DW, REC (UG/KG) (49397)

SOUTHEAST ALASKA

15087700 INDIAN RIVER AT SITKA--Continued

DATE JAN	TE,BIS2 ETHHEXL SED, BM WS,<2MM	PHTHALA TEBUTYL BENZYL- SED, BM WS,<2MM DW, REC (UG/KG) (49427)	C8- ALKYL- SED, BM WS,<2MM	CARBA- ZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449)	WS,<2MM		WS,<2MM DW, REC (UG/KG)	(AH), AN THRACEN SED, BM WS, < 2MM DW, REC	THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452)	PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG) (49383)	PHTHAL- ATE,DI- METHYL SED, BM WS,<2MM DW, REC (UG/KG) (49384)	FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG) (49466)	
04													
APR 04													
MAY 15													
15	 M	 E20	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	
JUL			<50										<50
25													
DATE	INDENO 123-CD PYRENE SED, BM WS,<2MM DW, REC (UG/KG) (49390)		ISO- QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49394)		DIPHNYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) (49433)	ALENE, SED, BM	NITRO-	BENZENE PNTCHLR NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49446)	PHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG) (49409)	PHENAN- THRI- DINE SED, BM WS,<2MM DW, REC (UG/KG) (49393)	PHENOL SED, BM WS,<2MM DW, REC (UG/KG) (49413)	PYRENE, SED, BM WS,<2MM DW, REC (UG/KG) (49387)	
JAN 04													
APR 04													
MAY 15													
15													
15 JUL	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
25													
DATE	METHANE 2CHLORO ETHOXY SED, BM WS, <2MM DW, REC (UG/KG) (49401)	ETHYL ETHER SED, BM WS,<2MM DW, REC	P- CRESOL I SED, BM I WS,<2MM DW, REC (UG/KG)	[!									
JAN 04													
APR 04													
MAY 15													
15	 <50												
JUL		<50	<50										
25													

15087700 INDIAN RIVER AT SITKA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST	ı	S	EPTEMBE	R
1							51	49	50	63	50	60
2							52	50	50	50	41	46
3							53	50	51	50	44	48
4							52	51	51	54	50	52
5							53	51	52	55	30	44
6							53	52	52	48	38	44
7							54	52	53	48	45	47
8							56	53	54	49	45	47
9							56	53	54	51	49	50
10							59	54	54	54	50	52
10							39	34	34	34	50	52
11							57	54	55	54	51	53
12							57 57	55	56	55	33	50
13							58	56	57	40	32	36
14							59	57	58	45	30	38
15								58			39	44
15							60	58	59	50	39	44
16							60	58	59	47	40	44
17							61	59	60	48	41	46
18							62	60	61	48	45	46
19							62	60	61	48	42	44
20							63	61	62	49	44	47
21							63	62	62	50	48	49
22							64	63	63	50	45	47
23							65	63	64	51	49	50
24							65	64	65	52	50	51
25							66	64	65	52	50	51
23							00	0 1	03	32	30	31
26				47	45	46	65	62	64	53	51	52
27				49	47	48	62	47	52	52	50	51
28				50	48	49	58	53	56	52	51	51
29				50	47	48	61	58	59	52	44	51
30				49	47	48	63	60	61	44	30	36
31				50	48	49	62	59	60			
~-												
MONTH							66	47	57	63	30	48

15087700 INDIAN RIVER AT SITKA--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1												
2												
4												
5												
6 7												
8												
9 10												
11												
12												
13												
14 15												
16										6.0	4.5	5.0
17										5.5	4.5	5.0
18 19										5.5 6.5	4.5 4.5	5.0 5.5
20										5.5	4.5	5.0
21										6.0	5.0	5.0
22 23										5.5 5.0	4.5 4.5	5.0 4.5
23										6.0	4.5	5.0
25										7.0	4.0	5.0
26										7.0	4.5	5.5
27										6.5	5.0	5.5
28 29										7.0 5.5	5.0 5.0	6.0 5.5
30										5.5	4.5	5.0
31										5.5	5.0	5.5
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN	MAX	MIN SEPTEMBER	
1	6.0	JUNE	5.0	9.0	JULY 7.0	7.5	8.5	AUGUST	8.0	9.0	SEPTEMBER	8.5
1 2	6.0 6.0	JUNE 4.5 5.0	5.0 5.5	9.0 9.5	JULY 7.0 7.0	7.5 8.0	8.5 9.0	AUGUST 7.5 7.5	8.0 8.0	9.0 9.5	SEPTEMBER	8.5 9.0
1	6.0 6.0 6.0	JUNE 4.5 5.0 5.0	5.0 5.5 5.5	9.0 9.5 9.0	JULY 7.0 7.0 7.5	7.5 8.0 8.0	8.5 9.0 8.5	7.5 7.5 7.5 7.5	8.0 8.0 8.0	9.0 9.5 9.0	8.5 8.5 8.5 8.5	8.5 9.0 8.5
1 2 3	6.0 6.0	JUNE 4.5 5.0	5.0 5.5	9.0 9.5	JULY 7.0 7.0	7.5 8.0	8.5 9.0	AUGUST 7.5 7.5	8.0 8.0	9.0 9.5	SEPTEMBER	8.5 9.0
1 2 3 4 5	6.0 6.0 6.0 6.5 6.0	JUNE 4.5 5.0 5.0 5.0 5.0 5.0	5.0 5.5 5.5 5.5 5.5	9.0 9.5 9.0 8.0 8.0	JULY 7.0 7.0 7.5 7.5 7.5 7.5	7.5 8.0 8.0 7.5 7.5	8.5 9.0 8.5 8.5 9.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0 8.5	9.0 9.5 9.0 9.5 9.5	8.5 8.5 8.5 8.0 8.0	8.5 9.0 8.5 8.5 8.5
1 2 3 4 5	6.0 6.0 6.0 6.5 6.0 7.0	JUNE 4.5 5.0 5.0 5.0 5.0 5.0 5.0	5.0 5.5 5.5 5.5 5.5 5.5	9.0 9.5 9.0 8.0 8.0	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0	7.5 8.0 8.0 7.5 7.5 7.5	8.5 9.0 8.5 8.5 9.5 9.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0 8.5	9.0 9.5 9.0 9.5 9.5 9.0	SEPTEMBER 8.5 8.5 8.5 8.0 8.0 8.0	8.5 9.0 8.5 8.5 8.5
1 2 3 4 5	6.0 6.0 6.0 6.5 6.0	JUNE 4.5 5.0 5.0 5.0 5.0 5.0	5.0 5.5 5.5 5.5 5.5	9.0 9.5 9.0 8.0 8.0	JULY 7.0 7.0 7.5 7.5 7.5 7.5	7.5 8.0 8.0 7.5 7.5	8.5 9.0 8.5 8.5 9.5	7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0 8.5	9.0 9.5 9.0 9.5 9.5	8.5 8.5 8.5 8.0 8.0	8.5 9.0 8.5 8.5 8.5
1 2 3 4 5	6.0 6.0 6.0 6.5 6.0 7.0 7.5	JUNE 4.5 5.0 5.0 5.0 5.0 5.0 5.5	5.0 5.5 5.5 5.5 5.5 5.5 6.0 6.0	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0	7.5 8.0 8.0 7.5 7.5 7.5 7.5	8.5 9.0 8.5 8.5 9.5 9.0 9.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.5 8.0 8.5	9.0 9.5 9.0 9.5 9.5 9.0 8.0	8.5 8.5 8.5 8.0 8.0 8.0 7.5	8.5 9.0 8.5 8.5 8.5 8.0
1 2 3 4 5 6 7 8 9 10	6.0 6.0 6.5 6.0 7.0 7.5 6.0 6.0	JUNE 4.5 5.0 5.0 5.0 5.0 5.5 5.5 5.5 5.5	5.0 5.5 5.5 5.5 5.5 5.5 6.0 6.0 5.5	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 8.0	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.0 7.0	8.5 9.0 8.5 8.5 9.5 9.0 9.0 10.0 10.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5	9.0 9.5 9.5 9.5 9.5 9.5 7.5	8.5 8.5 8.5 8.0 8.0 8.0 7.5 7.5 6.5 6.5	8.5 9.0 8.5 8.5 8.5 8.5 8.0 7.0 7.0
1 2 3 4 5 6 7 8 9 10	6.0 6.0 6.5 6.0 7.0 7.5 6.0 6.0	JUNE 4.5 5.0 5.0 5.0 5.0 5.5 5.5 5.5 5.5	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 6.0 6.0 5.5 5.5	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 8.0 7.5 7.5	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5	7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.0 7.0	8.5 9.0 8.5 8.5 9.5 9.0 10.0 10.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5	9.0 9.5 9.0 9.5 9.5 9.5 9.0 8.0 8.0 7.5	8.5 8.5 8.5 8.0 8.0 7.5 7.5 6.5 6.5	8.5 9.0 8.5 8.5 8.5 8.0 7.0 7.0
1 2 3 4 5 6 7 8 9 10	6.0 6.0 6.5 6.0 7.0 7.5 6.0 6.0 6.0	JUNE 4.5 5.0 5.0 5.0 5.0 5.5 5.5 5.5 5.5 5.5	5.55.5 5.55.5 5.00.005 5.50.006.0	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 7.5 7.5 7.7	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.0 7.0 7.0	8.5 9.0 8.5 8.5 9.5 9.0 10.0 10.0 10.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5	9.0 9.5 9.0 9.5 9.5 9.0 8.0 8.0 7.5 7.0 9.0	8.5 8.5 8.5 8.0 8.0 7.5 7.5 6.5 6.5	8.5 9.0 8.5 8.5 8.5 8.0 7.0 7.0
1 2 3 4 5 6 7 8 9 10	6.0 6.0 6.5 6.0 7.0 7.5 6.0 6.0	JUNE 4.5 5.0 5.0 5.0 5.0 5.5 5.5 5.5 5.5	5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 6.0 6.0 5.5 5.5	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 8.0 7.5 7.5	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 6.5	7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.0 7.0	8.5 9.0 8.5 8.5 9.5 9.0 10.0 10.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5	9.0 9.5 9.0 9.5 9.5 9.5 9.0 8.0 8.0 7.5	8.5 8.5 8.5 8.0 8.0 7.5 7.5 6.5 6.5	8.5 9.0 8.5 8.5 8.5 8.5 8.0 7.0 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	6.0 6.0 6.5 6.0 7.0 7.5 6.0 6.0 7.0 7.0 7.0	JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0	5.555555555555555555555555555555555555	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.5 7.5	8.5 9.0 8.5 8.5 9.5 9.0 9.0 10.0 10.0 10.0 10.0 10.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 9.0	9.0 9.5 9.5 9.5 9.5 9.0 8.0 8.0 7.5 7.0 9.0 9.0	8.5 8.5 8.5 8.0 8.0 7.5 6.5 6.5 6.5 8.0 8.0	8.5 9.0 8.5 8.5 8.5 8.0 7.0 7.0 7.5 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	6.0 6.0 6.5 6.0 7.0 7.0 7.0 6.0 6.0 7.0 7.0 7.0	JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0	5.5.5.5 5.00005 5.0000 5.5.5.5 5.0000 6.000 6.5.5	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 8.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.5 7.5	8.5 9.0 8.5 8.5 9.5 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 9.0 9.0	9.0 9.5 9.5 9.5 9.5 9.0 8.0 8.0 7.5 7.0 9.0 9.0 9.0	8.5 8.5 8.5 8.0 8.0 7.5 7.5 6.5 6.5 6.5 8.0 7.5	8.5 9.0 8.5 8.5 8.5 8.0 7.0 7.0 7.5 8.5 8.5 8.0
1 2 3 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18	6.0 6.0 6.5 6.0 7.0 7.5 6.0 6.0 7.0 7.0 7.0	JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0	5.55.55 5.50.00 6.00 5.55.55 5.00 6.00 6	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 8.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5	8.5 9.0 8.5 8.5 9.5 9.0 9.0 10.0 10.0 10.0 10.0 10.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.5 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	9.0 9.5 9.5 9.5 9.5 9.0 8.0 8.0 7.5 7.0 9.0 9.0	8.5 8.5 8.5 8.0 8.0 7.5 7.5 6.5 6.5 6.5 8.0 7.5 7.0	8.5 9.0 8.55 8.5 8.5 8.0 7.0 7.0 7.5 8.5 8.5 8.0 8.0 8.0 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	6.0 6.0 6.5 6.0 7.0 7.5 6.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0	JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0	5.5.5.5 5.00005 5.0000 5.5.5.5 5.0000 6.000 6.5.5	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 8.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.5 7.5	8.5 9.0 8.5 8.5 9.5 9.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 9.0 10.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 9.0 9.0	9.0 9.5 9.5 9.5 9.5 9.0 8.0 8.0 7.5 7.0 9.0 9.0 9.0	8.5 8.5 8.5 8.0 8.0 7.5 7.5 6.5 6.5 6.5 8.0 7.5	8.5 9.0 8.5 8.5 8.5 8.0 7.0 7.0 7.5 8.5 8.5 8.0
1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20	6.0 6.0 6.5 6.0 7.0 7.0 7.0 6.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0	JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0 6.5	5.0 5.5 5.5 5.5 5.5 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0 7.0 7.0	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 8.0 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5 8.0 8.5	8.5 9.0 8.5 8.5 9.5 9.0 10.0 10.0 10.0 10.0 10.0 10.0 9.0 10.0 9.0 10.0 9.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.5 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	9.0 9.5 9.5 9.5 9.5 9.0 8.0 8.0 7.5 7.0 9.0 9.0 9.0 9.0	8.5 8.5 8.5 8.0 8.0 7.5 7.5 6.5 6.5 6.5 8.0 7.5 7.0 8.0 7.5 7.5 7.5	8.5 9.0 8.5 8.5 8.5 8.0 7.0 7.0 7.5 8.5 8.0 8.0 8.0 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	6.0 6.0 6.5 6.0 7.0 7.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	JUNE 4.50 5.00 5.00 5.55 5.55 5.55 6.00 6.55 6.00 6.55	5.55.55 5.60.00 5.55.55 5.60.00 6.00 6.50 7.00 6.55	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 9.0 7.5 9.0	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5 7.5 8.5	8.5 9.0 8.5 8.5 9.5 9.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 9.0 10.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 9.0 9.0 8.5 8.5	9.0 9.5 9.5 9.5 9.5 9.0 8.0 7.5 7.0 9.0 9.0 9.0 8.0 8.0	8.5 8.5 8.5 8.0 8.0 8.0 7.5 6.5 6.5 6.5 6.5 7.0 8.0 7.5 7.5 7.5	8.5 9.0 8.5 8.5 8.5 8.0 7.0 7.5 8.5 8.0 8.0 7.0 7.5 8.5 8.7 7.0 7.5 8.5 7.0
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	6.0 6.0 6.0 6.5 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0 6.0 6.0	5.5.5.5 5.00005 5.0000 5.5.5.5 5.00000 5.5.50000 6.5.5 6.6.000 6.5.5 6.6.000 6.5.5 6.6.000 6.5.5 6.6.0000 6.6.000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00000 6.0000 6.0000 6.0000 6.0000 6.0000 6.0000 6.00000 6.00000 6.00000 6.00000 6.00000 6.00000 6.00000 6.00000 6.00000 6.00000 6.0	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 8.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.5 7.5 8.0 8.5 8.5 8.5	8.5 9.0 8.5 8.5 9.5 9.0 10.0 10.0 10.0 10.0 10.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	9.0 9.5 9.5 9.5 9.5 9.0 8.0 8.0 7.5 7.0 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5	8.5 8.5 8.5 8.0 8.0 7.5 7.5 6.5 6.5 6.5 7.0 8.5 8.0 7.5 7.5 7.5 7.0	8.5 9.0 8.55 8.5 8.5 8.0 7.0 7.5 8.5 8.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0 8.0 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	6.0 6.0 6.5 6.0 7.0 7.0 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	JUNE 4.50 5.00 5.00 5.55 5.55 5.55 6.00 6.55 6.00 6.55	5.55.55 5.60.00 5.55.55 5.60.00 6.00 6.50 7.00 6.55	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 9.0 7.5 9.0	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5 7.5 8.5	8.5 9.0 8.5 8.5 9.5 9.0 9.0 10.0 10.0 10.0 10.0 10.0 10.0 9.0 10.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 9.0 9.0 8.5 8.5	9.0 9.5 9.5 9.5 9.5 9.0 8.0 7.5 7.0 9.0 9.0 9.0 8.0 8.0	8.5 8.5 8.5 8.0 8.0 8.0 7.5 6.5 6.5 6.5 6.5 7.0 8.0 7.5 7.5 7.5	8.5 9.0 8.5 8.5 8.5 8.0 7.0 7.5 8.5 8.0 8.0 7.0 7.5 8.5 8.7 7.0 7.5 8.5 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	6.0 6.0 6.0 6.5 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0 6.5 6.0 6.5	5.55.55 5.60.005 5.55.55 5.60.006 6.000 6.55.50 77.00 6.55.50 77.00	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0	7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 8.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5 8.5 8.5 8.5 8.6 8.5 8.6	8.5 9.0 8.5 8.5 9.5 9.0 10.0 10.0 10.0 10.0 10.0 10.0 9.0 10.0 9.0 9.0 9.0 9.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	9.0 9.5 9.5 9.5 9.5 9.0 8.0 8.0 7.5 7.0 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.0 7.5	8.5 8.5 8.5 8.0 8.0 7.5 7.5 6.5 6.5 6.5 7.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 9.0 8.55 8.5 8.5 8.0 7.0 7.5 8.5 8.0 8.0 7.0 7.5 8.5 8.7 7.0 7.5 8.7 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	6.0 6.0 6.5 6.0 7.0 7.5 6.0 6.0 7.0 7.0 7.0 7.0 7.5 7.0 7.5 7.0 8.5 7.0	JUNE 4.5 5.0 5.0 5.0 5.5 5.5 5.5 5.5 6.0 6.0 6.5 6.0 6.0	5.55.55 5.60.005 5.55.55 5.60.000 5.55.000 6.55.000 6.55.000 6.55.000 6.55.000 6.55.00000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.00000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.000000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.000000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.000000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000 6.55.0000	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.5 7.5 8.5 8.5 8.5 8.0 8.5	8.5 9.0 8.5 8.5 9.5 9.0 9.0 10.0 10.0 10.0 10.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	9.0 9.5 9.5 9.5 9.5 9.0 8.0 7.5 7.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.0 8.0 7.5 7.5 6.5 6.5 6.5 8.0 7.5 7.0 8.0 7.5 7.0 7.5 7.5 7.5 7.5 7.5	8.5 9.05 8.5 8.5 8.5 8.0 7.0 7.5 8.5 8.0 8.0 7.0 7.5 8.5 8.0 7.0 7.5 8.5
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	6.0 6.0 6.0 6.5 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	JUNE 4.50 55.00 55.55 55.55 55.55 56.00 66.55 66.00 66.55 7.0	0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	9.0 9.5 9.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 8.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.5 7.5 7.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.5 9.0 8.5 8.5 9.5 9.0 10.0 10.0 10.0 10.0 10.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0 8.5 8.0 8.5 8.5 8.5 8.5 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	9.0 9.5 9.5 9.5 9.0 8.0 7.5 7.0 9.0 9.0 9.0 8.0 7.5 7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.0 8.0 7.5 7.5 6.5 6.5 6.5 7.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 9.0 8.5 8.5 8.5 8.0 7.0 7.5 8.5 8.0 8.0 7.0 7.5 8.5 8.0 8.0 7.0 7.5 8.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29	6.0 6.0 6.5 6.0 7.0 7.5 6.0 6.0 7.0 7.0 7.0 7.5 7.0 8.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	JUNE 4.50 5.00 5.05 5.55 5.55 5.55 6.00 6.55 6.50 6.55 6.70 7.0	0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	9.0 9.5 9.0 8.0 8.0 7.5 8.0 7.5 7.5 8.0 7.5 8.0 9.0 7.5 8.0 9.0 9.5 9.5 10.0 10.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 7.5 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.5 8.5 8.5 8.0 8.5 8.0 8.0 8.0 8.0	8.5 9.0 8.5 8.5 9.5 9.0 9.0 10.0 10.0 10.0 10.0 9.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	9.0 9.5 9.5 9.5 9.0 8.0 7.5 7.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.0 7.0 7.5	8.5 8.5 8.5 8.0 8.0 7.5 6.5 6.5 6.5 7.0 8.0 7.5 7.5 7.5 7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 9.05 8.5 8.5 8.5 8.0 7.0 7.5 8.5 8.0 7.0 7.5 8.0 8.0 7.5 7.0 7.5 7.0 7.5 7.0 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	6.0 6.0 6.0 6.5 6.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	JUNE 4.50 55.00 55.55 55.55 55.55 56.00 66.55 66.00 66.55 7.0	0.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	9.0 9.5 9.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 8.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.5 7.5 7.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.5 9.0 8.5 8.5 9.5 9.0 10.0 10.0 10.0 10.0 10.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0 8.5 8.0 8.5 8.5 8.5 8.5 8.5 9.0 8.5 9.0 8.5 9.0 8.5 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	9.0 9.5 9.5 9.5 9.0 8.0 7.5 7.0 9.0 9.0 9.0 8.0 7.5 7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.0 8.0 7.5 7.5 6.5 6.5 6.5 7.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 9.0 8.5 8.5 8.5 8.0 7.0 7.5 8.5 8.0 8.0 7.0 7.5 8.5 8.0 8.0 7.0 7.5 8.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 20 21 21 21 21 21 21 21 21 21 21 21 21 21	6.0 6.0 6.0 6.5 6.0 7.0 6.0 7.0 6.0 7.0 7.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	JUNE 4.50.00 5.00 5.55.55 5.55.55 6.00 6.55 6.50 6.55 7.00 7.00	5.5.5.5.5.5.5.66.00 5.5.00 5.5.5.5.5.5.5.5.5.66.00 5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	9.0 9.5 9.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 9.0 7.5 8.0 9.0 9.0 9.5 10.0 8.5 8.5 9.5 8.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9	JULY 7.0 7.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	7.5 8.0 7.5 7.5 7.5 7.0 7.0 7.0 7.0 7.0 7.5 7.5 7.5 7.5 7.5 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	8.5 9.0 8.5 8.5 9.5 9.0 9.0 10.0 10.0 10.0 10.0 10.0 9.0 10.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	9.0 9.5 9.0 9.5 9.0 8.0 8.0 7.5 7.0 9.0 9.0 8.0 8.0 7.5 7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 8.5 8.5 8.0 8.0 8.0 7.5 6.5 6.5 6.5 7.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	8.5 9.0 8.5 8.5 8.5 8.0 7.0 7.0 7.5 8.5 8.0 8.0 8.0 7.0 7.5 8.5 7.0 7.0 7.5 7.0 7.5 7.0 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0

15088000 SAWMILL CREEK NEAR SITKA

LOCATION.--Lat $57^{\circ}03'05''$, long $135^{\circ}13'40''$, in $NE^{1}/_{4}$ SW $^{1}/_{4}$ sec. 34, T. 55 S., R. 64 E. (Sitka A-4 quad.), Hydrologic Unit 19010401, on Baranof Island, in Tongass National Forest, on left bank 500 ft upstream from mouth, 1.6 mi downstream from Blue Lake, and 4.0 mi east of Sitka.

DRAINAGE AREA. -- 39.0 mi².

PERIOD OF RECORD.-- September 1920 to December 1923, February 1928 to September 1942, October 1945 to September 1957, 1994 (peak discharge only, published in WRD AK 95-1), and May to September 2001. Records prior to 1945 furnished by U.S. Forest Service.

REVISED RECORDS. -- WSP 1372: 1921-22 and 1928-36.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is sea level, from topographic map. Prior to April 1947, staff gages or water-stage recorders at several sites within 1,700 ft of present site at various datums. April 1947 to September 1957 at site about 200 ft upstream at different datum.

REMARKS.-- No estimated daily discharges.Records good. Minor regulation above station by Sitka Public Utilities hydroelectric plant during periods 1920-23 and 1937-42. In 1959, Blue Lake Dam, 1.6 mi upstream, was completed. The area of the lake is 1225 acres. The dam is concrete with a spillway elevation of 342.0 ft above sea level. In 1960, the Blue Lake Hydro plant, located 400 ft downstream from gage, was put into operation. Water is taken from Blue Lake and piped via a penstock to Blue Lake hydro, through 2-3,000 kw turbines and discharged back into Sawmill Creek just below high tide level. This penstock also provides water for the City of Sitka and for the filter plant for the Sitka Sawmill. In the years following, Campground Hydro, a smaller generation plant was constructed about 1,000 ft below Blue Lake Dam. It also has a penstock from Blue Lake and discharges directly into Sawmill Creek. A fish bypass valve has been installed at Campground Hydro that automatically releases 50 ft³/s to the tailrace anytime the hydro plant is shut down. Another small generator was installed just above the Sawmill Filter Plant diversion from Blue Lake Hydro penstock with the capability of bypassing the filter plant and discharging back into Sawmill Creek above the gage site. Water that went to the filter plant was piped to the sawmill and eventually discharged directly into Silver Bay. The sawmill has since closed and water is now supplied to Sawmill Cove Industrial Park. Flow is constantly regulated except when Blue Lake is spilling.

EXTREMES FOR PERIOD OF RECORD.-- Maximum discharge, 10,700 ft³/s, November 19, 1993, by computation of peak flow on the basis of a slope-area computation below Campground Hydro and adding diversion values at the time of peak between Campground Hydro and gage; peak flow below Blue Lake Tailrace was computed to be 11,100 ft³/s; gage height unknown; minimum discharge 9.1 ft³/s, Mar. 4, 1951.

EXTREMES OUTSIDE PERIOD OF RECORD.-- It was reported that in October 1972, a storm produced a peak elevation at Blue Lake of 353.0 ft or 11.0 ft of spill at the spillway. Extending the spillway rating, this flood was estimated to be 17,000 ft³/s. It was reported to have been the largest since 1921.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

EXTRMEMS FOR CURRENT YEAR.-- Maximum discharge during period May to September, 2920 ${\rm ft}^3/{\rm s}$, September 30, gage height 16.09 ft; minimum 59 ${\rm ft}^3/{\rm s}$ July 18-19.

DAILY MEAN VALUES DAY NOV DEC FEB JUN JUL AUG SEP OCT JAN MAR APR MAY 90 ΩN 528 722 ___ ___ 1740 2 ---___ ---------___ 87 80 456 362 1150 88 80 ___ ___ ___ ___ 287 584 87 81 ---___ ---------___ ___ ___ 5 74 87 229 586 6 7 ___ ___ ___ ___ ___ ___ ___ 70 25 170 1020 ---------------___ ___ ---148 101 780 86 8 91 120 1000 86 ___ ±64 ___ ___ ___ ___ ___ ___ 87 87 110 609 290 10 91 85 107 11 ___ ___ ___ ___ ___ ___ ___ ___ 85 85 104 141 12 118 84 85 95 87 86 14 ___ ___ ___ ___ ___ ___ ___ ___ 84 87 96 1960 15 110 83 85 1190 967 16 ___ ___ ___ ___ ___ ___ ___ 83 86 111 17 79 ___ 82 81 98 649 ---------___ ---80 83 64 80 527 19 ---------------------80 84 71 508 78 20 81 100 415 83 21 83 82 78 551 243 ---------------------22 ___ ___ ___ 87 81 78 622 251 23 ------------___ ___ ---90 82 373 218 82 24 ---------------------86 82 263 251 186 ___ ___ ___ ___ 25 160 26 84 81 407 359 ------27 ---___ ___ ___ ___ ___ 87 81 326 1120 181 225 757 28 ---------------------88 81 282 988 29 ---------------337 509 87 81 30 ---___ ___ ___ ---86 80 568 310 2370 31 ------___ ------___ ---97 574 251 TOTAL 2503 5123 9015 20871 83.4 696 165 291 MEAN ___ ___ ___ ___ ___ 91 574 1120 2370 MAX MTN 74 64 67 118

[‡] Result of discharge measurement

15088200 SILVER BAY TRIBUTARY AT BEAR COVE NEAR SITKA

LOCATION.--Lat $57^{\circ}01'09''$, long $135^{\circ}09'45''$, in $SW^{1}_{/4}$ $NW^{1}_{/4}$ $NE^{1}_{/4}$ sec. 13, T. 56 S., R. 64 E. (Sitka A-4 quad), Hydrologic Unit 19010203, in Tongass National Forest, on Baranof Island, on right bank 350 ft upstream from mouth, and 6.5 mi southwest of Sitka.

DRAINAGE AREA.--0.38 mi².

PERIOD OF RECORD. -- October 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 110 ft above sea level, from topographic map.

REMARKS.-- Records poor.

		DISCHA	RGE, CUBI	C FEET PE		WATER Y		BER 2000	TO SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1.4 .84 3.5 1.2 4.1	2.4 3.3 17 2.6 1.3	e1.5 e1.7 e1.6 e1.9	e1.3 e2.0 e5.2 e3.2 e4.7	5.1 3.6 3.2 2.3 2.0	2.7 2.4 2.2 1.9 2.2	2.1 2.1 1.9 2.6 1.1	2.6 5.1 9.2 4.6 2.1	6.4 6.3 6.3 7.7 6.5	1.6 1.7 1.5 2.6 3.5	.97 .53 .33 .31	9.9 17 3.6 1.2
6 7 8 9 10	8.7 15 9.0 16 9.7	1.8 4.8 e1.7 e1.4 e1.2	e6.5 e5.5 e2.2 e2.7 e2.3	e4.4 3.0 2.8 2.3 1.8	1.8 1.9 1.7 1.6	2.8 3.5 3.0 3.0 8.2	1.3 1.9 2.1 2.4 2.1	1.3 5.1 12 4.3 2.1	5.9 6.5 8.6 7.9 7.3	2.3 3.9 1.8 1.5	.18 .14 .14 .13	8.3 3.4 3.6 1.0
11 12 13 14 15	15 10 6.0 12	2.5 2.7 2.0 e1.2 e1.3	e2.0 e1.7 e1.5 e1.4 e1.3	1.6 1.5 1.6 1.8 3.0	1.5 1.5 7.5 3.1 2.3	7.4 3.8 2.7 2.3 2.2	2.0 1.5 1.3 1.7 2.1	2.8 4.0 4.6 5.1 4.8	3.3 3.7 5.9 4.7 3.1	.79 1.1 1.2 2.1 1.3	.11 .10 .11 .10	.16 8.7 13 8.0 8.1
16 17 18 19 20	4.9 2.2 1.9 2.2 2.2	e1.2 e2.6 e1.8 e1.5 e1.8	e1.2 e1.1 e1.9 e1.7 e1.0	3.1 3.0 2.7 2.8 2.2	2.0 1.8 1.9 2.0 1.8	2.1 2.3 2.2 1.8 1.6	2.7 4.3 3.8 3.7 4.9	3.7 2.7 3.1 3.6 3.4	2.7 3.1 5.0 7.4 4.9	1.3 1.0 e.96 e.90 e.86	.09 .07 .06 .06	2.6 3.7 3.6 8.0 1.9
21 22 23 24 25	1.6 4.9 5.4 3.6 1.8	e3.2 e4.4 e3.7 e3.2 e2.9	e1.1 e1.2 e1.1 e1.3	3.0 3.6 3.4 2.6 2.5	2.2 2.5 2.0 1.8 1.7	1.5 1.5 1.5 1.6 4.3	5.1 3.7 2.4 3.8 2.3	3.9 7.3 6.8 3.8 3.1	2.9 2.2 3.8 2.4 1.9	e.81 e.80 e1.5 7.4 3.2	.20 .10 .09 .09	1.0 2.0 1.4 1.9
26 27 28 29 30 31	1.1 .83 .52 .39 3.4 6.3	e3.1 e3.5 e2.2 e1.8 e1.4	e1.2 e1.1 e1.1 e1.0 e1.3 e1.4	2.1 4.8 3.1 2.3 2.2 8.6	6.3 9.1 3.3 	3.2 2.5 2.3 2.5 2.5 2.4	4.0 4.1 2.4 2.4 2.1	3.9 7.2 8.1 5.7 6.2	2.3 3.5 2.8 1.6 2.0	2.3 1.4 1.7 3.9 2.5	2.5 5.6 .74 .24 .19	1.1 2.0 1.8 24 17
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	165.68 5.34 16 .39 3.6 329 14.1 16.22	85.5 2.85 17 1.2 2.3 170 7.50 8.37	78.6 2.54 25 1.0 1.4 156 6.67 7.69	92.2 2.97 8.6 1.3 2.8 183 7.83 9.03	79.0 2.82 9.1 1.5 2.0 157 7.42 7.73	86.1 2.78 8.2 1.5 2.4 171 7.31 8.43	79.9 2.66 5.1 1.1 2.3 158 7.01 7.82	159.2 5.14 17 1.3 4.3 316 13.5	138.6 4.62 8.6 1.6 4.2 275 12.2	59.82 1.93 7.4 .79 1.5 119 5.08 5.86	14.11 .46 5.6 .06 .14 28 1.20	174.82 5.83 24 .16 3.5 347 15.3 17.11
		STATISTIC	S OF MONT	HLY MEAN	DATA FOR	WATER Y	EARS 2000	0 - 2001,	BY WATER	YEAR (WY)	#	
MEAN MAX (WY) MIN (WY)	6.43 7.52 2000 5.34 2001	3.70 4.56 2000 2.85 2001	5.13 7.73 2000 2.54 2001	2.33 2.97 2001 1.68 2000	1.96 2.82 2001 1.12 2000	2.57 2.78 2001 2.36 2000	2.39 2.66 2001 2.12 2000	5.43 5.73 2000 5.14 2001	5.41 6.20 2000 4.62 2001	3.43 4.93 2000 1.93 2001	2.23 4.00 2000 .46 2001	6.09 6.36 2000 5.83 2001
SUMMAR	Y STATIST	ICS	FOR 2	000 CALEN	DAR YEAR	F	FOR 2001 T	WATER YEAR	3	WATER Y	EARS 2000	- 2001
LOWEST HIGHES LOWEST ANNUAL MAXIMU INSTAN ANNUAL ANNUAL ANNUAL 10 PER 50 PER	MEAN T ANNUAL M ANNUAL M T DAILY ME SEVEN-DA M PEAK FL M PEAK ST TANEOUS IN	EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS			ep 4 an 17 an 16		1213.53 3.32 25 b.06 .08 61 19.53 c.05 2410 8.75 118.80 7.3 2.3 .84	Dec 5 Aug 18 Aug 14 Sep 1 Sep 1 Aug 17	28 1	3.93 4.54 3.32 41 Sep b.06 Aug .08 Aug 59 Aug 19.58 Aug c.05 Aug 60 10.4 40.64 8.3 2.6 .66	2000 2001 4 2000 18 2001 14 2001 23 2000 23 2000 17 2001	

Jan. 17-20, and 25-26 Aug. 18-19, 2001 Aug. 17-19. 2001 Estimated

15090000 GREEN LAKE NEAR SITKA

LOCATION.--Lat $56^{\circ}59'14''$, long $135^{\circ}06'37''$, in $SW^1/_4$ NE $^1/_4$ sec. 29, T. 56 S., R. 65 E. (Port Alexander D-4 quad), Hydrologic Unit 19010203, Greater Sitka Borough, on Baranof Island, in Tongass National Forest, 0.4 mi upstream from mouth at Silver Bay, and 9.4 mi southeast of Sitka.

DRAINAGE AREA. -- 28.8 mi².

PERIOD OF RECORD.--September 1915 to September 1925 (published as "Green Lake Outlet"); monthly discharges only published in WSP 1372. October 1983 to current year (month end reservoir contents and monthly discharges).

REVISED RECORDS.--WSP 1372: 1916, 1917, 1922 (monthly discharge). WDR AK-84-1: Drainage area. WDR AK-86-1: 1984, 1985 (month-end reservoir contents, change in month-end and yearly contents, adjusted mean monthly discharges, and extremes). WRD AK-00-01: 1998-1999 (M m).

GAGE.--Staff gage on upstream face of dam. Datum of gage is at mean low water, which is about 5 ft below sea level. Totalizing MWH meters are on the two turbines in Green Lake powerhouse. September 1915 to September 1925, recording gage at site of present day dam, elevation of gage was 220 ft above sea level, by barometer; prior to December 27, 1916 at datum 1 ft higher. Water years 1983-88, nonrecording remote lake-level indicator at Blue Lake powerhouse (6 mi northwest of gage).

REMARKS.--Reservoir is formed by concrete arch dam located at the outlet of Green Lake, construction began in 1978 and was completed in 1982. Total and usable capacity below spillway crest elevation of 395 ft is 88,000 and 75,000 acre-ft, respectively. Reservoir is used for power. Discharge released through the turbines is computed from relation between discharge, head, and power generation; release flow empties directly into Silver Bay and is not returned to stream. Spill is computed from a theoretical relation between discharge and stage above the crest of the 100 ft wide spillway. Turbine and spillway ratings and reservoir capacity table furnished by City and Borough of Sitka in 1983. Corrected reservoir capacity table furnished in April 1987.

COOPERATION.--Daily reservoir elevations and MWH power generation provided by City and Borough of Sitka.

AVERAGE DISCHARGE.--27 years (water years, 1916-25, 1985-2001), 317 ft³/s, 149.5 in/yr, 229,700 acre-ft/yr. Mean discharge for water years 1985-99 adjusted for change in contents of Green Lake.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 93,780 acre-ft, September 22-23, 1994, elevation, 400.5 ft; minimum contents observed, 23,170 acre-ft, June 1, 1996, elevation, 307.6 ft; Maximum daily discharge, 5,020 ft³/s, September 22-23, 1994; no flow released, February 5-8, 1987 and November 27-29, 1988.

EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 91,050 acre-ft, September 29, elevation 397.9 ft; minimum contents observed, 62,280 acre-ft, April 26, elevation 366.5 ft; Maximum daily discharge (not adjusted for storage) 1,870 ft³/s, September 29; minimum daily discharge, 111 ft³/s, July 2.

MONTH END RESERVOIR ELEVATION, IN FEET, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			CHANGE IN
DATE	ELEVATION	CONTENTS	CONTENTS
SEP 30	395.9	88,950	
OCT 31	394.5	87,530	-1420
NOV 30	395.2	88,210	+680
DEC 31	388.2	81,540	-6670
JAN 31	385.2	78,690	-2850
FEB 28	380.3	74,270	-4420
MAR 31	371.9	66,870	-7400
APR 30	366.7	62,450	-4420
MAY 31	371.9	66,870	+4420
JUN 30	393.2	86,290	+19420
JUL 31	396.0	89,050	+2760
AUG 31	396.1	89,160	+110
SEP 30	397.7	90,840	+1680
		CAL YR 2000	-7300
		WTR YR 2001	-1890

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 MEAN VALUES

MONTH	RELEASE	SPILL	TOTAL	ADJUSTED
OCT	183	415	598	575
NOV	208	83	290	302
DEC	202	104	306	198
JAN	205	0	205	159
FEB	200	0	200	123
MAR	221	0	221	101
APR	171	0	171	97
MAY	146	0	146	218
JUN	136	0	136	462
JUL	134	459	593	638
AUG	123	474	597	599
SEP	120	738	858	886
CAL YR 2000	202	143	345	335
WTR YR 2001	171	191	361	364

15101490 GREENS CREEK AT GREENS CREEK MINE NEAR JUNEAU

LOCATION.--Lat $58^{\circ}05'00''$, long $134^{\circ}37'54''$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 4, T. 44 S., R. 66 E. (Juneau A-2 quad), Hydrologic Unit 19010204, on Admiralty Island, in Admiralty Island National Monument, Tongass National Forest, on right bank, 100 ft upstream from mine portal, 0.3 mi downstream from Big Sore Creek, 7.0 mi upstream from mouth at Hawk Inlet, and 19 mi southwest of Juneau.

DRAINAGE AREA. -- 8.62 mi².

PERIOD OF RECORD. -- August 1989 to current year.

REVISED RECORD.--WRD AK-99-1, 1990-1994(M), 1996-1998(M).

GAGE.--Water-stage recorder. Datum of gage is 890.16 ft above sea level (levels by Greens Creek Mining Company). Prior to February 16, 1999, recording gage at site 30 ft upstream at datum 9.84 ft higher.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Greens Creek Mining Company pumps water from gage pool for use in mill. Diversion flow is recorded on totalizing meters in gage house. Pump records are available from Greens Creek Mining Company.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCHA	RGE, CUBI	C FEET P		LY MEAN	YEAR OCTOBI VALUES	ER 2000	TO SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	33 31 30 28 61	22 25 70 34 28	27 25 21 20 96	16 29 86 32 29	31 32 24 20 e14	11 9.3 8.4 7.7 7.2	4.2 3.8 3.8 4.0 4.1	31 30 37 32 28	122 108 106 108 107	88 83 78 85 91	42 36 33 39 36	42 94 75 50 64
6 7 8 9 10	87 97 88 84 71	26 25 22 21 21	50 30 25 23 21	25 24 26 21 20	e9.7 e9.5 e8.5 e7.9 e7.5	7.3 9.1 7.7 8.5	4.0 4.7 4.5 4.7 5.7	24 35 35 30 27	105 107 104 104 112	111 105 96 99 92	32 29 28 28 26	62 71 77 52 36
11 12 13 14 15	102 109 104 90 86	26 28 23 21 20	20 19 e18 e17 e16	18 17 16 15	e7.3 e6.9 e6.7 e6.5 e6.4	25 18 13 11 9.9	8.0 7.3 6.3 6.1 7.6	34 38 54 48 60	104 101 105 100 98	86 82 90 87 84	24 24 23 22 21	30 38 106 85 70
16 17 18 19 20	72 56 42 36 37	21 26 20 20 33	e16 e15 e15 e14 e14	15 25 22 19 17	e6.3 e6.2 e6.1 e6.0 e6.0	9.8 9.9 10 7.8 e7.0	11 16 20 23 22	62 62 52 44 47	96 96 99 106 132	80 68 63 68 74	20 20 19 20 23	97 84 78 66 72
21 22 23 24 25	37 66 67 41 33	74 100 85 59 35	e13 e13 e12 e12 e12	16 17 19 17 16	e5.9 e5.9 e5.8 e5.8	e6.0 e5.5 e5.0 4.6 5.7	25 28 30 30 26	57 96 91 73 63	118 100 101 97 90	74 85 72 73 72	24 21 21 21 22	63 78 77 73 76
26 27 28 29 30 31	30 27 25 23 23 24	30 26 24 22 21	e11 e10 11 13 23 19	16 21 20 16 15 22	7.7 32 17 	6.5 5.2 4.6 4.4 4.3	30 54 42 34 32	66 80 89 96 99	89 98 104 93 87	71 61 48 59 59 44	28 89 38 37 31 33	59 48 47 56 122
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1740 56.1 109 23 3450 6.51 7.51	1008 33.6 100 20 2000 3.90 4.35	651 21.0 96 10 1290 2.44 2.81	682 22.0 86 15 1350 2.55 2.94	315.6 11.3 32 5.8 626 1.31 1.36	265.6 8.57 25 4.2 527 .99 1.15	501.8 16.7 54 3.8 995 1.94 2.17	1749 56.4 129 24 3470 6.55 7.55	3097 103 132 87 6140 12.0 13.37	2428 78.3 111 44 4820 9.09 10.48	910 29.4 89 19 1800 3.41 3.93	2048 68.3 122 30 4060 7.92 8.84
		STATISTI	CS OF MON'	THLY MEAN	I DATA FOI	R WATER Y	EARS 1989	- 2001,	BY WATER	YEAR (WY)	#	
MEAN MAX (WY) MIN (WY)	61.3 97.9 1999 34.7 1994	30.5 49.5 1994 14.6 1991	26.2 65.7 1990 8.27 1997	15.1 22.3 1991 5.50 1997	13.9 36.9 1992 3.42 1999	12.2 27.2 1992 5.43 1997	30.7 49.6 1994 16.7 2001	80.3 107 1992 56.4 2001	88.9 147 1992 59.5 1998	56.6 90.5 2000 31.5 1998	40.4 69.7 1991 18.7 1994	60.7 95.0 1991 33.3 1995

See period of record Estimated

15101490 GREENS CREEK AT GREENS CREEK MINE NEAR JUNEAU--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1989 - 2001#
ANNUAL TOTAL	17348.2	15396.0	
ANNUAL MEAN	47.4	42.2	43.3
HIGHEST ANNUAL MEAN			60.1 1992
LOWEST ANNUAL MEAN			31.8 1998
HIGHEST DAILY MEAN	133 Sep 16	132 Jun 20	465 Oct 20 1998
LOWEST DAILY MEAN	5.0 Mar 9	a3.8 Apr 2	b1.9 Mar 22 1991
ANNUAL SEVEN-DAY MINIMUM	5.2 Mar 4	4.0 Mar 31	1.9 Mar 21 1991
MAXIMUM PEAK FLOW		161 Oct 12	c710 Oct 20 1998
MAXIMUM PEAK STAGE		2.63 Oct 12	d14.79 Oct 20 1998
ANNUAL RUNOFF (AC-FT)	34410	30540	31350
ANNUAL RUNOFF (CFSM)	5.50	4.89	5.02
ANNUAL RUNOFF (INCHES)	74.87	66.44	68.22
10 PERCENT EXCEEDS	98	97	91
50 PERCENT EXCEEDS	33	28	32
90 PERCENT EXCEEDS	8.8	7.0	6.7

[#] See Period of Record
a Apr. 2 and 3
b Mar. 22 to Mar. 27, 1991
c From rating curve extended above 140 ft³/s on basis of slope area measurement of peak flow
d Same site, different datum

15102200 FAVORITE CREEK NEAR ANGOON

LOCATION.--Lat $57^{\circ}26'52''$, long $134^{\circ}27'35''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 14, T. 51 S., R. 68 E. (Sitka B-2 quad), Hydrologic Unit 19010204, in Tongass National Forest, on Admiralty Island, on right bank 1.2 mi upstream from confluence with North Fork Favorite Creek, 2.2 miles from the mouth of Favorite Creek and about 5.7 mi south east of Angoon.

DRAINAGE AREA. -- 2.52 mi²

PERIOD OF RECORD. -- November 2000 to September 2001.

GAGE.--Water-stage recorder. Elevation of gage is 370 ft above sea level, from topographic map.

 ${\tt REMARKS.--} \ {\tt Records} \ {\tt fair}, \ {\tt except} \ {\tt for} \ {\tt discharges} \ {\tt above} \ {\tt 53} \ {\tt ft}^3/{\tt s}, \ {\tt and} \ {\tt estimated} \ {\tt daily} \ {\tt discharges}, \ {\tt which} \ {\tt are} \ {\tt poor}.$

EXTREMES FOR CURRENT YEAR.--Maximum discharge during the period November through September, 244 $\rm ft^3/s$, gage height 11.16 ft, December 1; minimum daily about 2.2 $\rm ft^3/s$, March 23. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAILY MEAN VALUES

DAY OCT MOM DEC JAN FEB MAR APR MAY .TITN JUL AUG SEP 69 16 23 5.5 e2.7 14 42 21 8.8 21 2 ------35 45 82 44 22 4.4 e2.4 e2.3 16 22 32 21 19 8.9 32 ---23 27 25 19 29 14 12 31 24 7.4 17 5 ------95 31 11 3.5 e3.1 9.6 36 23 6.9 17 17 6 32 9.6 12 2.8 8.1 34 30 6.5 15 2.6 2.5 2.7 ---8.5 7.6 6.1 5.9 ---2.2 35 2.0 32 36 3.0 12 33 6.9 26 8 18 29 35 11 ___ ___ 14 29 6.7 5.6 14 32 30 5.8 9.0 ---6.0 9.7 2.7 7.7 10 ---12 15 11 34 25 5.5 12 ___ 11 ___ 11 5.4 19 3.4 12 2.8 20 5.1 6.7 9.7 7.5 7.1 ---9.3 5.4 3.7 6.3 7.9 12 ---5.1 6.1 8.4 4.8 13 26 19 13 8.1 5.7 4.5 14 ___ ___ 6.7 5.3 4 7 3.4 15 29 21 4.3 7.5 9.7 15 ------6.2 9.1 4.6 4.5 3.4 2.7 2.0 4.3 18 5.7 3.6 16 ___ 8.8 4.1 4 6 26 26 19 4.2 12 4.2 17 ------5.6 43 3.8 4.6 4.5 25 26 16 12 ------13 3.6 19 6.7 19 26 3.4 e3 2 5 8 16 31 16 4 3 12 --e2.8 20 ---5.4 14 3.3 5.8 55 17 5.6 14 18 21 ___ 4 7 17 3 2 e2 5 6 4 19 43 16 5.9 13 22 ------29 e2.4 e2.2 10 25 5.7 5.3 4.3 3.1 32 15 15

2)	11	0.0	11		C2.J	2.0	23	2.0	J. U	12	20
30	 9.8	22	9.1		e2.8	26	24	21	9.0	11	36
31	 	11	29		e3.5		43		8.4	12	
TOTAL	 	497.9	696.8	300.9	166.6	254.1	592.7	910	559.0	229.8	478.8
MEAN	 	16.1	22.5	10.7	5.37	8.47	19.1	30.3	18.0	7.41	16.0
MAX	 	95	82	72	20	29	43	55	30	31	36
MIN	 	3.9	7.1	2.7	2.2	2.3	8.1	21	8.4	4.2	6.3
MED	 	9.3	17	5.7	3.7	4.1	18	28	19	5.8	14
AC-FT	 	988	1380	597	330	504	1180	1800	1110	456	950
CFSM	 	6.37	8.92	4.26	2.13	3.36	7.59	12.0	7.16	2.94	6.33
IN.	 	7.35	10.29	4.44	2.46	3.75	8.75	13.43	8.25	3.39	7.07

e2.4

e2.5

e3.2

e3.1

e3.0

e2.9

18

21

11

20

29

16

23

24

20

17

17

19

23

28

27

24

21

21

28 25

14

12

11

9.8

9.5 9.3 9.0

5.0

5.2

8.1

31

13

12

21

28

20

18

16

28

23

24

25

26

28

29

14

11

3.9

4.3

9.6

6.1

4.3

4.1

24

14

11

35

17

11

9.5

3.0

2.8

2.7

7.1

9.9

72

Estimated

15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE

LOCATION.--Lat $57^{\circ}39'46''$, long $135^{\circ}11'06''$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 34, T. 48 S., R. 63 E. (Sitka C-4 quad), Greater Sitka Borough, Hydrologic Unit 19010203, on Chichagof Island, in Tongass National Forest, on right bank 0.6 mi upstream from Hook Creek, 3.5 mi upstream from mouth at Kadashan Bay, and 9 mi south of Tenakee.

DRAINAGE AREA. -- 10.2 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--January 1968 to September 1978, October 1980 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 100 ft above sea level, from topographic map. Prior to October 24, 1969, at site 90 ft downstream at different datum; October 24, 1969 to September 30, 1978, at site 75 ft downstream at datum 1.89 ft higher.

REMARKS.--Records fair, except for estimated daily discharges, which are poor.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 500 ft3/s and maximum (*)

	Date	Time		harge ³ /s)	Gage Height (ft)		Date	Time	Dischar (ft ³ /s		age Height (ft)	
	Oct. 11	0145	6	19	3.84		Jan. 3	1030	695		3.99	
	Dec. 5	0730	7	32	4.06		Sept. 13	0045	*1200		*4.82	
		DISCHAR	GE, CUBI	C FEET			YEAR OCTOBER VALUES	2000	TO SEPTEMBER	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	46 35 39 33 105	68 59 139 57 42	106 70 47 55 440	83 150 439 155 112	115 93 67 46 37	39 30 25 22 21	19 16 15 27 23	62 74 111 74 48	99 66 61 84 78	23 25 25 23 27	14 13 12 14 12	90 130 53 36 142
6 7 8 9 10	226 181 89 138 112	43 77 50 38 33	120 66 51 41 36	119 78 76 75 46	31 29 27 24 22	43 75 49 77 187	20 17 21 26 20	38 64 162 108 55	65 66 62 66 80	81 87 55 59 45	12 12 11 10 9.8	112 66 50 34 28
11 12 13 14 15	256 198 113 82 124	86 83 46 38 51	32 29 24 e19 e17	36 32 32 45 65	36 20 68 37 e19	243 116 58 43 40	22 40 25 24 22	62 70 70 63 72	54 50 67 58 47	32 35 65 36 29	9.5 9.3 9.1 8.8 8.6	24 184 723 190 104
16 17 18 19 20	76 60 52 50 65	57 113 46 42 72	e18 e18 44 37 25	51 98 78 57 43	e17 e16 e15 e14 e14	42 40 34 24 e20	22 29 42 47 38	65 64 70 64 60	46 47 49 53 82	26 22 20 19 17	8.6 8.5 9.4 11 22	130 104 86 89 71
21 22 23 24 25	77 151 168 74 52	144 198 152 123 88	21 24 18 18 32	53 83 76 43 34	16 16 15 e14 14	e17 e16 e14 e16 17	40 39 52 83 52	87 102 84 61 49	51 40 39 37 33	16 16 15 15	34 20 16 13	55 74 64 53 56
26 27 28 29 30 31	44 39 35 31 62 143	95 86 55 43 38	30 23 27 51 111 91	32 85 64 38 32 186	49 278 63 	25 23 22 21 20 28	52 79 58 72 69	49 60 67 77 67 149	31 32 33 28 24	14 13 13 13 13 12	31 129 39 38 46 39	43 41 42 103 240
TOTAL MEAN MAX MIN AC-FT CFSM IN.	2956 95.4 256 31 5860 9.35 10.78	2262 75.4 198 33 4490 7.39 8.25	1741 56.2 440 17 3450 5.51 6.35	2596 83.7 439 32 5150 8.21 9.47	1212 43.3 278 14 2400 4.24 4.42	1447 46.7 243 14 2870 4.58 5.28	1111 37.0 83 15 2200 3.63 4.05	2308 74.5 162 38 4580 7.30 8.42	1628 54.3 99 24 3230 5.32 5.94	905 29.2 87 12 1800 2.86 3.30	642.6 20.7 129 8.5 1270 2.03 2.34	3217 107 723 24 6380 10.5 11.73
	:	STATISTICS	OF MONT	THLY ME	AN DATA FOR	WATER	YEARS 1968 -	2001,	BY WATER YE	AR (WY)#	
MEAN MAX (WY) MIN (WY)	118 234 1975 50.6 1970	77.3 152 1975 17.7 1974	64.3 147 2000 8.05 1978	50.0 147 1985 6.15 1969	48.6 118 1985 5.95 1969	44.9 129 1994 9.21 1974	67.9 118 1994 28.2 1972	102 182 1972 42.0 1981	66.9 151 1972 19.8 1998	31.0 60.2 1970 6.41 1989	32.6 79.0 1983 9.44 1977	75.4 141 1981 17.5 1986

See Period of Record; partial years used in monthly summary statistics Estimated

15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE--Continued

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WAT	ER YEAR	WATER YEAR	S 1968 - 2001#
ANNUAL TOTAL	22409		22025.6			
ANNUAL MEAN	61.2		60.3		64.8	
HIGHEST ANNUAL MEAN					80.8	1992
LOWEST ANNUAL MEAN					44.1	1978
HIGHEST DAILY MEAN	511	Sep 16	723	Sep 13	1010	Oct 19 1998
LOWEST DAILY MEAN	14	Jan 24	8.5	Aug 17	a3.2	Jul 28 1989
ANNUAL SEVEN-DAY MINIMUM	15	Feb 12	8.9	Aug 12	4.2	Jan 13 1974
MAXIMUM PEAK FLOW			b1200	Sep 13	b1970	Oct 8 1990
MAXIMUM PEAK STAGE			4.82	Sep 13	5.83	Oct 8 1990
INSTANTANEOUS LOW FLOW			7.7	Aug 17	3.2	Jul 28 1989
ANNUAL RUNOFF (AC-FT)	44450		43690		46970	
ANNUAL RUNOFF (CFSM)	6.00		5.92		6.36	
ANNUAL RUNOFF (INCHES)	81.73		80.33		86.36	
10 PERCENT EXCEEDS	110		114		141	
50 PERCENT EXCEEDS	50		46		43	
90 PERCENT EXCEEDS	19		15		12	

See Period of Record; partial years used in monthly summary statistics
 Jul. 28 to Jul. 29, 1989
 From rating curve extended above 330 ft³/s on basis of area-velocity study at gage height 4.8 ft and shape of previous rating

15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1967-72, 1974-77, 1981-1985, and 1987 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: November 1967 to September 1978, December 1981 to December 1984, March 1987 to March 1988, and September 1988 to current year.

INSTRUMENTATION.--Digital water-temperature recorder, November 1967 to December 1984, set for 1-hour punch interval. Electronic water-temperature recorder since March 13, 1987, set for 2-hour recording interval. Electronic watertemperature recorder with 15-minute recording interval since July 11, 1996.

REMARKS.--Records represent water temperature at the sensor within $0.5\,^{\circ}\text{C}$. Temperature at the sensor was compared with the stream average by cross section on April 6. No variation was found in the temperature cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum, 16.5°C, July 15, 1993; minimum, 0.0°C, on many days during most winters.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum recorded, 13.0° C, August 14 and 15; minimum, 0.0° C, on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			SAMPLE		DIS-		
			LOC-		CHARGE,		
			ATION,		INST.		
			CROSS		CUBIC	TEMPER-	TEMPER-
		STREAM	SECTION	GAGE	FEET	ATURE	ATURE
DATE	TIME	WIDTH	(FT FM	HEIGHT	PER	WATER	AIR
		(FT)	L BANK)	(FEET)	SECOND	(DEG C)	(DEG C)
		(00004)	(00009)	(00065)	(00061)	(00010)	(00020)
APR							
06	1457	25.8	24.1	1.50	19	2.0	4.5
06	1458	25.8	20.1	1.50	19	2.0	4.5
06	1459	25.8	16.1	1.50	19	2.0	4.5
06	1500	25.8	12.1	1.50	19	2.0	4.5
06	1501	25.8	8.10	1.50	19	2.0	4.5
06	1502	25.8	4.10	1.50	19	2.0	4.5

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	OCTO	BER		NOVEMB	ER		DECEME	BER		JANUARY		
1 2 3 4 5	5.5 4.5 4.5 4.5 6.5	4.0 4.0 3.5 3.5 4.5	4.5 4.0 4.0 4.0 5.5	4.5 5.0 5.0 4.5 4.0	3.5 4.5 4.5 3.0 3.0	4.0 4.5 5.0 4.0 3.5	3.0 3.5 3.5 3.5 4.0	2.5 3.0 3.0 3.0 3.0	2.5 3.0 3.0 3.5 3.5	2.0 2.0 2.0 2.5 2.5	1.5 1.0 1.5 2.0 1.5	1.5 1.5 1.5 2.0 2.0
6 7 8 9 10	7.5 7.5 6.5 6.5	6.5 6.5 6.0 6.5	7.0 7.0 6.0 6.5 6.0	4.0 4.5 4.5 4.0 3.5	4.0 4.0 4.0 3.0 3.0	4.0 4.0 4.0 3.5 3.5	4.0 3.0 3.0 2.0 2.0	3.0 3.0 2.0 1.5	3.5 3.0 2.5 1.5 2.0	2.5 3.0 3.0 2.5 2.0	2.0 2.5 2.5 2.0 1.5	2.0 3.0 2.5 2.0 1.5
11 12 13 14 15	7.0 8.0 7.5 6.5	6.0 7.0 6.5 6.0	6.5 7.5 7.0 6.5 6.5	4.5 4.5 4.5 4.5 4.5	3.5 4.5 3.5 4.0 3.5	4.0 4.5 4.0 4.0	2.0 2.0 1.0 .0	2.0 1.0 .0 .0	2.0 2.0 .5 .0	2.0 1.5 2.0 2.0	1.5 1.0 1.5 1.5	2.0 1.5 1.5 2.0 2.0
16 17 18 19 20	6.5 6.5 5.5 6.0	6.0 5.5 5.0 5.5	6.0 6.0 5.5 5.5	4.0 4.0 4.0 4.0 5.0	3.5 4.0 3.0 3.5 4.0	4.0 4.0 3.5 3.5 4.5	.0 1.0 1.0 1.0	.0 .0 .0 .5	.0 .5 .5 1.0	2.5 2.5 3.0 3.0	2.0 2.0 2.5 2.5 2.5	2.0 2.5 2.5 2.5 2.5
21 22 23 24 25	5.5 6.0 6.0 5.5 5.5	5.0 5.0 5.5 5.0	5.0 5.5 6.0 5.5 5.5	5.0 5.5 5.0 4.0 4.0	5.0 5.0 4.0 4.0 4.0	5.0 5.0 4.0 4.0	1.0 .5 1.0 1.5	.0 .0 .5 1.0	.5 .0 1.0 1.5	3.0 2.5 2.5 2.5 2.5	2.5 2.5 2.0 2.0 2.0	2.5 2.5 2.5 2.0 2.5
26 27 28 29 30 31	5.5 5.0 4.5 4.0 3.5 4.0	4.5 4.5 4.0 2.5 2.5 3.5	5.0 4.5 4.5 3.0 3.0	4.0 4.0 3.0 2.5 3.0	3.5 3.0 2.5 2.5 2.5	4.0 3.5 3.0 2.5 2.5	1.5 1.5 1.5 1.5 1.5	1.0 1.5 1.5 .5 .5	1.0 1.5 1.5 1.0 1.0	3.0 3.0 2.5 2.0 2.0	2.5 2.5 1.5 1.5 1.5	2.5 2.5 2.0 2.0 2.0
MONTH	8.0	2.5	5.4	5.5	2.5	3.9	4.0	.0	1.5	3.0	1.0	2.1

15106920 KADASHAN RIVER ABOVE HOOK CREEK NEAR TENAKEE--Continued

TEMPERATURE, WATER, DEGREES CELSIUS, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

		I EPIE	BIGHT ORE,	WAIER, DEG	CE CEED	LDIOD, V	MIEK IEAK	OCTOBER	1000	JEF I EMDER	2000	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	FEE	BRUARY		MARCH			APRIL		MAY			
				1.5 2.0 1.5 1.5						4.5 3.5 4.0 4.0 4.0	2.5 3.0 2.5 3.0 2.5	3.5 3.5 3.5 3.5 3.5
				1.5 1.5 2.0 1.5						4.0 4.0 3.5 4.5		3.5 3.5 3.5 3.5 4.0
11 12 13 14 15	.5 1.0 1.0 .5	.0 .5 .0 .0	.0 1.0 .5 .0	1.5 2.0 3.0 3.0 3.0	1.0 1.0 1.5 2.0 2.5	1.5 2.0 2.5 2.5 3.0	2.5 2.5 2.5 3.5 3.0	1.5 1.0 1.0 2.0 1.5	2.0 1.5 2.0 2.5 2.5	5.0 5.5 5.5 5.5	4.0 3.5 4.0 4.0 3.5	4.5 4.5 4.5 4.5
				3.0 2.5 2.0 1.0						5.0 5.5 5.0 5.5 4.5	3.5 3.5 4.0 3.5 3.5	4.5 4.5 4.5 4.5
21 22 23 24 25				.0 .5 .0 1.0						5.5		4.5
26 27 28 29 30 31	1.0 .5 1.0 	.0 .0 .5 	.5 .0 1.0 	1.5 1.5 1.0 2.0 1.0	1.0 1.0 .5 .5	1.0 1.0 1.0 1.0 1.0	3.5 4.0 4.0 4.0 4.5	3.0 3.0 2.5 3.0 3.0	3.5 3.5 3.5 3.5 3.5	6.5 6.0 6.5 5.0 5.0	3.5 5.0 4.0 4.0 4.0	5.0 5.5 5.0 4.5 4.5 5.0
MONTH		.0	.8			1.2		.5		6.5		
DAY	MAX	MIN 1	MEAN	MAX MIN	MEAN	MAX	MIN ME	AN M	AX MIN	MEAN		
DAY		MIN I	MEAN	MAX MIN	MEAN	MAX	MIN ME					
	J			JULY			AUGUST		SEPTEME		9.5 9.0 8.5 8.5 9.0	9.5 9.5 9.0 9.0 9.5
1 2 3 4 5	6.0 5.5 6.0 6.0	4.0 4.5 4.5 4.5 4.5	5.0 5.0 5.0 5.0		8.0 8.5 9.0 9.0	9.0 9.0 9.5 9.0 8.5	AUGUST 10.5 11.5 11.5 11.5 12.0	10.0 10.0 10.5 10.5	SEPTEME 10.0 10.5 11.0 11.0	10.0 9.5 9.5 9.5 10.0	9.0 8.5 8.5 9.0	9.5 9.0 9.0 9.5
1 2 3 4 5 6 7 8 9	6.0 5.5 6.0 6.5 6.5 7.5 7.0	4.0 4.5 4.5 4.5 4.5 5.0 5.0 5.5	5.0 5.0 5.0 5.5 5.5 6.0 6.5 5.5	JULY 9.5 10.0 10.5 9.5 9.0	8.0 8.5 9.0 9.0 8.5 8.0 8.0 8.0	9.0 9.0 9.5 9.0 8.5 8.5 8.5 8.5	AUGUST 10.5 11.5 11.5 11.5 12.0 11.5 12.0 12.0 12.0 12.0	10.0 10.0 10.5 10.5 10.5 10.0 9.5 9.5	SEPTEMN 10.0 10.5 11.0 11.0 11.0 11.0 11.0 11.0	10.0 9.5 9.5 9.5 10.0 9.5 9.5 9.5 9.0 8.5	9.0 8.5 9.0 9.5 8.5 7.5 6.5	9.5 9.0 9.5 9.0 9.5 9.0 8.5 8.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	6.0 5.5 6.0 6.5 6.5 7.5 7.0 6.0 6.5 6.5 7.5	4.0 4.5 4.5 4.5 5.0 5.0 5.5 5.5 5.5	5.0 5.0 5.0 5.5 5.5 5.5 5.5 5.0 6.5 5.5	JULY 9.5 10.0 10.5 9.5 9.0 9.0 8.5 9.0 9.0 8.5 9.0 9.0 8.5 9.0 9.0	8.0 8.5 9.0 8.5 8.0 8.0 8.0 8.0 8.0	9.0 9.5 9.0 9.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	10.5 11.5 11.5 11.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.5 12.5	10.0 10.0 10.5 10.5 10.5 10.0 10.5 10.0 9.5 9.5	SEPTEMN 10.0 10.5 11.0 11.0 11.0 11.0 11.0 11.0	9.5 9.5 9.5 10.0 9.5 9.5 8.0 9.0 8.0 9.0 9.5 9.5	9.0 8.5 9.0 9.0 8.5 7.0 8.0 9.0 9.0	9.5 9.0 9.5 9.0 8.5 7.5 8.5 9.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	6.0 5.5 6.0 6.5 6.5 7.0 6.0 6.5 7.5 7.0 7.5 7.5 7.5	4.0 4.5 4.5 4.5 5.0 5.0 5.5 5.5 5.5 6.5 7.0	5.0 5.0 5.0 5.5 5.5 5.5 6.0 6.5 5.5 5.0 6.0 7.0 7.0	JULY 9.5 10.0 10.5 9.5 9.0 9.0 9.0 8.5 9.0 9.0 9.0 8.5 10.0	8.0 8.5 9.0 8.5 8.0 8.0 8.0 8.0 8.5 9.5 9.5 9.5	9.0 9.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 9.0 9.5 9.0 10.5	10.5 11.5 11.5 11.5 12.0 11.5 12.0 12.0 12.0 12.0 12.0 12.5 12.5 12.5 12.5 13.0 13.0	10.0 10.0 10.5 10.5 10.5 10.0 10.5 9.5 10.0 10.5 11.0	SEPTEMN 10.0 10.5 11.0 11.0 11.0 11.0 11.0 11.	BER 10.0 9.5 9.5 9.5 10.0 9.5 9.5 8.0 8.0 9.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	9.0 8.5 9.0 9.0 8.5 7.5 6.5 7.0 9.0 8.5 9.0 9.0 8.5	9.5 9.0 9.5 9.0 9.5 8.5 7.5 7.5 9.0 9.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	6.0 5.5 6.0 6.5 6.5 7.0 6.0 6.5 7.5 7.0 7.5 8.5 7.5 8.5 7.5 9.0	4.0 4.5 4.5 4.5 5.0 5.0 5.5 5.5 5.5 6.5 6.5 6.5 76.5	5.0 5.0 5.0 5.5 5.5 5.5 6.0 6.5 5.5 5.6 6.0 7.0 7.0 7.0 7.0 7.0 7.0	JULY 9.5 10.0 10.5 9.5 9.0 9.0 9.0 9.0 9.0 9.0 10.0 9.5 10.5 10.5 12.0 12.5 12.0 11.0 10.5	8.0 8.5 9.0 9.0 8.5 8.0 8.0 8.0 8.0 8.5 9.0 8.5 9.5 10.0 10.0 11.0 10.0	9.0 9.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 9.0 9.5 10.5 11.5 11.5 10.0	10.5 11.5 11.5 11.5 12.0 11.5 12.0 12.0 12.0 12.0 12.0 12.5 12.5 12.5 12.5 11.5	10.0 10.0 10.5 10.5 10.5 10.0 9.5 9.5 10.0 10.0 10.5 11.0 11.0 11.0 11.0 11	SEPTEMN 10.0 10.5 11.0 11.0 11.0 11.0 11.0 11.	BER 10.0 9.5 9.5 9.5 10.0 9.5 9.5 8.0 8.0 9.0 9.5 9.5 10.0 9.5 9.5 8.0 8.0 9.0 9.5 9.5 8.0	9.0 8.5 9.0 9.0 8.5 7.5 6.5 7.0 9.0 9.0 8.5 9.0 9.0 8.5 9.0 9.0 8.5 9.0	9.5 9.0 9.5 9.0 9.5 8.5 7.5 7.5 9.0 9.0 9.5 9.0 8.5 9.0 8.5

15106970 MIDDLE BASIN CREEK NEAR TENAKEE

LOCATION.--Lat $57^{\circ}41'33''$, long $135^{\circ}12'06''$, in NE^{1}_{4} NE^{1}_{4} Sec. 21, T. 48 S., R. 63 E. (Sitka C-4 quad), Hydrologic Unit 19010203, in Tongass National Forest, on Chichagof Island, on left bank 0.3 mi upstream from confluence with Kadashan River, and about 7 mi south of Tenakee.

DRAINAGE AREA.--0.12 mi²

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1981 to July 1987(unpublished fragmentary records provided by the U.S. Forest Service). July 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 190 ft above sea level, from topographic map.

REMARKS. -- No estimated daily discharges. Records fair.

		DISCHA	RGE, CUBI	C FEET PI		WATER Y		R 2000	TO SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.60 .56 .55 .52	.75 .75 .80 .71	.98 .84 .74 .77 2.5	.58 .78 2.2 1.8 2.1	.92 .90 .83 .77	.61 .54 .48 .44	.30 .27 .28 .31	.33 .36 .45 .45	.93 1.0 1.0 .99	.47 .47 .47 .44	. 25 . 24 . 24 . 25 . 23	.27 .39 .29 .24 .36
6 7 8 9 10	.92 1.0 1.1 1.3	.72 .71 .64 .60	1.9 1.8 1.3 1.1	1.7 1.2 1.0 .98 .79	.65 .61 .57 .53	.47 .52 .45 .45	.30 .28 .28 .29	.39 .43 .58 .59	.98 .96 .98 1.0	.46 .45 .41 .40	.21 .20 .20 .19	.34 .31 .29 .28
11 12 13 14 15	2.1 2.6 2.4 2.1 1.9	.66 .64 .57 .56	.86 .80 .74 .65	.70 .65 .63 .65	.44 .44 .62 .45	1.2 .99 .71 .63 .62	.28 .30 .25 .24	.49 .49 .48 .48	1.1 1.0 .97 .93	.36 .36 .39 .36	.20 .19 .19 .19	.28 .51 2.1 2.3 1.9
16 17 18 19 20	1.5 1.2 1.1 .97 .97	.57 .69 .57 .57	.59 .56 .72 .59	.59 .69 .64 .59	.39 .38 .38 .37	.61 .58 .53 .44	. 24 . 25 . 26 . 25 . 24	.48 .48 .50 .48	.85 .81 .79 .78	.35 .34 .33 .32	.18 .18 .17 .17	1.6 1.2 1.0 .92 .85
21 22 23 24 25	.92 1.0 1.4 1.2	.71 1.0 1.7 1.6 1.5	.50 .46 .44 .44	.56 .60 .62 .56	.36 .35 .33 .33	.35 .34 .33 .36	.24 .25 .27 .30	.51 .52 .53 .54	.84 .82 .75 .67	.32 .30 .28 .27	.24 .19 .18 .17	.81 .76 .69 .67
26 27 28 29 30 31	1.0 .93 .85 .75 .81	1.3 1.2 1.0 .94 .86	.45 .41 .44 .49 .59	.51 .65 .60 .54 .51	.44 1.9 .75 	.37 .37 .36 .33 .34	.27 .29 .29 .36 .35	.56 .58 .59 .60 .64	.59 .57 .54 .49 .49	. 27 . 26 . 25 . 25 . 24 . 25	.21 .35 .21 .20 .21	.58 .54 .53 .58 .72
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	36.03 1.16 2.6 .52 1.0 71 9.69 11.17	24.79 .83 1.7 .56 .71 49 6.89 7.68	24.79 .80 2.5 .41 .59 49 6.66 7.68	26.18 .84 2.2 .51 .65 52 7.04 8.12	15.99 .57 1.9 .32 .44 32 4.76 4.96	15.72 .51 1.2 .33 .45 31 4.23 4.87	8.32 .28 .36 .23 .28 .17 2.31 2.58	15.70 .51 .77 .33 .49 31 4.22 4.87	25.11 .84 1.1 .49 .87 50 6.98 7.78	10.80 .35 .47 .24 .35 .21 2.90 3.35	6.42 .21 .35 .17 .20 13 1.73	22.22 .74 2.3 .24 .58 44 6.17 6.89
MEAN	2.07	STATISTIC	S OF MONT 2.28	HLY MEAN	DATA FOR	WATER YE	EARS 1999 -	- 2001, .56	BY WATER YE	AR (WY):	.30	1.03
MAX (WY) MIN (WY)	2.98 2000 1.16 2001	2.65 2000 .83 2001	3.75 2000 .80 2001	.84 2001 .47 2000	.57 2001 .30 2000	.51 2001 .40 2000	.43 2000 .28 2001	.61 2000 .51 2001	.79 .84 2001 .74 2000	.65 1999 .35 2001	.38 1999 .21 2001	1.34 2000 .74 2001
	Y STATIST	ICS F	OR 2000 C		YEAR		01 WATER Y	EAR	WATER YE	ARS 1999	9 - 2001#	
LOWEST HIGHEST LOWEST ANNUAL MAXIMUN MAXIMUN INSTANT ANNUAL ANNUAL 10 PERC 50 PERC	MEAN F ANNUAL ANNUAL M F DAILY M DAILY ME SEVEN-DA M PEAK FL M PEAK ST FANEOUS L RUNOFF (EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS	7.	8 Sep 23 Mar 25 Mar 38 26 0 51	17 12 8	2 4 4 b 460 5 71 1	.64 .6 Oct 1 .17 Aug 1 .18 Aug 1 .1 Feb 2 .29 Feb 2 .15 Aug 1	8 3 7 7	.9 1.2 .6 31 .1 a66 5.1 b.1 665 7.6 103.9 1.2	0 4 Dec 7 Aug 8 Aug Dec 6 Dec 5 Aug 5 3 2	2000 2001 27 1999 g 18 2001 27 1999 27 1999 27 1999 g 16 2001	

See Period of Record; partial years used in monthly statistics

From rating curve extended above 3.0 $\mathrm{ft^3/s}$ Aug. 16 and 25, 2001

15106970 MIDDLE BASIN CREEK NEAR TENAKEE--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--October 1981 to July 1987 (unpublished fragmentary records provided by the U.S. Forest Service), July 2000 to September 2001.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: July 2000 to September 2001

INSTRUMENTATION.--Electronic water-temperature recorder with 15-minute recording interval since July 9, 2000.

REMARKS.--Records represent water temperature at the sensor within 0.5 $^{\circ}\text{C}$.

EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 9.0°C, August 4 and 5, 2000 and August 13-16, 20 and 27, 2001; minimum, 0.5°C, on several days during winter.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum recorded, 9.0°C, August 13-16, 20 and 27; minimum, 0.5°C, on several days during winter.

TEMPERATURE, WATER, (DEGREES CELSIUS), WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	Ċ	JUNE		JULY			AUGUST		SEI	PTEMBER		
1							8.0	8.0	8.0	8.0	7.5	7.5
2							8.5	7.5	8.0	7.5	6.5	7.5
3							8.5	8.0	8.0	7.5	6.5	7.0
4							9.0	8.0	8.5	8.0	7.5	8.0
5							9.0	8.5	8.5	8.0	8.0	8.0
6							8.5	8.0	8.0	8.5	8.0	8.0
7							8.5	8.0	8.5	8.0	7.5	8.0
8							8.5	8.0	8.0	7.5	7.0	7.5
9							8.5	8.0	8.0	7.5	7.0	7.5
10				7.5	7.5	7.5	8.5	8.0	8.0	7.5	7.0	7.0
11				7.5	7.0	7.5	8.5	7.5	8.0	7.5	7.0	7.5
12				7.5	7.0	7.5	8.5	8.0	8.0	7.5	7.0	7.5
13				7.5	7.0	7.5	8.5	8.0	8.0	7.5	7.0	7.0
14				7.5	7.0	7.5	8.5	8.0	8.0	7.5	7.0	7.0
15				8.0	7.5	7.5	8.5	8.5	8.5	7.0	7.0	7.0
16				8.0	7.5	7.5	8.5	8.0	8.5	7.0	7.0	7.0
17				7.5	7.5	7.5	8.5	8.0	8.5	7.0	6.5	6.5
18				7.5	7.5	7.5	8.5	7.5	8.0	6.5	6.0	6.5
19				8.0	7.5	7.5	8.0	8.0	8.0	6.0	6.0	6.0
20				8.0	7.5	7.5	8.5	8.0	8.5	6.0	5.5	6.0
21				8.0	7.5	7.5	8.5	8.0	8.5	6.0	5.5	5.5
22				8.0	7.5	8.0	8.5	8.5	8.5	6.5	6.0	6.5
23				8.0	7.5	8.0	8.5	8.0	8.0	7.0	6.5	6.5
24				8.0	7.5	8.0	8.0	8.0	8.0	7.0	6.5	7.0
25				8.0	7.5	8.0	8.5	8.0	8.0	7.0	6.5	7.0
26				8.0	7.5	8.0	8.0	8.0	8.0	7.0	6.5	7.0
27				8.0	7.5	8.0	8.0	7.5	8.0	7.0	6.5	7.0
28				8.0	8.0	8.0	8.0	8.0	8.0	7.0	7.0	7.0
29				8.0	8.0	8.0	8.0	7.5	8.0	7.0	6.0	6.5
30				8.0	8.0	8.0	8.0	7.5	8.0	6.0	5.5	6.0
31				8.5	8.0	8.0	8.0	7.5	7.5			
MONTH							9.0	7.5	8.1	8.5	5.5	7.0

15106970 MIDDLE BASIN CREEK NEAR TENAKEE--Continued

SOUTHEAST ALASKA

TEMPERATURE, WATER, (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	OCT	FOBER		NOVEMBER			DECEMBER		JA	NUARY		
1 2 3 4 5	5.5 5.5 5.0 5.0	5.0 5.0 4.5 4.5 5.0	5.0 5.0 5.0 5.0	4.5 5.0 5.0 5.0 4.5	4.5 4.5 5.0 4.0 4.0	4.5 5.0 5.0 4.5 4.5	4.0 4.0 4.0 4.0	3.5 4.0 4.0 3.5 3.5	4.0 4.0 4.0 4.0	3.0 3.5 3.5 3.5 3.5	3.0 3.0 3.5 3.0	3.0 3.5 3.5 3.5
6 7 8 9 10	6.5 6.5 6.0 6.0	6.0 6.0 5.5 6.0 5.5	6.0 6.5 6.0 6.0	4.5 4.5 4.5 4.5 4.0	4.5 4.5 4.5 4.0 4.0	4.5 4.5 4.5 4.0	4.5 4.0 3.5 3.0 3.0	4.0 3.5 3.0 2.5 2.5	4.0 4.0 3.5 2.5 3.0	3.5 4.0 4.0 3.5 3.0	3.0 3.5 3.5 3.0 2.5	3.5 3.5 3.5 3.0
11 12 13 14 15	6.0 6.5 6.0 5.5	6.0 6.0 5.5 5.5	6.0 6.0 6.0 5.5	4.5 5.0 4.5 4.5	4.0 4.5 4.0 4.5 4.0	4.5 4.5 4.5 4.5	3.0 3.0 2.0 1.5	2.5 2.0 1.5 1.0	3.0 2.5 2.0 1.0	3.0 2.5 2.5 3.0 3.0	2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.5 3.0
16 17 18 19 20	5.5 5.5 5.5 5.5	5.5 5.0 5.0 5.0	5.5 5.5 5.0 5.5	4.5 4.5 4.5 5.0	4.0 4.5 4.0 4.0 4.5	4.5 4.5 4.0 4.5 4.5	1.5 2.0 2.5 2.5 2.5	.5 1.5 1.5 2.0 2.0	1.5 2.0 2.0 2.5 2.5	3.5 3.5 3.5 3.5 3.5	3.0 3.0 3.5 3.5	3.0 3.5 3.5 3.5 3.5
21 22 23 24 25	5.0 5.5 5.5 5.5	5.0 5.0 5.5 5.0	5.0 5.5 5.5 5.5 5.0	5.0 5.5 5.0 4.5 4.5	5.0 5.0 4.5 4.5 4.5	5.0 5.0 4.5 4.5	2.5 2.0 2.0 2.5 2.5	1.5 1.5 2.0 2.0 2.5	2.0 1.5 2.0 2.5 2.5	3.5 3.5 3.5 3.0 3.5	3.5 3.5 3.0 3.0	3.5 3.5 3.5 3.0
26 27 28 29 30 31	5.0 5.0 4.5 4.0 4.5 4.5	4.5 4.5 4.0 3.5 4.0 4.5	5.0 4.5 4.5 4.0 4.0	4.5 4.5 4.0 3.5 3.5	4.0 4.0 3.5 3.5 3.5	4.5 4.0 4.0 3.5 3.5	2.5 2.5 2.5 3.0 3.0	2.5 2.5 2.5 2.5 3.0 3.0	2.5 2.5 2.5 3.0 3.0	3.5 3.5 3.5 3.0 3.0	3.0 3.5 3.0 3.0 2.5 2.5	3.0 3.5 3.0 3.0 3.0
MONTH	6.5	3.5	5.3	5.5	3.5	4.4	4.5	.5	2.7	4.0	2.5	3.1
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY		MIN BRUARY	MEAN	MAX MARCH	MIN		MAX APRIL	MIN	MEAN MAY	MAX	MIN	MEAN
		BRUARY		MARCH					MAY			
1 2 3 4 5	FEI	3.0 3.0 3.0 2.5 2.5	3.0 3.5 3.0 3.0 2.5	MARCH 2.5 2.5 2.5 2.0 2.0	2.0 2.0 2.0 1.5 2.0	2.0 2.0 2.0 2.0 2.0	APRIL	1.5 1.5 1.5 2.0	MAY 1.5 1.5 2.0 2.0 2.0	4.0 3.5 4.0 4.0 3.5	3.0 3.5 3.5 3.5 3.0	3.5 3.5 3.5 3.5 3.5
1 2 3 4 5 6 7 8 9	FEE 3.5 3.5 3.0 3.0 2.5 2.5 2.5 2.5 2.5	3.0 3.0 3.0 2.5 2.5 2.5 2.5 2.5 1.0	3.0 3.5 3.0 3.0 2.5 2.5 2.5 2.5 2.0 1.5	MARCH 2.5 2.5 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 2.5	2.0 2.0 2.0 1.5 2.0 2.0 2.0 2.0 2.5 2.5	2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5	APRIL 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1.5 1.5 1.5 2.0 1.5 1.5 2.0	MAY 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	4.0 3.5 4.0 4.0 3.5 3.5 4.0 4.0 4.0	3.0 3.5 3.5 3.5 3.0 3.0 3.5 3.5 3.5	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5
1 2 3 4 5 6 7 8 9 10 11 12 13	FEE 3.5 3.5 3.5 3.0 3.0 2.5 2.5 2.5 2.5 2.0 2.0	3.0 3.0 3.0 2.5 2.5 2.5 2.5 2.5 1.0	3.0 3.5 3.0 3.0 2.5 2.5 2.5 2.5 2.0 1.5	MARCH 2.5 2.5 2.5 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.0	2.0 2.0 2.0 1.5 2.0 2.0 2.0 2.5 2.5 2.5 2.5	2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5	APRIL 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0	1.5 1.5 1.5 1.5 2.0 1.5 2.0 1.5 2.0 2.0 2.0 2.5	MAY 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5	4.0 3.5 4.0 4.0 3.5 3.5 4.0 4.0 4.0 4.0 4.5 4.5	3.0 3.5 3.5 3.5 3.0 3.5 3.5 3.5 3.5 3.5 4.0 4.0	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 4.0 4.0 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	3.5 3.5 3.5 3.0 3.0 2.5 2.5 2.5 2.5 2.0 1.5 2.0 2.0 1.5	3.0 3.0 3.0 2.5 2.5 2.5 2.5 2.5 1.0 1.5 1.5 1.5 1.5	3.0 3.5 3.0 3.0 2.5 2.5 2.5 2.5 2.0 1.5 1.5 1.0	MARCH 2.5 2.5 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	2.0 2.0 2.0 1.5 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 2.5 2.5	2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0	APRIL 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.5 3.5	1.5 1.5 1.5 1.5 2.0 1.5 1.5 2.0 2.0 2.0 2.0 2.5 2.0	MAY 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0	4.0 3.5 4.0 4.0 3.5 3.5 4.0 4.0 4.0 4.5 4.5 5.0 4.5 5.0	3.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 4.0 4.0 4.0 4.0 4.0	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 4.0 4.0 4.5 4.5 4.5 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	3.5 3.5 3.5 3.0 3.0 2.5 2.5 2.5 2.5 2.0 1.5 2.0 2.0 2.0 1.5 1.5 1.5	3.0 3.0 3.0 2.5 2.5 2.5 2.5 2.5 1.0 1.5 1.5 1.5 1.5 1.0 1.5 1.5	3.0 3.5 3.0 3.0 2.5 2.5 2.5 2.0 1.5 1.0 1.0 1.0 1.0 1.5 1.5 1.5	MARCH 2.5 2.5 2.0 2.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 1.0 3.0 3.0 3.0 3.0 3.0 3.0 1.0 1.0 1.0 1.0 1.0 1.0	2.0 2.0 2.0 1.5 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 2.5 3.0 2.5 2.5 3.0 5.5 2.5 3.0 5.5 3.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	APRIL 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.5 3.5 3.5 3.5 3.5	1.5 1.5 1.5 1.5 2.0 1.5 1.5 2.0 2.0 2.0 2.0 2.5 2.0 2.5 2.0 2.5 3.0 2.5	MAY 1.5 1.5 2.0 2.0 2.0 2.0 2.0 2.5 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	4.0 3.5 4.0 4.0 3.5 4.0 4.0 4.0 4.5 5.0 4.5 5.0 5.0 5.0 4.5	3.0 3.5 3.5 3.5 3.5 3.5 3.5 3.5 4.0 4.0 4.0 4.0 4.0 4.5 4.5 4.5	3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5

SOUTHEAST ALASKA

15106970 MIDDLE BASIN CREEK NEAR TENAKEE--Continued

TEMPERATURE, WATER, (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	JŢ	JNE		JULY		I	AUGUST		SEPTEMB	ER		
1 2 3 4 5	5.5 5.5 5.5 5.5	5.0 5.0 5.0 5.0	5.5 5.0 5.5 5.5	7.5 7.5 7.5 7.0 7.0	6.5 7.0 7.0 7.0 7.0	7.0 7.0 7.0 7.0 7.0	8.0 8.5 8.0 8.5 8.5	7.5 7.5 8.0 8.0	8.0 8.0 8.0 8.0	8.5 8.5 8.0 8.5	8.0 8.0 8.0 8.0	8.5 8.5 8.0 8.0
6 7 8 9 10	6.0 6.0 6.5 6.5	5.5 5.5 5.5 5.5	5.5 5.5 6.0 6.0	7.0 7.0 7.0 7.0 7.0	7.0 7.0 6.5 6.5	7.0 7.0 7.0 7.0 7.0	8.5 8.5 8.5 8.5 8.5	7.5 8.0 8.0 7.5 7.5	8.0 8.0 8.0 8.0	8.5 8.5 8.0 8.0	8.0 8.0 8.0 7.5 7.0	8.0 8.0 8.0 7.5 7.5
11 12 13 14	5.5 6.0 6.0 6.0	5.5 5.5 5.5 5.5	5.5 5.5 5.6 6.0	7.0 7.0 7.0 7.0 7.5	6.5 6.5 7.0 7.0	7.0 7.0 7.0 7.0 7.0	8.5 8.5 9.0 9.0	8.0 8.0 8.0 8.5	8.0 8.5 8.5 8.5	7.5 8.5 8.5 8.0 7.0	7.0 7.5 8.0 7.0 7.0	7.5 8.0 8.5 7.5
16 17 18 19 20	6.5 6.5 6.5 6.5	5.5 6.0 6.0 6.5	6.0 6.5 6.5	7.5 7.5 7.5 8.0 8.5	7.0 7.0 7.0 7.0 7.5	7.0 7.5 7.5 7.5 8.0	9.0 8.5 8.5 8.5 9.0	8.0 8.5 8.5 8.5 8.5	8.5 8.5 8.5 8.5	7.5 7.5 7.0 7.0	7.0 7.0 7.0 7.0 7.0	7.5 7.5 7.0 7.0
21 22 23 24 25	6.5 6.5 6.5 6.5	6.0 6.0 6.0 6.0	6.5 6.0 6.5 6.5	8.5 8.5 8.0 8.0	7.5 8.0 7.5 7.5 7.5	8.0 8.0 7.5 8.0	8.5 8.5 8.5 8.5 8.5	8.5 8.0 8.0 8.0	8.5 8.5 8.5 8.5	7.0 7.0 7.0 7.0 7.0	7.0 7.0 6.5 7.0 6.5	7.0 7.0 7.0 7.0
26 27 28 29 30 31	7.0 7.5 7.0 7.0 7.5	6.0 6.5 7.0 6.5 6.5	6.5 7.0 7.0 7.0 7.0	8.0 8.0 8.0 8.0 8.0	7.5 7.5 7.5 7.5 7.5 7.5	8.0 8.0 8.0 8.0 8.0	8.5 9.0 8.5 8.5 8.5 8.5	8.5 8.5 8.5 8.5 8.5	8.5 8.5 8.5 8.5 8.5	7.0 7.0 7.0 7.0 7.0	6.5 6.5 6.5 6.5	6.5 6.5 6.5 7.0
MONTH	7.5	5.0	6.1	8.5	6.5	7.4	9.0	7.5	8.3	8.5	6.5	7.4

15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY

LOCATION.(REVISED)--Lat $58^{\circ}17'00''$, long $134^{\circ}39'54''$, in $SE^{1}_{/4}$ $NW^{1}_{/4}$ $SW^{1}_{/4}$ sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW), Hydrologic Unit 19010301, City and Borough of Juneau, on Douglas Island, in Tongass National Forest, on left bank 100 ft downstream from North Fork Peterson Creek, 1.25 mi upstream from mouth, 7.2 mi south of Auke Bay, and 9.6 mi west of Douglas.

DRAINAGE AREA.--4.33 mi², revised.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- November 1998 to current year.

REVISED RECORDS.--WDR AK-00-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 50 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

					2	,	112020					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	6.1 6.2 6.9 7.0	4.5 4.6 14 9.7 7.3	6.5 10 8.4 7.4 119	4.7 6.1 35 20 20	e10 e9.5 e8.7 e8.0 e7.6	13 8.4 6.3 5.1 4.5	3.2 3.1 3.0 3.6 3.5	5.9 5.5 9.2 15	26 22 23 22 18	6.4 6.3 6.0 5.9 6.6	3.9 3.5 3.2 3.2 3.3	e6.8 16 12 e10 e11
6 7 8 9 10	20 19 24 16 13	6.1 7.3 6.5 5.5 4.9	35 19 14 10 7.9	19 13 11 9.0 6.8	5.9 4.9 4.4 4.0 3.9	5.8 9.1 7.2 9.0 22	3.3 3.2 3.2 3.4 3.2	9.6 7.9 7.6 11 9.1	16 17 15 15	9.0 11 14 12	e3.4 e3.2 e3.3 e2.9 e2.8	e14 e13 e13 e11 e9.0
11 12 13 14 15	47 38 51 23 22	13 24 14 10 8.1	6.6 5.7 5.0 e4.0 e4.3	5.4 4.7 4.5 4.5	e3.8 e3.5 e3.4 e3.4	34 21 13 8.8 6.8	3.2 3.2 3.2 3.1 3.0	7.8 7.8 8.6 8.6	13 12 13 12 11	8.7 8.0 12 12	e2.7 e2.6 e2.5 e2.5 e2.9	e6.6 e5.8 23 e21 e15
16 17 18 19 20	17 13 10 9.9	6.6 14 11 8.2 7.7	e4.0 3.9 4.2 4.0 3.9	4.6 6.2 6.9 5.9	e3.4 e3.4 e3.4 e3.4	9.2 7.7 6.6 e5.8 e5.0	3.0 3.0 3.1 3.4 3.8	9.3 9.7 9.3 8.6 8.4	11 11 10 11	9.0 e5.9 e5.5 e4.7 4.4	e2.8 e2.4 e2.5 e2.5 e2.5	36 35 43 20 25
21 22 23 24 25	14 18 22 19 e13	13 25 42 25 16	3.7 3.6 3.5 3.4 3.4	4.7 4.5 6.2 7.7 5.7	3.3 3.5 e3.2 e3.1 3.2	e4.2 e3.8 e3.6 e3.5 e3.2	4.4 5.1 5.6 5.5	8.9 15 17 15	13 10 9.8 9.2 8.3	4.2 9.9 19 12 14	e2.3 e2.4 2.2 2.3 2.3	17 e14 e11 e9.0 e8.0
26 27 28 29 30 31	e9.7 7.1 5.5 4.6 4.6 4.7	9.3 7.6 6.5 5.8	3.4 3.4 3.4 4.0 4.8	5.1 9.4 12 7.9 5.8 e7.3	6.4 52 22 	e3.2 3.3 3.4 3.5 3.4 3.3	4.8 7.5 10 8.5 7.1	9.9 11 14 18 22 26	7.7 8.0 8.4 7.8 6.9	12 9.2 6.6 5.3 4.6 4.2	2.6 20 9.2 6.8 6.2 7.6	e7.0 e6.4 e5.5 e6.6 e11
TOTAL MEAN MAX MIN AC-FT CFSM IN.	494.3 15.9 51 4.6 980 3.86 4.45	349.2 11.6 42 4.5 693 2.82 3.15	322.8 10.4 119 3.4 640 2.52 2.91	273.3 8.82 35 4.5 542 2.13 2.46	198.1 7.08 52 3.1 393 1.71 1.78	246.7 7.96 34 3.2 489 1.93 2.22	128.2 4.27 10 3.0 254 1.03 1.15	347.6 11.2 26 5.5 689 2.71 3.13	396.1 13.2 26 6.9 786 3.20 3.57	269.4 8.69 19 4.2 534 2.10 2.43	122.5 3.95 20 2.2 243 .96 1.10	441.7 14.7 43 5.5 876 3.56 3.98
		STATISTIC	CS OF MON	THLY MEAN	DATA FOR	WATER Y	EARS 1999	- 2001,	BY WATER	YEAR (WY):	#	
MEAN MAX (WY) MIN (WY)	18.3 20.6 2000 15.9 2001	12.1 19.6 2000 4.99 1999	20.7 43.2 2000 8.37 1999	8.91 12.4 1999 5.57 2000	4.05 7.07 2001 2.00 1999	7.04 7.96 2001 5.70 2000	10.8 19.2 1999 4.27 2001	14.0 18.1 1999 11.2 2001	14.0 14.9 1999 13.2 2001	10.6 15.9 2000 7.29 1999	8.54 13.4 2000 3.95 2001	16.8 22.5 2000 13.2 1999

See Period of Record Estimated

15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1999 - 2001 #
ANNUAL TOTAL	4270.4	3589.9	
ANNUAL MEAN	11.7	9.84	12.7
HIGHEST ANNUAL MEAN			15.5 2000
LOWEST ANNUAL MEAN			9.84 2001
HIGHEST DAILY MEAN	150 Sep 16	119 Dec 5	364 Dec 27 1999
LOWEST DAILY MEAN	1.8 Mar 12	2.2 Aug 23	al.5 Mar 7 1999
ANNUAL SEVEN-DAY MINIMUM	2.0 Mar 8	2.4 Aug 19	1.6 Mar 3 1999
MAXIMUM PEAK FLOW		242 Dec 5	616 Dec 28 1999
MAXIMUM PEAK STAGE		9.51 Dec 5	10.80 Dec 28 1999
INSTANTANEOUS LOW FLOW		b1.9 Aug 17	C
ANNUAL RUNOFF (AC-FT)	8470	7120	9180
ANNUAL RUNOFF (CFSM)	2.83	2.38	3.07
ANNUAL RUNOFF (INCHES)	38.46	32.34	41.68
10 PERCENT EXCEEDS	21	19	22
50 PERCENT EXCEEDS	8.1	7.4	7.8
90 PERCENT EXCEEDS	3.1	3.2	3.0

See Period of Record Mar. 7 and 9, 1999 Aug. 17-18; lowest recorded but may have been lower due to burried orifice Not determined, see lowest daily mean

15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 2000 to current year.

DATE JUN 12 12 12 12	TIM 133 133 134 134	L T C SE (F) E (F)	AMPLE OCA- TON, ROSS (CTION) F FM L (ANK) 0009) 3.00 7.00 10.0 13.0 15.0	SPECIFIC CONDUC- TANCE (US/CM) (00095) 44 41 44 44 43	PH WATE WHOLE FIELD (STAN- DARD UNITS) (00400 7.3 7.4 7.4 7.3 7.4	TEMPE TUF WAT (DEG	RE RIC ER SU: C) O: 10) (C	ROMET - C PRES - RE (MM F HG) 00025) 763 763 763 763 763	OXYGEN, DIS- SOLVED (MG/L) (00300) 11.5 11.5 11.5	OXYGEN DIS- SOLVED (PERCEN SATURA- TION) (00301	т -		
DATE APR	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM COBALT UNITS) (00080)	TUR- BIDITY (NTU) (00076)	BARO- METRIC PRES- SURE (MMOF HG) (00025)
09 JUN	1340	9	9	6.00	6.25	3.2	70		7.1	2.5	50	.6	762
12 AUG	1320	9	9	21.0	6.79	11	20	43	7.3	6.0	8		763
21	1100	9	9	6.00	6.22	2.5	10	60	7.3	10.5	12		744
DATE APR	OXYGEN DIS- OLVED (MG/L) (00300)	OXY- GEN, DIS- OLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CAL- CIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFL- TRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SUL- FATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLOU- RIDE DIS- SOLVED (MG/L AS F) (00950)	BRO- MIDE DIS- SOLVED (MG/L AS BR) (71870)
09 JUN	12.9		21	6.35	1.23	2.2	18	22	18	1.8	1.9	<.2	<.01
12 AUG	11.5	92	20	6.46	.972	1.2	20	24	20	2.0	1.4	M	<.01
21	9.6	88	26	8.00	1.34	1.8	27	31	25	2.6	1.2	.1	<.01
DATE APR	SIL- ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOL- IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	BAR- IUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CAD- MIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)
09	6.0	50	<.006	E.037	<.041	.14	<.060	<.018	5.9	<1.00	<8.00	<10.0	<13.0
JUN 12	4.2	29	<.006	<.050	E.023	E.06	<.060	<.020	4.9	<1.00	<8.00	<10.0	<13.0
AUG 21	5.6	41	E.003	.080	.116	.23	<.060	<.020	6.4	<1.00	<8.00	<10.0	<13.0

SOUTHEAST ALASKA

15109048 PETERSON CREEK BELOW NORTH FORK NEAR AUKE BAY--Continued

				LITH-	MANGA-	MOLYB-			STRON-	VANA-	
	COPPER,	IRON,	LEAD,	IUM,	NESE,	DENIUM,	NICKEL,	SILVER,	TIUM,	DIUM,	ZINC,
	DIS-										
	SOLVED										
	(UG/L AS										
	CU)	FE)	PB)	LI)	MN)	MO)	NI)	AG)	SR)	V)	ZN)
DATE	(01040)	(01046)	(01049)	(01130)	(01056)	(01060)	(01065)	(01075)	(01080)	(01085)	(01090)
APR											
09	<4.7	310	< .08	3.9	13.9	<45.0	<53.0	<4.6	38.3	<8.0	<20
JUN											
12	E3.3	80	E.06	<4.0	6.2	<50.0	<50.0	E3.3	36.0	<8.0	E11
AUG											
21	<5.0	190	E.05	<4.0	18.6	<50.0	<50.0	<5.0	46.5	<8.0	<20

15129000 ALSEK RIVER NEAR YAKUTAT (International gaging station)

LOCATION.--Lat $59^{\circ}23'42$ ", long $138^{\circ}04'55$ ", in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 19, T. 29 S., R. 44 E. (Yakutat B-1 quad), Hydrologic Unit 19010401, in Glacier Bay National Park, on right bank across from terminus of Walker Glacier, 33 mi upstream from Dry Bay, and 55 mi southeast of Yakutat.

DRAINAGE AREA. -- 10,820 mi².

PERIOD OF RECORD. -- July 1991 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 250 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DISC	HARGE, CUB	IC FEET	PER SECOND DAI	, WATER LY MEAN		BER 2000	TO SEPTE	MBER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	51000 43800 39300 35700 36500	18100 17100 16900 16100 15000	10100 9840 9150 9480 11500	11100 9740 11800 13700 10800	7710 6960 6640 6380 5980	6800 6250 5890 5600 5390	4000 3940 3980 4080 4000	10700 10800 11200 11600 11400	33000 35800 41600 44300 45600	87300 91100 95900 101000 98600	80500 82400 89100 90100 81400	61400 57400 50900 46000 50000
6 7 8 9 10	54900 57300 56200 49400 44700	14200 13800 13300 12500 12500	13000 11700 10600 9750 9670	10700 12300 12000 10200 8950	5420 e5300 e5200 e5100 e5000	5490 6190 5770 5890 6460	4060 4080 4130 4090 4120	10900 11200 11700 12200 12300	46200 48900 50400 52500 59100	93600 86800 79900 76300 72400	77500 79000 80400 77800 75900	53500 56000 56200 45400 38800
11 12 13 14 15	43200 46000 48400 42900 40700	14100 15400 14500 14100 14300	9670 8630 8130 7600 7040	8120 8070 8530 8600 10100	4960 5140 e4400 e4300 e4200	7840 8960 7120 6500 6100	4250 4430 4490 4480 4550	12700 13300 14400 15400 16200	65700 69400 70700 70800 70900	70500 70100 68200 68200 72000	75100 72600 76200 82300 89900	34400 32300 58500 74200 63500
16 17 18 19 20	36000 31400 27400 25400 24000	13800 13800 13200 12800 12600	e6750 e6500 8060 8460 7470	9680 9120 10000 9790 8910	e4200 e4200 e4200 e4100 e4600	5870 5600 5270 4610 4360	4800 5070 5430 6140 6640	16900 17900 18000 18200 18500	72200 73900 77400 81800 87100	75000 78000 85000 89400 95400	87800 84300 81100 75500 71900	57200 56200 57300 52400 47700
21 22 23 24 25	23000 22900 24300 23500 22300	15300 16900 16200 15000 14100	7100 e6500 e6200 e6000 e6500	8290 7930 7920 7350 6990	4940 5120 5020 4870 4850	4410 4310 4050 4110 4340	6970 7280 7530 8180 8120	18400 18500 18600 18800 19300	95000 95300 91000 95000 93100	106000 115000 116000 110000 104000	74100 75800 72000 68600 66300	42900 41600 40100 38300 36800
26 27 28 29 30 31	21300 20300 19300 18000 17400 18200	13300 12600 11900 10500 10000	e7200 e7500 e8000 e9000 e12000 e11000	6940 7740 7270 6920 6460 6640	5260 9750 8350 	4660 4540 4380 4230 4170 4200	8380 9330 9720 9920 10200	19900 20700 22900 26900 29600 30700	87000 85400 90400 90400 86100	100000 98900 97100 94400 91100 86700	62700 60900 58800 60500 63600 65900	34000 31000 29100 27500 26400
MEAN MAX MIN	1064700 34350 57300 17400 2112000 3.17 3.66	423900 14130 18100 10000 840800 1.31 1.46	270100 8713 13000 6000 535700 .81 .93	282660 9118 13700 6460 560700 .84 .97	152150 5434 9750 4100 301800 .50 .52	169360 5463 8960 4050 335900 .50	176390 5880 10200 3940 349900 .54 .61	519800 16770 30700 10700 1031000 1.55 1.79	2106000 70200 95300 33000 4177000 6.49 7.24	2773900 89480 116000 68200 5502000 8.27 9.54	2340000 75480 90100 58800 4641000 6.98 8.05	1397000 46570 74200 26400 2771000 4.30 4.80
		STATIST	ICS OF MON	NTHLY MEA	N DATA FO	R WATER	YEARS 199	1 - 2001,	BY WATER	YEAR (WY)#	
MEAN MAX (WY) MIN (WY)	24210 40300 1995 12040 1997	9084 14130 2001 5828 1997	6731 12470 2000 3229 1997	5184 9118 2001 3045 1995	4321 6625 1993 2707 1995	4224 6619 1992 3033 1995	6615 10870 1992 5099 1993	25950 40100 1993 16770 2001	68190 83970 1993 53490 1996	86480 98590 1993 73510 1996	75860 99370 1994 59750 1996	50570 76330 1995 29040 1992
SUMMAI	RY STATIS	rics	FOR 2000	CALENDAR	YEAR	FOR 2	2001 WATER	YEAR	WATER	YEARS 199	1 - 2001	#
ANNUAL TOTAL 11859500 ANNUAL MEAN 32400 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 124000 Aug 6 LOWEST DAILY MEAN 3100 Mar 14 ANNUAL SEVEN-DAY MINIMUM 3240 Mar 11 MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) 23520000 ANNUAL RUNOFF (CFSM) 2.99 ANNUAL RUNOFF (INCHES) 40.77 10 PERCENT EXCEEDS 82600						358 2316000	00 Jul 10 Apr 20 Apr 00 Jul 35.00 Jul 30 Mar 00 2.96	23 23	17500 8 2220000	0 0 0 0 0 0 M 0 0 M 0 A 9.30 A	199 199 ug 14 199 ar 13 199 ar 8 199 ug 14 199 ug 14 199	6 7 9 9
50 PE	RCENT EXCI RCENT EXCI RCENT EXCI	EEDS	82600 15700 4380)		8460 1440 474	00		8350 1320 350	0		

See Period of Record; partial years used in monthly summary statistics Estimated

SOUTHEAST ALASKA

15129500 SITUK RIVER NEAR YAKUTAT

LOCATION.--Lat 59°35'00", long 139°29'31", in SE¹/₄ SW¹/₄ sec. 9, T. 27 S., R. 35 E. (Yakutat C-4 quad.), Yakutat Borough, Hydrologic Unit 19010401, in Tongass National Forest, on left bank 20 ft downstream from Alsek Road bridge, 3.5 mi downstream from Situk Lake, 8.8 mi northeast of Yakutat, and 10 mi upstream from mouth.

DRAINAGE AREA.--36 mi², approximately.

WATER-DISCHARGE RECORDS

Date

Jan 15

Time

0130

Discharge Gage Height

(ft)

68.50

 (ft^3/s)

1110

PERIOD OF RECORD. -- May 1988 to current year.

Time

1100

Oct 6

GAGE.--Water-stage recorder. Datum of gage is sea level, by U.S. Forest Service.

Discharge Gage Height

REMARKS.--Records good, except for estimated daily discharges, which are poor.

 (ft^3/s)

1300

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 1,000 ${\rm ft}^3/{\rm s}$ and maximum(*):

(ft)

69.03

										-		
	Oct 12	1645	18	390	70.11		Jan 18	0515	103	0	68.32	
	Oct 15	0130	*2	040	*70.37		Feb 27	1000	138	0	69.10	
	Nov 22	1600	11	L70	68.64							
		DISCHA	RGE, CUBI	IC FEET		, WATER LY MEAN	YEAR OCTOBER VALUES	2000 1	TO SEPTEMBI	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	641	687	383	494	674	669	162	228	195	165	172	178
2	488	595	367	468	550	515	154	280	192	161	164	164
3	389	819	333	666	474	411	e150	372	193	157	157	151
4	324	654	364	717	e425	343	205	397	190	164	151	142
4 5	556	540	607	589	e370	303	211	380	185	183	144	296
6	1120	461	596	624	336	335	200	374	183	267	137	348
7	1020	450	516	859	319	447	187	346	184	296	131	627
8	942	403	444	901	292	421	183	337	181	305	125	695
9	985	358	388	781	270	600	178	306	177	267	120	586
10	754	345	350	629	250	794	169	290	177	245	114	468
11	1070	650	337	504	236	858	190	264	177	228	110	385
12	1430	845	308	436	248	837	230	245	173	214	106	424
13	1400	648	282	483	349	693	237	227	169	204	103	772
14	1340	649	262	647	309	555	250	215	163	214	101	633
15	1670	678	247	948	277	483	241	207	162	198	99	519
13	1070	070	24/	940	211	403	241	207	102	130	99	319
16	1470	584	234	753	255	453	225	201	160	184	96	444
17	1230	640	228	691	237	386	210	197	162	173	94	409
18	919	543	310	880	222	331	203	191	162	165	94	369
19	714	471	293	777	210	285	200	181	161	158	94	326
20	583	431	263	662	200	251	196	174	162	153	94	293
0.1	F10	700	0.4.2	F01	100	007	100	010	1.65	1.50	0.0	0.66
21	510	722	243	581	192	227	190	210 220	167	158	92	266
22	658	952	226	551	184	210	182	220	170	175	92	296
23	857	819	214	505	176	e193	185	270	169	239	93	334
24	718	704	204	432	170	183	186	342	166	271	93	546
25	607	627	234	380	170	180	221	320	164	270	93	683
26	527	619	352	372	381	205	221	274	161	255	104	561
27	461	622	325	665	1170	209	262	245	158	236	104	485
28	404	528	309	615	866	197	279	225	159	217	111	427
29	361	449	335	515		183	254	212	164	201	175	367
30	409	393	493	439		174	231	206	168	189	197	321
31	744		566	655		171		200		179	198	
TOTAL	25301	17886	10613	19219	9812	12102	6192	8136	5154	6491	3758	12515
MEAN	816	596	342	620	350	390	206	262	172	209	121	417
MAX	1670	952	607	948	1170	858	279	397	195	305	198	772
	324	345	204	372	170	171	150	174	158	153	92	142
MIN	50180	35480	21050	3/2	19460	24000	12280	16140	10220			24820
AC-FT			9.51	38120 17.2	9.73	24000	1228U .	10140	4.77	12870	7450	
CFSM	22.7	16.6				10.8	5.73	7.29		5.82	3.37	11.6
IN.	26.14	18.48	10.97	19.86	10.14	12.51	6.40	8.41	5.33	6.71	3.88	12.93

e Estimated

15129500 SITUK RIVER NEAR YAKUTAT--Continued

		STATISTI	CS OF MON	THLY MEA	N DATA FOR	WATER YEAR	RS 1989	9 - 2001,	BY WATER	YEAR (WY)#		
MEAN MAX	553 878	346 598	401 739	278 620	245 471	247 516	250 370	282 418	232 345	192 292	255 532	520 838
(WY)	2000	1993	2000	2001	1997	1992	1998	1991	1991	1991	1991	1991
MIN	283	173	142	131	81.2	54.2	143	160	127	77.7	105	339
(WY)	1998	1999	1991	1996	1999	1989	1989	1996	1993	1993	1994	1997
(111)	1000	1000	1001	1000	1000	1707	1000	1000	1000	1000	1001	100,
SUMMARY	STATIST	CICS	FOR 2000	CALENDAR	YEAR	FOR 2001	WATER	YEAR	WATER	YEARS 1989	- 2001#	
ANNUAL	TOTAL		125192			137179						
ANNUAL	MEAN		342			376			317	7		
HIGHEST	ANNUAL	MEAN							382	2	1992	
LOWEST	ANNUAL M	IEAN							230)	1996	
HIGHEST	DAILY M	IEAN	2150	Sep	28	1670	Oct	15	2850) Dec	27 1999	
LOWEST	DAILY ME	AN	100	Mar	14	a92	Aug	21	47	7 Mar	5 1989	
ANNUAL	SEVEN-DA	MUMINIM YA	106	Mar	9	93	Aug	19	48	8 Mar	3 1989	
MAXIMUM	PEAK FI	JOW				2040	Oct	15	3840		18 1999	
MAXIMUM	PEAK ST	AGE				70.3	7 Oct	15	72		18 1999	
INSTANT	'ANEOUS I	LOW FLOW				b91	Aug	17			5 1989	
ANNUAL	RUNOFF (AC-FT)	248300			272100			229800			
ANNUAL	RUNOFF (CFSM)	9	.50		10.4			8	3.81		
ANNUAL	RUNOFF (INCHES)				141.7	5			9.70		
10 PERC	ENT EXCE	EEDS	649			708			603			
	ENT EXCE		234			280			237			
90 PERC	ENT EXCE	EEDS	150			160			118	3		

[#] See Period of Record a Aug. 21 and 22 b Aug. 17-22 and Aug. 24-26 c Mar. 5-7, 1989

15129500 SITUK RIVER NEAR YAKUTAT--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1971 to 1973 and 1988 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: October 1970 to September 1973 (fragmentary) and May 1988 to current year.

INSTRUMENTATION.--Water-temperature recorder October 1970 to September 1973, at a site 500 ft downstream. Electronic water-temperature recorder since May 1988, set for 2-hour recording interval. Recording interval changed to 15minutes on March 6, 1996.

REMARKS.--Records represent water temperature at sensor within 0.5°C. April 25 to September 30 record considered fair, due to 4 hour recording interval.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum, 20.0° C, July 4, 1997; minimum, 0.0° C, on many days during winters.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 17.5°C , June 27; minimum, 0.0°C on many days during winter.

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	8.5 8.5 8.0 8.0	8.0 7.5 7.0 6.5 7.5	8.0 8.0 7.5 7.0 8.0	4.5 5.0 5.0 4.5 4.5	4.0 4.0 4.5 4.0 4.0	4.5 4.5 5.0 4.0	3.5 3.5 3.5 3.5 4.0	3.5 3.0 3.5 3.5 3.5	3.5 3.5 3.5 3.5 4.0	3.0 3.0 3.5 3.0	2.5 2.5 3.0 2.5 2.5	2.5 3.0 3.0 3.0 2.5
6 7 8 9 10	9.0 8.5 8.0 8.0 7.5	8.5 8.0 7.5 7.0	8.5 8.5 7.5 7.5	4.5 4.5 4.5 5.0	3.5 4.0 3.5 4.0 4.0	4.0 4.5 4.0 4.5 4.5	4.0 3.5 3.0 3.0 3.5	3.0 3.0 2.5 2.5 3.0	3.5 3.5 2.5 2.5 3.0	3.0 3.0 3.0 2.5 2.0	2.5 3.0 2.0 2.0 1.5	3.0 3.0 2.5 2.0
11 12 13 14 15	8.0 7.5 7.5 7.0 7.0	7.0 7.5 7.0 6.5	7.5 7.5 7.5 7.0 7.0	5.0 5.0 4.5 5.0 4.5	4.5 4.5 4.5 4.5 3.5	4.5 4.5 4.5 4.5 4.0	3.5 3.0 2.0 2.0 2.5	3.0 2.0 1.5 1.0 2.0	3.5 2.5 2.0 1.5 2.5	2.0 2.0 2.5 2.5 2.5	1.5 1.5 1.5 1.5	1.5 1.5 2.0 2.0
16 17 18 19 20	7.0 7.0 6.5 6.5	6.5 6.0 6.0 5.5	7.0 6.5 6.0 6.0	4.0 4.5 4.0 4.5 4.5	3.5 4.0 3.5 3.5 4.0	4.0 4.0 4.0 4.0	2.5 3.0 3.0 2.5 3.0	2.0 2.0 2.5 2.0 2.0	2.5 2.5 2.5 2.5 2.0	2.5 3.0 3.0 3.0 2.5	2.0 2.5 3.0 2.5 2.0	2.5 3.0 3.0 3.0 2.5
21 22 23 24 25	6.0 6.0 6.5 6.0	5.5 5.5 5.6 6.0	5.5 6.0 6.0 6.0	5.0 4.5 4.0 4.0	4.5 4.0 3.5 4.0 4.0	4.5 4.5 4.0 4.0	3.0 2.0 3.0 3.0 3.5	2.0 1.5 1.5 2.5 2.5	2.5 1.5 2.5 3.0 3.0	2.5 3.0 3.0 2.5 3.0	2.5 2.5 2.5 2.0 2.5	2.5 2.5 3.0 2.0 2.5
26 27 28 29 30 31	6.5 5.5 4.5 5.0 5.0	5.5 4.5 4.0 3.5 4.5	6.0 5.0 4.5 4.0 4.5	4.0 4.0 3.5 3.0 3.5	4.0 3.5 3.0 2.5 2.5	4.0 3.5 3.5 3.0 3.0	2.5 2.5 3.0 3.0 3.0	2.0 2.0 2.0 2.5 2.5 2.5	2.5 2.5 2.5 3.0 2.5 2.5	3.0 3.0 2.5 2.5 2.5 2.5	3.0 2.5 2.0 2.0 2.0 2.0	3.0 2.5 2.5 2.5 2.0 2.0
MONTH	9.0	3.5	6.6	5.0	2.5	4.1	4.0	1.0	2.7	3.5	1.5	2.5

15129500 SITUK RIVER NEAR YAKUTAT--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	2.5 2.5 2.5 2.0	2.0 2.0 1.5 1.5	2.5 2.0 2.0 2.0	1.5 2.0 2.5 2.5 1.5	1.0 1.0 1.0 1.0	1.0 1.5 1.5 1.5	3.5 4.5 3.0 2.5 4.0	.0	1.5 2.5 1.0 1.0 2.0	5.5 4.0 4.5 4.0 3.5	2.5 2.5	
6 7 8 9 10	2.0 2.0 1.5 1.5	.5 .5 .5 .0	1.0 1.5 1.0 1.0	2.0 2.0 2.5 1.5	.5 1.0 1.0 .0	1.5 1.5 1.5 .5	4.0 4.5 2.5 5.0 4.5	1.5 .5	2.0 3.0 1.5 2.5 3.0	6.5 4.5 7.5 5.5 8.0	4.0 3.0 4.5	
11 12 13 14 15	1.5 2.0 1.5 1.0	.0 1.5 .5 .0	1.0 1.5 1.0 .5	1.5 1.5 2.0 2.5 2.5	1.0 1.0 1.0 1.0	1.5 1.0 1.5 1.5	3.5 3.5 4.0 4.0 5.5	1.0 2.0	2.5 2.5 2.5 3.0 3.5	6.5 9.5 8.0 9.0 7.5	4.0 5.0 5.0	
16 17 18 19 20	1.0 1.0 1.0 2.0	.0 .0 .0 .0	.5 .5 .5 1.0	2.5 3.0 2.0 1.5	1.0 1.0 .0 .0	1.5 1.5 1.0 .5	5.5 6.0 5.0 6.5	1 5	3.0 3.5 4.0 4.0	9.0 7.5 9.0 9.0 8.0	5.5 5.5	
21 22 23 24 25	2.5 1.5 2.0 1.5	1.5 .5 .0 .5	2.0 1.0 1.0 1.0	2.0 2.0 2.5 3.0 4.0	.0 .0 .0 1.0 2.0	.5 1.0 .5 2.0 3.0	6.5 5.5 4.5	2.0 2.0 3.0 3.0	4.0 4.0 	7.0 7.5 6.5 6.5	5.5 5.5 5.5	
26 27 28 29 30 31	.5 .5 1.5 	.0 .0 .5 	.0 .5 1.0 	3.0 3.0 3.5 2.5 2.5	.0 .0 1.0 1.5	2.0 1.0 1.5 2.0 2.0	6.0 5.0 5.0 5.5 5.5		 	11.0 8.5 11.0 9.5 11.0	6.5 7.0 8.0	
MONTH		.0		4.0	.0	1.3				11.5	2.5	
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	
DAY 1 2 3 4 5			MEAN	MAX 14.0 15.5 14.5 13.5 12.5		MEAN		AUGUST 12.0 11.5	MEAN	13.5 12.5 12.5 11.5	SEPTEMBE 11.0 11.0	
1 2 3 4	10.5 9.5 9.0 11.0	JUNE 8.5 8.5 8.0 7.5	 	14.0 15.5 14.5 13.5	JULY 12.0 12.0 12.5 12.5		15.0 16.5 15.0 14.0	AUGUST 12.0 11.5 13.5 12.5 12.5 12.5	 	13.5 12.5 12.5 11.5	SEPTEMBE 11.0 11.0 9.5 9.5 10.0	ER
1 2 3 4 5 6 7 8 9 10	10.5 9.5 9.0 11.0 10.0 11.5 11.5 14.0 15.0	JUNE 8.5 8.5 8.0 7.5 8.0 9.0 8.0 9.5 10.0		14.0 15.5 14.5 13.5 12.5 11.5 12.0 13.0	JULY 12.0 12.0 12.5 11.5 11.0 11.0 10.5 10.5 11.0		15.0 16.5 15.0 14.0 14.5 15.5 14.0 14.0	AUGUST 12.0 11.5 13.5 12.5 12.5 12.5 11.5 12.0 12.5 11.0	====	13.5 12.5 12.5 11.5 11.5 12.0 11.0 12.0 12.0 12.5	11.0 11.0 9.5 9.5 10.0 10.5 10.0 10.5 10.0 10.0 9.5	ER
1 2 3 4 5 6 7 8 9 10 11 12 13 14	10.5 9.5 9.0 11.0 10.0 11.5 11.5 11.5 11.0 12.5	JUNE 8.5 8.5 8.0 7.5 8.0 9.0 8.0 9.5 10.0		14.0 15.5 14.5 13.5 12.5 11.5 12.0 13.0 14.0 12.5 12.5 12.5	JULY 12.0 12.5 12.5 11.5 11.0 11.0 11.0 11.5 11.0 11.0 1		15.0 16.5 15.0 14.0 14.5 15.5 14.0 15.0 14.0 15.0 14.5	AUGUST 12.0 11.5 13.5 12.5 12.5 12.5 11.5 12.0 12.5 11.0 12.0 11.0 12.0 11.0		13.5 12.5 11.5 11.5 11.0 11.0 12.0 12.0 12.5 11.5 11.5	11.0 11.0 9.5 9.5 10.0 10.5 10.0 10.5 10.0 10.0 9.5 9.5	CR
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	10.5 9.5 9.0 11.0 10.0 11.5 11.5 11.5 11.0 12.5 11.0 12.5 11.0 12.5 14.5 13.0 12.5	JUNE 8.5 8.5 8.0 7.5 8.0 9.0 8.0 9.5 10.0 10.0 10.0 10.5 11.0 10.5 10.5		14.0 15.5 14.5 13.5 12.5 11.5 12.0 13.0 14.0 12.5 12.5 13.5 13.5 13.5	JULY 12.0 12.5 12.5 11.5 11.0 11.0 11.0 11.5 11.0 11.5 11.0 11.5 11.0 11.5 11.5		15.0 16.5 15.0 14.0 14.5 15.5 14.0 15.0 14.0 15.5 16.0 14.5 16.5 14.5	AUGUST 12.0 11.5 13.5 12.5 12.5 11.5 12.0 12.0 12.0 11.0 11.0 12.0 11.0 12.0 11.0 12.0 12		13.5 12.5 12.5 11.5 11.5 12.0 11.0 12.0 12.5 11.5 11.5 11.5 11.5 11.5	SEPTEMBE 11.0 11.0 9.5 9.5 10.0 10.5 10.0 10.5 10.0 10.5 11.0 11.0	CR
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	10.5 9.5 9.0 11.0 10.0 11.5 11.5 11.5 11.0 12.5 11.0 12.5 11.0 12.5 13.0 12.5 14.5 13.0 16.0	JUNE 8.5 8.5 8.0 7.5 8.0 9.0 8.0 9.5 10.0 10.0 10.5 11.0 10.5 12.0 12.0 12.0 11.0		14.0 15.5 14.5 13.5 12.5 11.5 12.0 13.0 14.0 12.5 12.5 13.5 13.5 13.0 14.0 15.0 17.0	JULY 12.0 12.5 12.5 11.5 11.0 11.0 11.5 11.0 11.5 11.0 11.5 11.5		15.0 16.5 15.0 14.0 14.5 15.5 14.0 15.0 14.0 14.5 15.5 14.5 14.5 14.5 14.5 14.0 14.5 14.0	AUGUST 12.0 11.5 13.5 12.5 12.5 11.5 12.0 12.0 11.0 12.0 11.0 12.0 11.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.0 11.5 12.0 11.5		13.5 12.5 12.5 11.5 11.5 11.0 11.0 12.0 12.0 12.5 11.5 11.0 11.5 11.5 11.5 11.5 11.5 11	SEPTEMBE 11.0 11.0 9.5 9.5 10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.0	CR

15129600 OPHIR CREEK NEAR YAKUTAT

LOCATION.--Lat $59^{\circ}31'26''$, long $139^{\circ}44'37''$, in $SW^1/_4$ $NW^1/_4$ $NE^1/_4$ sec. 1, T. 28 S., R. 33 E. (Yakutat C-5 SW quad), Hydrologic Unit 19010401, in Tongass National Forest, on right bank 0.8 mi upstream from Summit Lake and 2 mi south of Yakutat.

DRAINAGE AREA.-- 2.5 mi^2 , approximately.

PERIOD OF RECORD. -- October 1991 to current year.

GAGE.--Water-stage recorder. Datum of gage is 9.05 ft above sea level, determined by levels survey.

REMARKS.--Records fair except for estimated daily discharges which are poor.

		DISCHA	RGE, CUBIC	FEET PER		WATER YEAR		2000 TO	SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	38 33 29 26 34	38 37 50 43 37	34 32 30 34 43	e37 e36 e44 e47 e42	e45 e40 38 37 35	44 39 36 33 32	15 14 e16 17 16	16 18 21 21 20	7.0 6.3 5.8 5.4 5.0	1.6 1.5 1.4 1.5 2.3	3.4 3.3 3.2 2.9 2.7	3.9 3.4 2.8 2.5 8.5
6 7 8 9 10	51 50 60 55	34 33 31 28 28	40 37 34 32 31	e43 e53 e55 e52 e44	33 32 30 29 27	34 40 38 45 57	15 13 13 13 12	20 21 22 20 18	4.4 4.0 3.8 3.6 3.5	5.7 6.3 8.4 6.6 5.5	2.6 2.4 2.3 2.2 2.1	8.1 12 9.8 7.8 6.6
11 12 13 14 15	70 70 73 74 79	40 52 45 45	31 29 28 26 25	e38 e34 e36 e44 e56	26 27 32 29 27	57 54 49 43 41	14 17 17 19	17 16 14 13 12	3.2 3.2 3.0 2.7 2.8	4.8 4.2 4.2 4.3 3.9	2.0 1.9 1.8 1.7	5.8 7.5 13 10 8.1
16 17 18 19 20	78 77 66 58 51	41 43 38 34 33	25 24 28 27 25	e50 e46 e54 e50 e45	26 24 23 22 22	40 37 33 30 27	18 16 16 16 15	11 11 10 9.0 8.3	2.5 2.5 2.4 2.4 2.3	3.7 3.6 3.4 3.3 3.0	1.6 1.5 1.5 1.5	8.3 10 10 9.4 8.2
21 22 23 24 25	47 54 58 52 47	40 51 49 45 45	23 23 22 21 23	e41 e40 e38 e34 e31	20 19 18 17 17	25 23 22 21 20	15 14 13 13	10 9.7 13 15 14	2.2 2.2 2.1 2.0 1.9	3.3 3.7 7.3 7.4 6.3	1.3 1.2 1.2 1.2	7.6 8.0 10 36 47
26 27 28 29 30 31	44 40 37 34 35 40	46 47 43 39 36	25 24 23 25 e31 e38	e30 e44 e43 e38 e35 e44	33 60 50 	20 20 18 17 16 16	18 19 19 19 17	12 11 10 9.1 8.2 7.7	1.9 1.8 1.7 1.6 1.7	5.6 5.1 4.2 4.0 3.7 3.6	1.5 1.4 1.7 4.8 5.0 4.9	38 31 27 23 20
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1611 52.0 79 26 3200 20.8 23.97	1215 40.5 52 28 2410 16.2 18.08	893 28.8 43 21 1770 11.5	1324 42.7 56 30 2630 17.1 19.70	838 29.9 60 17 1660 12.0 12.47	1027 33.1 57 16 2040 13.3 15.28	474 15.8 19 12 940 6.32 7.05	438.0 14.1 22 7.7 869 5.65 6.52	94.9 3.16 7.0 1.6 188 1.27 1.41	133.4 4.30 8.4 1.4 265 1.72 1.98	69.3 2.24 5.0 1.2 137 .89 1.03	403.3 13.4 47 2.5 800 5.38 6.00
		STATISTIC	CS OF MONT	HLY MEAN	DATA FOR	WATER YEAR	RS 1992 -	2001, B	Y WATER YE.	AR (WY)		
MEAN MAX (WY) MIN (WY)	32.9 60.7 2000 20.5 1998	25.8 43.8 2000 12.6 1996	24.3 49.1 2000 8.96 1996	19.0 42.7 2001 5.13 1993	16.2 35.9 1997 3.31 1999	17.0 38.3 1992 4.13 1999	16.5 28.3 1998 7.85 1993	14.5 34.4 1999 6.17 1996	7.11 19.7 1999 2.01 1993	4.55 9.67 1998 .66 1993	8.35 19.4 1998 1.32 1993	19.1 30.8 1998 5.90 1993
SUMMAF	RY STATIST	rics	FOR 2000	CALENDAR	YEAR	FOR 20	01 WATER	YEAR	WATER Y	EARS 1992	2 - 2001	
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM INSTANT ANNUAL ANNUAL ANNUAL		EAN EAN AN Y MINIMUM OW AGE DW FLOW AC-FT) CFSM) INCHES)	7540.3 20.6 79 1.9 2.1 14960 8.24 112.20			8520.9 23.3 79 a1.2 1.3 84 11.93 c1.0 16900 9.34 126.79	Aug 21 Oct 15 Oct 15		17.1 23.3 10.9 e118 .27 .39 b159 b12.55 d.21 12400 6.85 93.06	Dec 2 Jul 3 Jul 2 Oct 1 Oct 1 Jul 2	2001 1993 27 1999 1993 28 1993 18 1999 18 1999 28 1993	
	CENT EXCER		15 3.2			20 2.3			13 3.4			

Aug. 22 to 25
May have been exceeded during period of gage malfunction from Dec. 25 to 28, 1999
Aug. 22 to 26
Minimum recorded, Jul. 28, Aug. 2, Aug. 7 to Aug. 10, 1993, but may have been less during period water was below intake Jul. 28, Aug. 2, and Aug. 8 to Aug. 10, 1993
Estimated c d

15200280 GULKANA RIVER AT SOURDOUGH

DRAINAGE AREA.--1,770 mi².

PERIOD OF RECORD.--October 1972 to September 1978, May to September 1982, October 1988 to September 1993, May 1997 to current year.

REVISED RECORDS.--WRD AK-75-1: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 1,845.96 ft above sea level (levels of Alyeska Engineering).

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DISCHA	RGE, CUE	BIC FEET PE			YEAR OCTO	OBER 2000	TO SEPTEM	IBER 2001	-	
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2450 2190 1950 1890 1860	e1000 e1000 e1000 e950 e950	e700 e700 e700 e700 e700	e500 e500 e500 e500 e500	e400 e400 e400 e400 e400	e320 e320 e320 e320 e320	e340 e360 e360 e360 e380	e1100 e1100 e1200 e1200 e1300	3460 3350 3260 3050 2850	1140 1140 1130 1090 1130	2580 2560 2230 2020 1930	917 1000 1370 1790 1860
6 7 8 9 10	1880 1960 2000 1860 1710	e900 e900 e900 e900	e650 e650 e650 e650 e650	e500 e500 e500 e500 e500	e380 e380 e380 e380	e320 e320 e320 e320 e320	e400 e420 e420 e440 e440	e1400 e1500 e1600 e1700 e1800	2620 2530 2520 2500 2340	1410 1830 1920 2120 2140	1790 1640 1520 1420 1330	2260 2470 2290 2080 1890
11 12 13 14 15	1700 1700 1690 1660 1660	e850 e850 e850 e850 e850	e600 e600 e600 e600	e480 e480 e480 e480 e480	e360 e360 e360 e360 e360	e320 e320 e300 e300 e300	e460 e480 e500 e500 e550	e1900 e1900 1970 2230 2730	2220 2130 2080 2100 2050	1960 1830 1690 1560 1510	1270 1220 1170 1110 1080	1740 1620 1570 1550 1520
16 17 18 19 20	1540 1430 1370 e1300 e1300	e800 e800 e800 e800	e600 e600 e600 e600	e460 e460 e460 e460	e340 e340 e340 e340 e340	e300 e300 e300 e300 e300	e550 e600 e600 e650 e650	3410 3710 3930 4080 4150	1960 1850 1740 1670 1650	1520 1440 1350 1270 1200		1460 1400 1350 1310 1290
21 22 23 24 25	e1200 e1200 e1100 e1100 e1100	e750 e750 e750 e750 e750	e550 e550 e550 e550 e550	e440 e440 e440 e440 e440	e320 e320 e320 e320 e320	e300 e300 e300 e300 e300	e700 e700 e750 e750 e800	4010 3740 3620 4150 4930	1690 1620 1540 1460 1360	1220	925 947 1010	1310 1310 1320 1290 1270
26 27 28 29 30 31	e1100 e1100 e1100 e1000 e1000 e1000	e700 e700 e700 e700 e700	e550 e550 e550 e550 e550 e550	e420 e420 e400		e300 e300 e320 e320 e340 e340	e850 e850 e900 e950 e1000	4780 4280 4000 3960 3800 3570	1290 1220 1190 1130 1110	1310 1470 1790 2080 2260 2360	1010 1010 978 977 962 954	1240 1200 1170 1140 1100
TOTAL MEAN MAX MIN AC-FT CFSM IN.	47100 1519 2450 1000 93420 .86 .99	24900 830 1000 700	18800 606 700 550 37290 .34 .40	14400 465 500	9960 356 400 320 19760 .20	9660 312 340 300 19160 .18 .20	17710 590 1000 340 35130 .33 .37	88750 2863 4930 1100 176000 1.62 1.87	61540 2051 3460 1110 122100 1.16 1.29	47490 1532 2360 1090 94200	40861 1318 2580 925 81050 .74 .86	45087 1503 2470 917 89430 .85
						WATER	YEARS 197	3 - 2001,	BY WATER	YEAR (WY)#		
MEAN MAX (WY) MIN (WY)	997 1877 1991 437 1975	552 1020 1989 287 1976	407 777 1989 208 1974	344 629 1989 200 1974	304 478 1989 200 1974	299 420 1992 200 1974	1344 1993 227	1989 875	2779 4969 1977 1150 1998	1516 2696 1992 637 1976	1289 2821 1992 714 1989	1413 4253 1990 505 1974
SUMMARY	Y STATIST	ics	FOR	2000 CALEN	DAR YEAR		FOR 2001	WATER YEA	R	WATER YE	ARS 1973	- 2001#
ANNUAL ANNUAL HIGHEST LOWEST HIGHEST ANNUAL MAXIMUN MAXIMUN MAXIMUN	TOTAL MEAN F ANNUAL ANNUAL M F DAILY ME SEVEN-DA M PEAK FL M PEAK ST M PEAK ST	MEAN IEAN IEAN IEAN IEAN IEAN IEAN IEAN I		4700 a220 220	Jun 8 Apr 16 Apr 16		426258 1168 4930 b300 300 5090 8.	May 2 Mar 1 Mar 1 May 2 .43 May 2	5 3 3 5 5	1139 1564 658 12100 c200 200 d12700 11.26 f16.03	Sep Dec Dec Sep Sep May	1992 1998 12 1990 6 1973 6 1973 12 1990 12 1990 7 1976
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS				.64 8.67 2600 775 230			845500 8. 2230 977 320	. 66 . 96		.64 8.74 2850 672 250		

See period of record, partial years used in monthly statistics Apr. 16-26 Mar. 13-27 Dec. 6, 1973 to Apr. 12, 1974 From rating curve extended above 4,600 $\rm ft^3/s$ Estimated Backwater from ice

a b

15215990 NICOLET CREEK NEAR CORDOVA

LOCATION.--Lat $60^\circ 31'09''$, long $145^\circ 47'23''$, in $SW^1/_4$ $SE^1/_4$ sec. 32, T. 15 S., R. 3 W. (Cordova C-5 quad), Hydrologic Unit 19020201, on right bank 275 ft upstream from culvert for Whitshed Road, 475 ft upstream from mouth and 2.1 mi southwest of Cordova.

DRAINAGE AREA. -- 0.75 mi².

PERIOD OF RECORD. -- Annual maximum, water years 1991-99. September 1999 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 40 ft above sea level, from topographic map.

REMARKS.--Records good except for discharges greater than 60 ft^3/s , which are fair; and estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2.4 2.2 2.1 2.0 60	3.2 3.2			e25 e4.0 e3.0 e2.0 e1.0	e4.5 e3.0 e1.0 e2.5 e3.0	e1.0 e1.0 e5.5 e10 e4.0	7.8 27 31 5.4 8.1	5.7 5.5 4.8 4.0 3.3	.19 .17 .17 5.9	1.6 1.1 .95 .93	2.7 1.7 2.0 33 14
6 7 8 9 10	58 23 9.8 4.5	2.2 4.8 2.8 3.9	e25 e25 e10 e8.0 e28	e35 e80 e35 e12 e4.5	e1.0	- O E	e3.0 e2.5 e3.5 e2.0 e4.0	12 8.1 9.6 7.8 9.5	3.1 2.8 2.4 1.9 1.6	7.6 3.0 3.0 1.7	.68 .60 .56 .53	2.8 5.2 3.5 3.1 1.7
11 12 13 14 15	17 24 35 54 41	42 3.0 14 35 3.4	e22 e9.0 e9.0 e7.0 e6.0	e4.0 e10 e25 e80 e50	e1.0	e50	e20 e10	7.0 6.7 7.9 9.6	1.3 1.2 1.4 1.2	1.4 1.3 1.9 3.7 1.5	.40 .37 .34 .29	1.6 16 38 24 3.5
16 17 18 19 20	34 7.3 3.9 5.3 2.9	15 40 73 43 13	e10	e7.0 e70 e40 e40 e9.5	e1.0	e10 e4.0 e2.5 e2.0 e1.7	e9.0 e9.0 e7.0 e6.0 e6.0	11 7.8 7.3 10 8.5	.80 .79 .91 .63	1.2 .97 .80 .68	.39 .53 .57 7.9	2.7 12 7.5 3.8 3.8
21 22 23 24 25	2.4 43 9.3 7.9 105	52 7.4 9.1 11 9.7	e15 e9.0 e10 e15 e15	e10 e15 e10 e5.5 e7.5	e1.5	e1.6 e1.5	e9.0 e9.0 e9.0 e10 e25	33 11 9.6 14 14	.44 .44 .36 .29	18 36 6.7 3.1 2.4	2.0 1.2 .88 1.5	2.9 11 22 19 9.9
26 27 28 29 30 31	18 3.6 2.5 2.7 16 8.0	5.7 4.6 e4.0 e4.0 e3.5	e30 e25 e15 e80 e50 e50	e30	e20 e70 e8.0 	e9.0	e20 e25 10 e6.5 e6.5	7.0 6.6 7.2 6.4 7.1 6.2	.26 .24 .22 .18 .19	1.8	3.0 2.7 45 19 35 8.2	4.8 3.1 5.9 2.4 1.9
TOTAL MEAN MAX MIN AC-FT CFSM IN.	20.2 105 2.0 1240 26.9		619.5 20.0 80 2.0 1230 26.6 30.73	26.6 80 4.0 1640 35.5	161.5 5.77 70 1.0 320 7.69 8.01	8.42 50 1.0 517 11.2	9.15 25 1.0 544 12.2	339.2 10.9 33 5.4 673 14.6 16.82	47.67 1.59 5.7 .18 95 2.12 2.36	6.79 56	153.98 4.97 45 .29 305 6.62 7.64	265.5 8.85 38 1.6 527 11.8 13.17
		STATISTIC	S OF MONT	THLY MEAN I	DATA FOR	WATER YE.	ARS 2000 -	2001, BY	WATER Y	EAR (WY)#		
MEAN MAX (WY) MIN (WY)	19.9 20.2 2001 19.6 2000	12.1 16.3 2001 7.85 2000	20.2 20.4 2000 20.0 2001	18.8 26.6 2001 10.9 2000	8.52 11.2 2000 5.77 2001	9.31 10.2 2000 8.42 2001	10.1 11.1 2000 9.15 2001	13.5 16.1 2000 10.9 2001	5.10 8.62 2000 1.59 2001	6.19 6.79 2001 5.59 2000	5.01 5.05 2000 4.97 2001	8.97 9.09 2000 8.85 2001
		CICS	FOR 2	2000 CALEN	DAR YEAR	F				WATER YE	ARS 2000	- 2001#
SUMMARY STATISTICS ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM			105 a1.1 1.3				Oct 25 7 Jul 2		11.5 11.7 11.3 140 b.1	Dec 7 Jul	2001 2000 21 1999 2 2001	
MAXIMUN MAXIMUN	M PEAK FL M PEAK ST	OW AGE		1.3	Jan 12		c202 c24.48	9 Jun 27 Nov 11 8 Nov 11 5 Jul 2		.1 df988 f19.6	Nov	27 2001 3 1994 3 1994
INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS				8740 16.0 218.45 32 6.4 1.6			8470 15.6 211.8' 35 5.5	7		8340 15.4 208.6 32 5.5 1.2	1	

See Period of Record and Remarks From Jan. 15 to Jan. 17 and Jul. 14 Jul. 2 and 3

b

May have been exceeded during period of gage malfunction from Nov. 28 to Apr. 30 From rating curve extended above 66 $\rm ft^3/s$ on basis of slope-area measurement of peak flow Estimated

Site and datum then in use

Solomon Gulch (A) profile and (B) schematic diagram of flows.

15225990 SOLOMON LAKE NEAR VALDEZ

LOCATION.--Lat $61^{\circ}04'25''$, long $146^{\circ}18'08''$, in $NE^{1}_{/4}$ SW $^{1}_{/4}$ sec. 21, T. 9 S.,R. 6 W.(Valdez A-7 SE quad), Hydrologic Unit 19020201, within Valdez Corporate boundary, at outlet of Solomon Lake, 0.7 mi upstream from mouth of Solomon Gulch, and 4.6 mi southeast of Valdez.

DRAINAGE AREA. -- 19.2 mi².

PERIOD OF RECORD.--October 1991 to current year. Additional unpublished records prior to period of record available from Copper Valley Electric Association and in station files of Geological Survey.

REMARKS.--Reservoir is formed by a rockfill dam at outlet of Solomon Lake. Reservoir is used for power; power-plant operation began January 6, 1982. Usable capacity is 31,500 acre-feet below spillway crest at 685 ft. Discharge released to the penstocks is accounted for at Solomon Gulch Tailrace (station 15225996). Releases through the dam to maintain minimum flows, spillway releases, and incremental flow are accounted for at the Solomon Gulch at top of falls gage (station 15225997).

COOPERATION.--Reservoir contents furnished by Copper Valley Electric Association.

EXTREMES FOR PERIOD OF RECORD.--Maximum contents 32,500 acre-ft, September 21, 1993, from crest-stage gage and rating extended above 31,500 acre-ft; minimum contents, 2,167 acre-ft, May 1, 1995.

EXTREMES FOR CURRENT YEAR.--Maximum contents, 31,900 acre-ft July 5, July 21, and September 5; minimum contents, 2,180 acre-ft, May 8.

MONTH END RESERVOIR ELEVATION, IN FEET, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	ELEVATION	CONTENTS	CHANGE IN CONTENTS
SEP 30 OCT 31 NOV 30 DEC 31 JAN 31 FEB 28 MAR 31 APR 30 MAY 31 JUN 30 JUL 31 AUG 31 SEP 30	684.5 677.6 672.6 666.8 661.6 651.2 636.2 634.2 680.0 685.3 685.4 683.0	30,100 26,200 23,400 20,400 17,800 13,100 7,400 3,000 6,700 27,700 31,600 31,700 29,800	3,900 -2,800 -3,000 -2,600 -4,700 -5,700 -4,400 +3,700 +21,000 +3,900 +100 -1,900
		CAL YR 2000 WTR YR 2001	-2,900 -300

15225996 SOLOMON GULCH TAILRACE NEAR VALDEZ

LOCATION.--Lat $61^{\circ}05'01''$, long $146^{\circ}18'10''$, in $NE^1/_4$ $SE^1/_4$ $SW^1/_4$ sec. 16, T. 9 S., R. 6 W. (Valdez A-7 SE quad), Hydrologic Unit 19020201, within Valdez Corporate boundary, on left wingwall of tailrace pool of Copper Valley Electric Association powerhouse facility, 350 ft upstream from mouth at Solomon Gulch, and 3.8 mi southeast of Valdez.

DRAINAGE AREA. -- Indeterminate.

PERIOD OF RECORD. -- September 1986 to current year.

GAGE. -- Water-stage recorder and concrete control. Elevation of gage is 40 ft above sea level, from topographic map.

REMARKS.--Records good. Discharge shown herein is flow through the Solomon Gulch Power Plant turbines. Solomon Lake, 0.8 mi upstream, supplies water to the power-plant through two 48-in. diameter penstocks. Water for the fish hatchery, diverted upstream from the gage, is not included in these published daily values. Annual mean discharge for these diversions for 2001 water year was 12.4 ft³/s.

COOPERATION.--Records of daily discharge diverted to the fish hatchery are furnished by Valdez Fisheries Development Association. Copper Valley Electric Association provides tables of hourly power output through the turbines.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 293 ${\rm ft}^3/{\rm s}$, January 2 and 3, 1992, gage height, 3.04 ${\rm ft}$; no flow at times most years.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, $245 \text{ ft}^3/\text{s}$, June 6, gage height, 2.97 ft; no flow for periods on May 10, and May 21.

		DISCHARGE	, CUBIC	C FEET PER			YEAR OCTOR	BER 2000	TO SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	178	64	62	54	77	86	64	57	200	187	180	189
2	190	75	60	55	67	83	66	58	195	197	189	188
3	192	67	71	60	66	112	86	60	196	197	183	187
4	189	68	64	68	70	110	81	71	202	195	179	193
5	199	64	70	66	75	107	85	72	206	204	171	197
6	187	65	68	71	98	106	84	72	209	204	189	196
7	174	70	68	69	99	109	79	75	153	158	187	196
8	172	69	68	66	99	82	81	21	192	188	196	180
9	181	65	57	73	105	82	80	1.0	195	172	145	172
10	189	58	56	68	97	85	82	4.6	194	171	196	184
11	141	59	54	58	84	84	84	38	201	176	189	189
12	102	61	54	54	86	86	91	38	158	174	191	190
13	102	66	58	74	75	103	90	47	202	185	176	191
14	159	61	61	65	81	105	105	54	204	197	202	140
15	182	57	72	69	87	107	79	62	202	198	202	174
16	192	57	68	56	105	107	66	64	196	201	200	175
17	192	53	68	67	115	103	53	70	196	202	197	182
18	197	56	68	56	112	109	58	80	198	193	197	172
19	197	60	65	55	115	93	60	89	200	193	187	163
20	196	55	57	61	92	87	59	87	204	189	201	141
21	197	56	53	69	83	102	59	46	204	184	202	125
22	198	63	56	67	102	112	64	68	199	182	200	164
23	204	79	55	68	109	106	65	95	200	187	202	168
24	153	67	57	71	106	101	65	209	199	180	200	138
25	152	67	56	66	113	95	75	207	201	183	189	116
26	108	69	66	65	107	97	58	207	200	176	193	117
27	58	65	65	84	85	94	63	198	201	178	203	130
28	63	66	63	85	80	86	59	197	198	176	205	157
29	66	65	59	98		89	56	209	196	182	203	173
30	77	66	65	91		64	57	202	191	183	204	176
31	79		54	90		63		201		176	198	
TOTAL	4866		918	2119	2590	2955	2154	2959.6	5892	5768	5956	5063
MEAN	157		1.9	68.4	92.5	95.3	71.8	95.5	196	186	192	169
MAX	204	79	72	98	115	112	105	209	209	204	205	197
MIN	58	53	53	54	66	63	53	1.0	153	158	145	116
AC-FT	9650	3790 3	800	4200	5140	5860	4270	5870	11690	11440	11810	10040

CAL YR 2000 TOTAL 45455 MEAN 124 MAX 231 MIN 39 AC-FT 90160 WTR YR 2001 TOTAL 44153.6 MEAN 121 MAX 209 MIN 1.0 AC-FT 87580

SOUTH-CENTRAL ALASKA

15225997 SOLOMON GULCH AT TOP OF FALLS NEAR VALDEZ

LOCATION.--Lat $61^{\circ}04'45''$, long $146^{\circ}18'11''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ NW $^{1}/_{4}$ sec. 21, T. 9 S., R. 6 W. (Valdez A-7 SE quad), Hydrologic Unit 19020201, within Valdez Corporate boundary, on right bank, 72 ft above Alyeska Pipeline Service Company Bridge, 150 ft upstream from top of falls, 0.3 mi upstream from mouth, and 4.2 mi southeast of Valdez.

DRAINAGE AREA. -- Indeterminate.

PERIOD OF RECORD. -- September 1986 to current year.

REVISED RECORDS. -- WDR AK-00-1: 1999.

GAGE.--Water-stage recorder. Elevation of gage is 400 ft above sea level, from topographic map. Prior to October 1, 1991, discharge computed for site 150 ft downstream at datum 72.00 ft higher.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Discharge shown herein represents controlled releases from bypass valve and flow over the spillway of dam at Solomon Lake, 0.5 mi upstream, plus inflow between the spillway and the gage. Spillway crest elevation is 685 ft above sea level, from construction plans. Water for power generation is diverted from Solomon Lake (see records for station 15225996). Water is diverted for fish hatchery use 1,150 ft downstream from gage. Reservoir spilled July 5 to August 10, August 13-26, August 28 to September 1, September 4-7, and September 14-15.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 3,280 ft³/s, October 11, 1986, by computation of peak flow by several indirect measurement methods; gage height, 82.20 ft from water surface profiles for 1986 flood at top of falls and at datum 72.00 ft lower (12.90 ft from profile at present site and datum); minimum daily discharge, about 0.20 ft³/s, January 23 to April 6, 1989.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 834 ft³/s, September 5, gage height, 7.22 ft; minimum daily discharge, 1.4 ft³/s, June 27.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCII	ARGE, COD	IC PEEL F		LY MEAN V		JER 2000 1	O DEFIEM	DER ZUUI		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	4.2 4.3 4.3 3.9 9.7	4.2 4.1 3.9 4.0 4.1	5.9 5.8 4.7 4.6 6.6	8.8 8.0 7.9 7.6 6.3	5.3 5.2 5.0 5.0	e4.2 e4.4 4.5 4.4	3.1 3.2 3.6 3.3 3.2	7.8 6.2 4.7 3.7 3.1	21 23 22 18 18	3.0 3.1 3.5 3.6	99 98 138 121 100	58 16 6.7 87 722
6 7 8 9 10	25 13 7.5 5.9 5.7	4.7 4.7 4.7 4.7 5.4	7.1 6.1 5.8 5.7 5.8	5.8 22 12 8.2 7.4	4.8 4.7 4.7 4.6 4.5	4.4 4.5 4.5 4.4	2.9 3.1 3.2 3.2 3.1	3.0 3.0 4.7 6.4 6.8	23 14 15 15	454 393 318 214 223	75 66 47 50 29	306 78 17 5.4 5.3
11 12 13 14 15	5.9 6.1 7.4 7.3	11 6.7 6.1 5.9 5.4	5.9 5.7 5.7 5.9	7.1 6.8 6.7 7.6 22	4.7 4.7 4.7 4.6 4.4	e4.4 e4.4 e4.5 e4.5	2.9 2.8 3.2 3.4 3.5	7.6 7.7 9.5 12	12 9.4 8.7 8.2 7.8	178 154 134 131 153	7.9 5.3 5.5 38 29	4.9 4.6 13 85 67
16 17 18 19 20	6.3 5.7 5.4 5.1 4.9	5.3 5.3 9.6 8.1 7.9	6.0 5.9 6.0 6.0	12 8.6 10 14 8.8	4.2 4.2 4.1 4.1 4.2	4.4 4.3 e4.1 e4.0 e3.9	3.7 3.6 3.4 4.2 4.9	18 14 14 19 20	8.0 7.0 5.6 5.1 5.7	124 140 175 172 620	19 19 12 24 134	12 5.6 5.3 5.2 5.5
21 22 23 24 25	4.8 5.4 5.7 5.6 5.7	8.9 8.2 6.7 6.7	6.1 6.3 6.0 6.0	7.6 7.2 7.3 7.0 6.7	4.1 4.1 4.2 4.0 e4.0	3.8 3.7 3.5 3.5	5.3 5.6 5.1 4.9 5.2	16 13 12 16 16	5.1 4.3 4.3 4.2 3.8	665 566 387 262 189	76 64 33 91 77	5.2 5.0 5.2 5.6 5.4
26 27 28 29 30 31	5.7 4.7 4.0 3.9 3.7 4.0	6.0 6.0 5.9 6.0 6.0	6.0 6.3 6.3 6.8 7.6 9.5	6.4 6.3 6.0 5.5 5.3	e4.0 e4.1 e4.2 	3.4 3.5 3.4 3.3 3.4 3.3	6.6 9.1 8.2 7.8 7.7	14 19 40 22 20 20	3.6 3.0 3.0 3.2 3.1	172 151 130 110 98 118	26 7.4 68 327 188 171	5.2 5.0 4.9 4.6 4.5
TOTAL MEAN MAX MIN AC-FT	198.2 6.39 25 3.7 393	182.5 6.08 11 3.9 362	190.0 6.13 9.5 4.6 377	268.2 8.65 22 5.3 532	125.4 4.48 5.3 4.0 249	125.3 4.04 4.5 3.3 249	133.0 4.43 9.1 2.8 264	394.2 12.7 40 3.0 782	298.1 9.94 23 3.0 591	6616.2 213 665 3.0 13120	2245.1 72.4 327 5.3 4450	1560.1 52.0 722 4.5 3090

CAL YR 2000 TOTAL 7257.5 MEAN 19.8 MAX 663 MIN 1.9 AC-FT 14400 WTR YR 2001 TOTAL 12336.3 MEAN 33.8 MAX 722 MIN 2.8 AC-FT 24470

e Estimated

15226000 SOLOMON GULCH NEAR VALDEZ

LOCATION.--Lat $61^{\circ}05'02''$, long $146^{\circ}18'13''$, in $NE^{1}/_{4}$ $SE^{1}/_{4}$ Sw $^{1}/_{4}$ sec. 16, T. 9 S., R. 6 W. (Valdez A-7 SE quad), Hydrologic Unit 19020201, at bridge crossing at mouth and 3.8 mi southeast across Port Valdez from Valdez.

DRAINAGE AREA. -- 19.7 mi²

PERIOD OF RECORD.--July to December 1948, October 1949 to September 1956, and September 1986 to current year.

GAGE.--Nonrecording gage. Elevation of gage is at sea level. July 9, 1948 to May 21, 1950, nonrecording gage, and May 22, 1950 to September 30, 1956, water-stage recorder at about present site and datum.

REMARKS.-- Records fair. Discharge data represent the flow at mouth which includes Solomon Gulch at top of falls (station 15225997), power plant tailrace (station 15225996), and all fish hatchery diversions. Water for power generation is diverted by a dam at Solomon Lake, 0.8 mi upstream. Water is diverted for the fish hatchery by a 24-in. penstock aeration system, and a 24-in. penstock line from the tailrace weir pool. An unaerated penstock and an 8-in. pipe for warm water supply are upstream. Additional water is diverted to the fish hatchery from Solomon Gulch bypass channel about 750 ft above gage, by means of a 12-in. diameter pipe. The fish hatchery discharges water directly into Port Valdez. Average daily diversion to fish hatchery for 2001 water year was 12.4 ft³/s. Power generation began January 6, 1982.

COOPERATION.--Records of daily discharge diverted to the fish hatchery are furnished by Valdez Fisheries Development Association. Copper Valley Electric Association provides tables of hourly power output through the turbines and monthly storage values for Solomon Lake.

		DISCHARGE	, CUBIC	FEET PER		WATER MEAN	YEAR OCTOBER VALUES	2000 T	O SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	211 223 225 222 237	78 89 80 81 77	76 74 84 77 85	71 71 76 87 83	91 81 79 83 88	e98 e97 125 122 121	74 77 96 92 96	69 69 70 80 79	221 218 218 220 224	190 200 201 199 377	305 313 347 326 297	272 229 219 305 944
6 7 8 9 10	241 215 208 215 223	79 85 83 79 73	83 83 82 71 70	85 99 87 91 85	111 112 112 118 109	120 123 95 95 97	93 88 91 90 91	79 82 29 9.6 14	232 167 207 210 208	659 552 507 387 395	290 280 269 222 252	527 301 222 202 216
11 12 13 14 15	175 136 138 197 219	79 77 82 76 72	68 68 72 75 86	73 69 89 81 99	97 99 88 94 100	e97 e100 e116 e118 120	93 100 99 116 90	48 49 60 69 81	213 167 211 212 210	357 330 321 330 353	223 223 208 266 257	220 221 230 251 267
16 17 18 19 20	229 229 232 216 208	72 66 72 75 70	82 82 81 78 70	76 84 73 76 76	117 127 123 126 103	120 115 e120 e104 e98		86 84 94 108 107	204 203 204 205 210	327 344 370 368 833	244 241 234 236 360	213 214 204 196 174
21 22 23 24 25	209 211 217 166 165	72 78 92 80 80	66 69 68 70 69	83 81 82 85 79	94 113 120 117 e124	114 124 117 111 105	75 76 75	571 81 107 225 223	209 204 205 203 205	873 772 598 466 396	303 289 260 316 291	158 196 200 171 149
26 27 28 29 30 31	121 70 74 77 88 91	82 78 79 78 79	79 78 77 73 80 73	78 97 98 110 103 103	e118 e96 e91 	107 105 96 99 74 72	76 71 68 68	221 217 237 231 295 221	204 204 201 199 194	372 353 330 316 306 320	244 235 298 555 417 394	150 162 190 205 208
TOTAL MEAN MAX MIN AC-FT	5688 183 241 70 11280	78.1 7 92 66	349 5.8 86 66	2630 84.8 110 69 5220	2931 105 127 79 5810	3325 107 125 72 6600	2471 3 82.4 116 63 4900	995.6 129 571 9.6 7930	6192 206 232 167 12280	12702 410 873 190 25190	8995 290 555 208 17840	7416 247 944 149 14710
			ADJU	USTED FOR	R CHANGE	IN STO	ORAGE IN SOI	LOMON LA	AKE			
MEAN AC-FT	120 7380	31.1 27.0 1850 1660	42.6 2620	20.0 1110	14.6 900	10.	11530	558 3318(292 17940	215 12810	

24.10

14.81

10.93

12.21

28.30

6.09

7.03

CFSM

IN

1.58

1.37

2.16

1.01

1.06

0.74

0.86

0.51

9.52

10.99

Estimated

SOUTH-CENTRAL ALASKA

15226000 SOLOMON GULCH NEAR VALDEZ--Continued

	STATISTICS	OF MOI	NTHLY MEAN	DATA FOR	WATER	YEARS 1986	- 2001,	BY W	IATER	YEAR (WY)	#	
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY		JUN	JUL	AUG	SEP
MEAN 184 MAX 310 (WY) 1987 MIN 97.2 (WY) 1997	102 140 1989 77.1 1993	96.6 116 1987 75.2 1996	97.6 138 1995 73.2 1997	92.9 130 1987 64.3 1997	81.4 120 1987 5.08 1991	106 1998 26.2	153 213 1993 103 1992		182 229 990 145	275 410 2001 177 1991	298 462 1993 152 1996	344 501 1989 152 1996
SUMMARY STATIS	TICS	FOR	2000 CALE	NDAR YEAR		FOR 2001	WATER Y	EAR		WATER :	YEARS 1986	- 2001#
ANNUAL TOTAL ANNUAL MEAN ANNUAL MEAN HIGHEST ANNUAL HIGHEST DAILY LOWEST DAILY LOWEST DAILY MANNUAL SEVEN-D MAXIMUM PEAK F ANNUAL RUNOFF ANNUAL RUNOFF ANNUAL RUNOFF ANNUAL RUNOFF 10 PERCENT EXC 50 PERCENT EXC 90 PERCENT EXC	MEAN MEAN EAN AY MINIMUM LOW (AC-FT) (CG-FT) (CFSM) (IN) EEDS EEDS		56773 155 *149 871 a49 55 112600 *108700 *7.58 *103.59 241 128 70	Aug 4 Apr 26 Apr 25		61037 167 *165 944 9 40 1211000 *120800 *8.43 *115.08 314 112 72	Sep .6 May	9		166 *166 197 125 2270 120300 *120300 *14:43 *114.43 294 124 71	.0 Apr .3 Mar Sep	1990 1996 24 1989 12 1989 24 1991 24 1989

PRIOR TO CONSTRUCTION OF SOLOMON GULCH HYDROELECTRIC PROJECT

		STATIST	rics of	MONTHLY	MEAN DATA	FOR WATER	YEARS	1948 - 1	1956, BY	WATER YEAR	(WY)#	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	124	58.9	18.3	13.3	10.4	8.82	10.9	102	370	385	322	260
MAX (WY)	304 1953	131 1953	35.6 1950	20.9 1956	12.2 1954	11.1 1953	18.3 1953	224 1953	544 1953	514 1955	442 1956	574 1951
MIN (WY)	48.0 1951	21.7	4.00	1.40	3.57 1951	7.19 1951	6.57	36.5 1955	261 1951	277 1950	254 1950	126 1955

SUMMARY STATISTICS		WATER YEARS 1948 - 1956#
ANNUAL MEAN	143	
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN		1953 1950
HIGHEST DAILY MEAN LOWEST DAILY MEAN		Sep 4 1951 Dec 31 1950
ANNUAL SEVEN-DAY MINIMUM	1.0	Jan 10 1951
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW	c6.50	Sep 4 1951 Sep 4 1951 Feb 20 1954
ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)	7.28	
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS		

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for change in storage in Solomon Lake, unless otherwise noted

* Adjusted for change in storage in Solomon Lake
Apr. 26 and 28
b From rating curve extended above 620 ft³/s
Site and datum then in use
d No flow sometime during period Feb. 20 to Mar. 3, 1954, caused by temporary storage upstream

Discharge

Gage Height

15236900 WOLVERINE CREEK NEAR LAWING

LOCATION.--Lat $60^{\circ}22'14''$, long $148^{\circ}53'48''$, in $NE^{1}/_{4}$ NE $^{1}/_{4}$ sec. 10, T.3 N., R.3 E. (Seward B-6 quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on the left bank, about 0.1 mi downstream from terminus of Wolverine Glacier, 2.0 mi upstream from mouth, 16 mi east of Lawing, Alaska.

DRAINAGE AREA. -- 9.51 mi².

PERIOD OF RECORD.--October 1966 to September 1978, October 1980 to September 1981, May 1997 to September 1997, October 2000 to September 2001.

GAGE.--Water-stage recorder. Elevation of gage is 1,200 ft above sea level from topographic map.

REMARKS.--Records are poor. Large fluctuations from ice melt and alternate damming and storage releases during the melt season. Stream flow modified by Wolverine Glacier, which covers 6.8 mi², more than 70% of the drainage basin. Rain gage and air temperature recorder at station, daily values of precipitation and air temperature available from computer files of the Alaska District. GOES satellite telemetry at station. A recording of air temperature, wind speed, and precipitation gage at 3,250 ft elevation. plus three snow and ice balance measurement sites are located in the basin. Combined snow, ice, and water balances of the basin are published in other reports of the Geological Survey.

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge of 550 $\mathrm{ft^3/s}$ and maximum (*).

Gage Height

Discharge

Jun 1		Date	Time	Dischar (ft³/s		Gage Height (ft)		Date	Tim		scharge ft³/s)	Gage Hei (ft)	.ght
Jun 3		Jun 1	2330	744		2.88		Jun 9	164	5	618	2.69	
Jun 3		Jun 2	1445	737		2.87		Jun 10	104	5	592	2.65	
DISCHARGE CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001		Jun 3	0430	693		2.81		Jun 15	031	5	1170	3.40	
DISCHARGE, CUBIC FEET FOR SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLLY MEAN VALUES	•	Jun 3	1015	3110		4.79		Aug 28	154	5	*4160	*5.27	7
DAY OCT NOV DEC JAN FEB MAR APR MAP JUN JUL ADG SEP 1 36 1.9 e.10 e.50 .00 .00 .00 e.00 e.00 160 290 315 383 3 17 1.5 e.00 .11 .00 .00 .00 .00 e.00 160 290 315 383 3 17 1.5 e.00 .01 .00 .00 .00 e.00 160 290 315 383 4 14 e1.4 e.00 .00 .00 .00 .00 .00 e.00 122 283 e300 275 5 28 1.3 e.00 .00 .00 .00 .00 .00 e.00 145 278 e300 275 6 6 64 1.2 e.00 .00 .00 .00 .00 .00 e.00 145 278 e300 187 7 132 1.2 e.00 .00 .00 .00 .00 .00 e.00 136 285 e300 187 7 132 1.2 e.00 e.10 .00 .00 .00 .00 e.00 136 285 e300 183 8 93 1.1 e.00 e.10 .00 .00 .00 e.00 114 290 e300 183 8 93 1.1 e.00 e.10 .00 .00 .00 0.00 0.11 23 274 316 146 9 32 1.1 0.00 e.10 .00 .00 .00 0.00 178 281 316 142 10 15 e1.0 .00 .00 .00 .00 .00 .01 185 270 315 110 11 12 e1.0 .00 .00 .00 .00 .00 .00 178 281 316 122 10 15 e1.0 .00 .00 .00 .00 .00 .00 183 274 315 110 11 2 e1.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 11 2 e1.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 11 2 e1.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 11 12 e.90 .00 e.00 .00 .00 .00 .00 .04 149 260 322 109 12 21 e.90 .00 e.00 .00 .00 .00 .00 .04 149 260 322 109 12 21 e.90 .00 e.00 .00 .00 .00 .00 .00 .36 140 279 337 268 13 36 e.90 .00 e.00 .00 .00 .00 .00 .78 613 280 333 212 14 68 e.80 .00 .00 e.00 .00 .00 .00 .78 613 280 333 212 14 68 e.80 .00 .00 e.00 .00 .00 .00 .00 1.78 281 326 335 158 15 19 e.80 .00 e.00 .00 .00 .00 .00 1.23 284 327 335 158 15 19 e.80 .00 e.00 .00 .00 .00 .00 123 284 327 335 158 16 21 4.4 44 .00 .00 e.00 .00 .00 .00 11 232 293 310 234 18 7.3 e.60 .26 .00 e1.0 .00 .00 .00 .00 11 281 292 244 359 317 150 27 e3.0 e.20 .00 e.00 .00 .00 .00 .00 11 281 292 244 359 317 150 28 e2.0 e3.0 e.40 .12 .00 .00 .00 .00 .00 11 281 292 244 359 317 150 29 e3.0 e.20 .00 e.00 .00 .00 .00 .00 11 281 293 313 330 324 21 4.4 44 .00 .00 .00 .00 .00 .00 .00 11 281 293 313 330 324 21 4.4 44 .00 .00 .00 .00 .00 .00 .00 11 281 293 313 330 324 25 26 e3.0 e.40 .12 .00 .00 .00 .00 .00 .00 11 281 293 314 112 27 e3.0 e.20 .00 .00 .00 .00 .00 .00 .00 11 281 293 314 112 28 e2.5 e.14 .00 .00 .00 .00 .00 .00 .00 .00		Jun 3	1930	618		2.69							
1 36			DISCH	ARGE, CUBI	C FEET				BER 2000	TO SEPTEM	IBER 2001		
2 24 1.6 6 e.00 e.10 .00 .00 .00 e.00 160 290 315 383 3 17 1.5 e.00 111 .00 .00 .00 e.00 142 281 e300 295 4 14 e1.4 e1.4 e.00 .00 .00 .00 .00 e.00 145 278 e300 275 5 28 1.3 e.00 .00 .00 .00 .00 .00 e.00 122 283 e300 255 6 6 64 1.2 e.00 e.10 .00 .00 .00 .00 e.00 136 285 e300 187 7 132 1.2 e.00 e.10 .00 .00 .00 .00 e.00 114 290 e300 188 8 93 1.1 e.00 e.10 .00 .00 .00 e.00 114 290 e300 187 9 32 1.1 e.00 e.10 .00 .00 .00 .00 10 123 274 316 146 9 32 1.1 e.00 e.10 .00 .00 .00 .00 10 178 281 316 122 10 15 e1.0 .00 .10 .00 .00 .00 .00 .01 178 281 316 122 11 12 e1.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 11 12 e1.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 12 e1.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 13 14 68 e.90 .00 e.00 .00 .00 .00 .00 .36 140 279 337 268 15 19 e.80 .00 e.00 .00 .00 .00 .00 .00 .78 163 280 333 212 14 68 e.90 .00 e.00 .00 .00 .00 .00 .00 1.7 226 293 335 158 15 19 e.80 .00 e.10 .00 .00 .00 .00 .00 1.7 226 293 335 158 15 19 e.80 .00 e.10 .00 .00 .00 .00 2.8 243 279 317 150 17 10 e.70 .00 e.50 .00 .00 .00 .00 11 282 293 310 234 16 21 e.70 .00 e.50 .00 .00 .00 .00 11 222 293 310 234 16 21 e.70 .00 e.50 .00 .00 .00 .00 11 282 293 310 234 16 21 e.70 .00 e.50 .00 .00 .00 .00 2.8 243 279 317 150 17 10 e.70 .00 e.50 .00 .00 .00 .00 11 282 293 310 234 18 7.3 e.60 .00 e1.0 .00 .00 .00 .00 11 264 287 323 186 20 4.8 10 .00 0 1.3 .00 .00 .00 .00 11 264 287 323 186 21 4.4 44 40 .00 .13 .00 .00 .00 .00 11 282 299 340 89 22 4.1 3.4 .00 .00 e.00 .00 .00 .00 11 282 299 340 89 22 4.1 3.4 .00 .00 .00 .00 .00 .00 11 282 299 341 122 33 3.9 1.4 .01 .00 .00 .00 .00 .00 .00 11 282 299 344 89 29 e2.5 e.14 .00 .00 .00 .00 .00 .00 .00 18 229 294 375 311 127 27 e3.0 e.20 .00 .00 .00 .00 .00 .00 18 229 299 341 112 27 e3.0 e.20 .00 .00 .00 .00 .00 .00 18 229 299 340 89 29 e2.5 e.10 e10 .00 .00 .00 .00 .00 .00 84 260 331 1930 567 MIN 2.2 1.00 .00 .00 .00 .00 .00 .00 84 260 331 1930 578 ENERN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 189 WATER YEAR (WY)#	DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
3 17 1.5 6 e.00 .11 .00 .00 .00 e.00 242 281 e300 295 5 28 1.3 e.00 .00 .00 .00 .00 .00 e.00 145 278 e300 275 5 28 1.3 e.00 .00 .00 .00 .00 .00 .00 122 283 e300 255 6 64 1.2 e.00 .00 .00 .00 .00 .00 e.00 136 285 e300 187 7 132 1.2 e.00 e.10 .00 .00 .00 .00 e.00 136 285 e300 183 8 93 1.1 e.00 e.10 .00 .00 .00 .00 e.00 114 290 e300 183 8 93 1.1 e.00 e.10 .00 .00 .00 .00 123 274 316 146 9 32 1.1 .00 e.10 .00 .00 .00 .00 101 178 281 316 146 9 32 1.1 .00 e.10 .00 .00 .00 .00 101 185 270 315 110 11 12 e1.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 11 12 e1.0 .00 e.00 .00 .00 .00 .00 .00 144 29 260 322 109 12 21 e.90 .00 e.00 .00 .00 .00 .00 .00 .04 149 260 322 109 13 36 e.90 .00 e.00 .00 .00 .00 .00 .78 163 283 333 212 14 68 e.80 .00 .00 e.00 .00 .00 .00 .00 .78 163 283 333 212 15 19 e.80 .00 e.10 .00 .00 .00 .00 .00 2.8 243 279 337 268 15 19 e.80 .00 e.10 .00 .00 .00 .00 2.8 243 279 317 150 17 10 e.70 .00 e.20 .00 e.00 .00 .00 2.28 243 279 317 150 17 10 e.70 .00 e.20 .00 e.00 .00 .00 2.28 243 279 317 150 18 7.3 e.60 .00 e1.0 .00 .00 .00 .00 11 264 287 323 168 20 4.8 10 .00 e1.0 .00 .00 .00 .00 11 264 287 323 168 20 4.8 10 .00 e1.0 .00 .00 .00 .00 11 264 287 323 168 21 4.4 44 .00 .00 13 .00 .00 .00 11 264 287 323 186 20 4.8 10 .00 e1.0 .00 .00 .00 .00 11 286 295 361 229 24 3.6 1.1 3.3 .00 .00 .00 .00 .00 11 264 263 275 341 147 23 3.9 1.4 .00 .00 .00 .00 .00 .00 11 264 263 275 341 147 23 3.9 1.4 .00 .00 .00 .00 .00 .00 11 281 329 333 322 156 26 e3.0 e.40 .12 .00 .00 .00 .00 .00 10 12 326 295 361 229 24 3.6 1.1 3.3 .00 .00 .00 .00 .00 10 12 326 295 361 229 24 4.1 3.4 .00 .00 .00 .00 .00 .00 11 281 329 334 182 25 2.1 .1 4.0 0.0 .00 .00 .00 .00 .00 18 229 294 394 112 27 e3.0 e.40 .12 .00 .00 .00 .00 .00 .00 18 229 294 394 112 27 e3.0 e.40 .12 .00 .00 .00 .00 .00 .00 18 229 329 344 .12 28 e2.5 e.14 e.00 .00 .00 .00 .00 .00 .00 .00 18 229 329 340 88 29 e2.5 e.14 e.00 .00 .00 .00 .00 .00 .00 .00 .00 .0													
4 14 el.4 el.4 e.00 .00 .00 .00 .00 .00 e.00 145 278 e300 275 5 28 1.3 e.00 .00 .00 .00 .00 .00 e.00 122 283 e300 255 6 6 64 1.2 e.00 e.00 .00 .00 .00 .00 e.00 136 285 e300 187 7 132 1.2 e.00 e.10 .00 .00 .00 .00 e.00 136 285 e300 183 8 93 1.1 e.00 e.10 .00 .00 .00 .00 e.00 123 274 316 146 9 32 1.1 0.0 e.10 .00 .00 .00 .00 .01 178 281 316 146 10 15 el.0 .00 .10 .00 .00 .00 .00 .01 178 281 316 122 10 15 el.0 .00 .00 .00 .00 .00 .00 .01 185 270 315 110 11 12 el.0 .00 .00 .00 .00 .00 .00 .00 .04 149 260 322 109 12 21 e.90 .00 e.00 .00 .00 .00 .00 .03 16 140 279 337 268 13 36 e.90 .00 e.00 .00 .00 .00 .00 .78 163 280 333 212 14 68 e.80 .00 e.00 .00 .00 .00 .00 17, 266 292 335 158 15 19 e.80 .00 e.10 .00 .00 .00 .00 17, 266 292 335 158 16 19 e.80 .00 e.10 .00 .00 .00 .00 17, 266 292 335 158 16 19 e.80 .00 e.10 .00 .00 .00 .00 17, 266 292 335 158 16 19 e.80 .00 e.10 .00 .00 .00 .00 17, 226 292 335 158 16 19 e.80 .00 e.10 .00 .00 .00 .00 128 243 278 324 134 18 7.3 e.60 .00 e.50 .00 .00 .00 .00 12 28 243 278 324 134 18 7.3 e.60 .00 e1.0 .00 .00 .00 10 2.0 2.8 243 278 324 134 18 7.3 e.60 .00 e1.0 .00 .00 .00 10 2.0 7.9 238 287 325 293 10 234 18 7.3 e.60 .00 e8.0 .00 e1.0 .00 .00 12 28 243 279 310 234 18 7.3 e.60 .00 e8.0 .00 .00 .00 10 20 7.9 238 287 325 293 11 2 2 4.1 3.4 400 .13 .00 .00 .00 10 14 264 287 323 186 20 4.8 10 .00 e8.0 .00 .00 .00 10 .00 13 262 295 361 229 24 1.1 3.4 .00 .00 .00 .00 .00 10 12 281 313 330 322 25 3.1 .73 1.2 .00 .00 .00 .00 .00 14 264 287 323 318 26 26 e3.0 e.40 .12 .00 .00 .00 .00 .00 15 292 329 334 112 27 e3.0 e.20 .00 .00 .00 .00 .00 .00 13 293 333 322 156 26 e3.0 e.40 .12 .00 .00 .00 .00 .00 .00 18 229 264 359 892 14779 5836 MEAN 22.4 2.80 .51 .39 .000 .000 .00 .00 18 229 293 334 112 27 e3.0 e.20 .00 .00 .00 .00 .00 .00 18 229 294 477 195 30 e2.5 e.10 e10 e10 .00 .00 .00 .00 .00 10 135 293 333 322 156 31 2.2 e10 e10 .00 .00 .00 .00 .00 18 229 293 340 112 28 28 22.5 e.14 .00 .00 .00 .00 .00 .00 .00 18 229 329 340 11580 EVALUATION OF MONTHILY MEAN DATA FOR WATER YEARS 1967 - 2001, BY													
Color	4									145	278		
The color of the	5	28	1.3	e.00	.00	.00	.00	.00	.00	122	283	e300	255
B													
9 32 1.1 .000 e.10 .000 .000 .00 .01 178 281 316 122 10 15 el.0 .00 .10 .00 .00 .00 .00 .01 185 270 315 110 11 12 el.0 .00 .00 .00 .00 .00 .00 .04 149 260 322 109 12 21 e.90 .00 e.00 .00 .00 .00 .00 .36 140 279 337 268 13 36 e.90 .00 e.00 .00 .00 .00 .00 .36 140 279 337 268 13 36 e.90 .00 e.00 .00 .00 .00 .00 .78 163 280 333 212 14 68 e.80 .00 .00 .00 .00 .00 .00 .17 226 292 335 158 15 19 e.80 .00 e.10 .00 .00 .00 .00 .28 243 278 324 134 16 21 e.70 .00 e.20 .00 e.00 .00 .00 28 243 279 317 150 17 10 e.70 .00 e.50 .00 .00 .00 e.00 6.0 234 279 317 150 17 10 e.70 .00 e.50 .00 .00 .00 e.00 7.1 232 293 310 234 18 7.3 e.60 .00 el.0 .00 .00 .00 .00 7.9 238 287 325 212 19 6.0 2.6 .00 el.0 .00 .00 .00 .00 11 264 287 322 186 20 4.8 10 .00 1.0 .00 .00 .00 .00 11 264 287 323 186 20 4.8 10 .00 1.0 .00 .00 .00 .00 11 264 287 323 186 21 4.4 44 4 .00 .13 .00 .00 .00 .00 14 264 287 323 186 22 4.1 3.4 .00 .00 .00 .00 .00 .00 11 264 287 323 186 23 3.9 1.4 .01 .00 .00 .00 .00 .00 11 264 287 323 186 24 1.4 .4 44 .00 .13 .00 .00 .00 .00 11 28 299 264 359 199 24 3.6 1.1 33 .00 .00 .00 .00 .00 11 281 313 330 324 25 3.1 .73 1.2 .00 .00 .00 .00 .00 11 281 313 330 324 25 3.1 .73 1.2 .00 .00 .00 .00 .00 13 293 333 322 156 26 e3.0 e.40 .12 .00 .00 .00 .00 .00 .00 15 271 329 340 89 28 e2.5 e.14 .00 .00 .00 .00 .00 .00 34 254 306 1680 91 30 e2.5 e.10 e10 .00 .00 .00 .00 .00 34 254 306 1680 91 30 e2.5 e.10 e10 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 e1.0 .00 .00 .00 .00 .00 .00 84 260 333 1930 567 MAX 132 44 10 8.0 .00 .00 .00 .00 .00 .00 84 260 330 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 .00 84 260 330 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 .00 .00 84 260 330 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 .00 .00 .00								e.00			290 274		
11	9	32	1.1	.00	e.10	.00	.00	.00	.01	178	281	316	122
12													
13 36 e.90 .00 e.00 .00 .00 .00 .78 163 280 333 212 14 68 e.80 .00 e.10 .00 .00 .00 1.7 226 292 335 158 15 19 e.80 .00 e.10 .00 .00 .00 2.8 243 278 324 134 16 21 e.70 .00 e.20 .00 .00 e.00 6.0 234 279 317 150 17 10 e.70 .00 e.50 .00 .00 e.00 7.1 232 293 310 234 18 7.3 e.60 .00 el.0 .00 .00 .00 7.9 238 287 325 212 19 6.0 2.6 .00 el.0 .00 .00 .00 11 264 287 325 212 21 4.4 44 .00 .13 .00 .00 .00 14 244 268 346 158 21 4.4 44 .00 .13 .00 .00 .00 18 229 264 359 199 22 4.1 3.4 .00 .00 .00 .00 .00 10 326 295 361 229 23 3.9 1.4 .01 .00 .00 .00 .00 10 326 295 361 229 24 3.6 1.1 .33 .00 .00 .00 .00 11 281 313 330 324 25 3.1 .73 1.2 .00 .00 .00 .00 15 292 329 334 112 26 e3.0 e.40 .12 .00 .00 .00 .00 15 292 329 334 189 28 e2.5 e.14 .00 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .00 .00 .00 .00 30 278 298 1490 57 31 22 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 .00 .00 .00 .00 .00 30 278 298 1490 57 31 22 .10 .00 .00 .00 .00 .00 30 278 298 1490 57 TOTAL 694 9 83 87 5.76 12.04 .00 .00 .00 .00 30 278 298 1490 57 TOTAL 694 9 83 87 5.76 12.04 .00 .00 .00 .00 30 278 298 1490 57 TOTAL 694 9 83 87 5.76 2.04 .00 .00 .00 .00 .00 30 278 298 1490 57 TO													
14 68 e.80 .00 .00 .00 .00 .00 .00 .00 1.7 226 292 335 158 15 19 e.80 .00 e.10 .00 .00 .00 .00 1.7 226 292 335 158 16 21 e.70 .00 e.20 .00 .00 e.00 6.0 234 279 317 150 17 10 e.70 .00 e.50 .00 .00 e.00 7.1 232 293 310 234 18 7.3 e.60 .00 el.0 .00 .00 .00 7.9 238 287 325 212 19 6.0 2.6 .00 e8.0 .00 .00 .00 .00 11 264 287 323 186 20 4.8 10 .00 .00 1.0 .00 .00 .00 14 244 268 346 158 21 4.4 44 .00 .01 3.00 .00 .00 .00 14 244 268 346 158 21 4.4 44 .00 .03 .00 .00 .00 .00 14 229 264 359 199 22 4.1 3.4 .00 .00 .00 .00 .00 14 223 276 341 147 23 3.9 1.4 .01 .00 .00 .00 .00 .00 14 263 276 341 147 23 3.9 1.4 .01 .00 .00 .00 .00 .00 11 281 313 330 324 25 3.1 .73 1.2 .00 .00 .00 .00 11 281 313 330 324 25 3.1 .73 1.2 .00 .00 .00 .00 13 293 333 322 156 26 e3.0 e.40 .12 .00 .00 .00 .00 .00 13 293 333 322 156 26 e3.0 e.20 .00 .00 .00 .00 .00 15 292 329 344 12 27 e3.0 e.20 .00 .00 .00 .00 .00 .00 15 271 329 340 89 28 e2.5 e.10 e10 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e3.0 .00 .00 .00 .00 30 278 298 1490 57 31 2.2 e1.0 .00 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .00 .00 .00 .00 .00 84 264 339 1930 567 MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 84 268 33 1930 567 MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 .00 84 268 33 1930 567 MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 .00 84 268 33 1930 567 MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 .00 84 268 33 1930 567 MIN 2.7 33 .06 .05 .00 .00 .00 .00 .00 .00 .00 BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 MIN 13.1 2.80 .51 3.39 .000 .000 .000 .00 .00 .00 .00 .00 .00								.00	.78				
16			e.80	.00	.00	.00	.00	.00	1.7	226	292	335	158
17													
18													
20						.00	.00	.00					
21							.00						
22 4.1 3.4 .00 .00 .00 .00 .00 14 263 276 341 147 23 3.9 1.4 .01 .00 .00 .00 .00 .00 10 326 295 361 229 24 3.6 1.1 .33 .00 .00 .00 .00 11 281 313 330 324 25 3.1 .73 1.2 .00 .00 .00 .00 11 281 313 330 324 26 e3.0 e.40 .12 .00 .00 .00 .00 15 292 329 334 112 27 e3.0 e.20 .00 .00 .00 .00 .00 15 271 329 340 89 28 e2.5 e.14 .00 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.14 .00 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .0000 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .0000 .00 34 254 306 1680 91 30 e2.5 e.10 e3.0 .0000 .00 34 254 306 1680 91 31 2.2 e1.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 61 302 944 TOTAL 694.9 83.87 15.76 12.04 0.00 0.00 0.00 302.70 6359 8992 14779 5836 MEAN 22.4 2.80 .51 .39 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 .00 84 260 333 1930 567 MIN 2.72 .33 .06 .05 .04 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 57.81 22.83 MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.07 89.3 262 375 494 351 (WY) 1970 1971 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0													
23													199 147
25 3.1 .73 1.2 .00 .00 .00 .00 13 293 333 322 156 26 e3.0 e.40 .12 .00 .00 .00 .00 15 292 329 334 112 27 e3.0 e.20 .00 .00 .00 .00 .00 15 271 329 340 89 28 e2.5 e.14 .00 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .00 .00 .00 .00 30 254 306 1680 91 30 e2.5 e.10 e3.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .00 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .00 .0000 .00 30 278 298 1490 57 31 2.2 2 e1.0 .00 .0000 .00 30 278 298 1490 57 MEAN 22.4 2.80 .51 .39 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 9.76 212 290 477 195 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 84 260 300 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 84 260 300 57 MAC-FT 1380 166 31 24 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 .00 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .09 .00 .00 .00 .00 1.00 1.00 1.00 1.00	23	3.9	1.4	.01	.00	.00	.00	.00	10	326	295	361	229
26 e3.0 e.40 .12 .00 .00 .00 .00 15 292 329 334 112 27 e3.0 e.20 .00 .00 .00 .00 .00 15 271 329 340 89 28 e2.5 e.14 .00 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .0000 .00 30 250 317 1930 88 30 e2.5 e.10 e3.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 61 302 944 TOTAL 694.9 83.87 15.76 12.04 0.00 0.00 0.00 302.70 6359 8992 14779 5836 MEAN 22.4 2.80 .51 .39 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 10 .00 .00 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 10 .00 .00 .00 .00 .00 .00 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.03 22.3 30.5 57.81 22.83 MAX 114 27.4 5.48 2.71 2.00 2.00 2.07 89.3 262 375 494 351 (WY) 1970 1971 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0				.33									
27 e3.0 e.20 .00 .00 .00 .00 .00 .15 271 329 340 89 28 e2.5 e.14 .00 .00 .00 .00 .00 30 250 317 1930 88 29 e2.5 e.10 e10 .00 .00 .00 .00 30 250 317 1930 88 30 e2.5 e.10 e3.0 .00 .00 .00 30 250 317 1930 57 31 2.2 e1.0 .00 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 .00 30 278 298 1490 57 31 2.2 e1.0 .0000 61 302 944 TOTAL 694.9 83.87 15.76 12.04 0.00 0.00 0.00 302.70 6359 8992 14779 5836 MEAN 22.4 2.80 .51 .39 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1971 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0													
28													
30 e2.5 e.10 e3.0 .0000 .00 30 .278 298 1490 57 31 2.2 e1.0 .0000 61 302 944 TOTAL 694.9 83.87 15.76 12.04 0.00 0.00 .000 302.70 6359 8992 14779 5836 MEAN 22.4 2.80 .51 .39 .000 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 10 .00 .00 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 .00 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0		e2.5	e.14										88
31 2.2 e1.0 .0000 61 302 944 TOTAL 694.9 83.87 15.76 12.04 0.00 0.00 0.00 302.70 6359 8992 14779 5836 MEAN 22.4 2.80 .51 .39 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 600 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1971 1970 1970 1970 1970 1981 1967 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0				e10 e3 0							306 298		
MEAN 22.4 2.80 .51 .39 .000 .000 .000 9.76 212 290 477 195 MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 .00 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0													
MAX 132 44 10 8.0 .00 .00 .00 .00 61 326 333 1930 567 MIN 2.2 .10 .00 .00 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 .00 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0													
MIN 2.2 1.0 .00 .00 .00 .00 .00 .00 84 260 300 57 AC-FT 1380 166 31 24 .00 .00 .00 .00 600 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1970 1981 1967 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0													
AC-FT 1380 166 31 24 .00 .00 .00 600 12610 17840 29310 11580 CFSM 2.36 .29 .05 .04 .00 .00 .00 .00 1.03 22.3 30.5 50.1 20.5 IN. 2.72 .33 .06 .05 .00 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .000 .61 31.1 146 176 80.0													
IN. 2.72 .33 .06 .05 .00 .00 .00 1.18 24.87 35.17 57.81 22.83 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .61 31.1 146 176 80.0	AC-FT	1380	166	31	24	.00	.00	.00	600	12610	17840	29310	11580
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# MEAN 36.2 7.60 2.61 1.50 1.19 .96 1.20 20.0 135 293 345 198 MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1970 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .61 31.1 146 176 80.0													
MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1971 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .61 31.1 146 176 80.0		2.72											22.03
MAX 114 27.4 5.48 2.71 2.00 2.00 2.27 89.3 262 375 494 351 (WY) 1970 1971 1970 1970 1970 1970 1981 1967 1967 1967 1981 1974 MIN 13.1 2.80 .51 .39 .000 .000 .000 .61 31.1 146 176 80.0	MEAN	36.2	7.60	2.61	1.50	1.19	.96	1.20	20.0	135		345	198
MIN 13.1 2.80 .51 .39 .000 .000 .000 .61 31.1 146 176 80.0				5.48	2.71		2.00	2.27	89.3	262			351

[#] See Period of Record; partial years used in monthly statistics

e Estimated

15236900 WOLVERINE CREEK NEAR LAWING--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR	WATER YEARS 1967 - 2001#
ANNUAL TOTAL	37075.27	
ANNUAL MEAN	102	89.2
HIGHEST ANNUAL MEAN		123 1967
LOWEST ANNUAL MEAN		66.6 1970
HIGHEST DAILY MEAN	1930 Aug 28	1930 Aug 28 2001
LOWEST DAILY MEAN	a.00 Dec 2	a.00 Dec 2 2000
ANNUAL SEVEN-DAY MINIMUM	.00 Dec 2	.00 Dec 2 2000
MAXIMUM PEAK FLOW	b4160 Aug 28	b4160 Aug 28 2001
MAXIMUM PEAK STAGE	5.27 Aug 28	c6.28 Aug 21 1981
ANNUAL RUNOFF (AC-FT)	73540	64590
ANNUAL RUNOFF (CFSM)	10.7	9.37
ANNUAL RUNOFF (INCHES)	145.03	127.37
10 PERCENT EXCEEDS	304	312
50 PERCENT EXCEEDS	1.4	6.0
90 PERCENT EXCEEDS	.00	1.0

[#] See Period of Record; partial years used in monthly statistics
a No flow most days during winter
b From rating curve extended above 1,290 ft³/s
c From floodmarks, date approximate: flow over dense snow

15237730 GROUSE CREEK AT GROUSE LAKE OUTLET NEAR SEWARD

LOCATION.--Lat $60^{\circ}11'54''$, long $149^{\circ}22'24''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 12, T. 1 N., R. 1 W. (Seward A-7 NE quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on right bank, 200 ft downstream from Grouse Lake outlet, 0.2 mi upstream from Seward Highway, 7 mi north of Seward.

DRAINAGE AREA.--6.22 mi².

PERIOD OF RECORD. -- June 1997 to present.

GAGE.--Water stage recorder and crest-stage gage. Elevation of gage is 250 ft above sea level from topographic map.

REMARKS.--No estimated daily discharges. Records good. Rain gage recorder at station. GOES satellite telemetry and phone modem at station.

	DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	7.7 7.3 7.2 7.1 8.1	13 12 11 11	27 19 19 18 34	55 45 38 33 25	18 16 15 15	14 12 11 11	9.3 9.3 9.8 11 9.7	35 33 31 26 21	78 81 84 78 69	31 28 25 24 28	11 10 10 10 9.9	33 26 21 19 19
6 7 8 9 10	10 14 16 13 12	10 9.7 9.4 10 27	36 31 24 19 18	21 57 58 47 38	14 14 13 12	13 13 12 12	9.3 9.1 9.1 9.1 9.2	19 20 24 28 28	65 57 53 56 58	23 19 18 17 16	9.5 9.2 9.0 8.8 8.6	16 16 14 13
11 12 13 14 15	11 12 11 34 26	49 35 31 34 27	17 15 14 13 12	34 33 30 57 173	12 12 11 9.8	13 16 15 15	11 11 11 10	29 31 33 36 41	59 55 51 50 51	16 15 15 15 14	8.5 8.2 8.0 7.9 7.9	12 13 25 34 24
16 17 18 19 20	32 31 23 18 16	27 32 49 93 108	11 11 13 12 14	88 74 144 205 100	10 10 9.5 9.7 9.4	15 14 13 12 12	11 12 12 12 13	45 47 49 51 58	53 53 49 45 43	14 13 12 15 30	8.3 8.5 10 9.9	19 18 17 18 16
21 22 23 24 25	15 16 16 14 32	97 94 63 54 46	18 14 13 13	70 63 55 47 41	9.1 8.9 8.2 8.3 9.1	12 11 11 11	14 15 16 16	59 57 55 55 55	41 41 44 44	18 17 15 14	14 12 11 10 9.9	14 13 21 52 40
26 27 28 29 30 31	30 22 18 16 15	39 33 35 39 33	32 34 34 75 97 76	38 34 29 24 21 20	9.9 19 17 	11 10 9.9 10	21 25 32 35 36 	53 52 60 70 72 75	41 40 39 37 34	13 12 12 11 11	9.5 9.3 36 49 49	33 27 22 19 17
TOTAL MEAN MAX MIN AC-FT CFSM IN.	524.4 16.9 34 7.1 1040 2.72 3.14	1141.1 38.0 108 9.4 2260 6.12 6.82	798 25.7 97 11 1580 4.14 4.77	1797 58.0 205 20 3560 9.32 10.75	336.9 12.0 19 8.2 668 1.93 2.01	379.9 12.3 16 9.9 754 1.97 2.27	436.9 14.6 36 9.1 867 2.34 2.61	1348 43.5 75 19 2670 6.99 8.06	1590 53.0 84 34 3150 8.52 9.51	536 17.3 31 11 1060 2.78 3.21	441.9 14.3 49 7.9 877 2.29 2.64	644 21.5 52 12 1280 3.45 3.85
		STATISTIC	S OF MONTH	ILY MEAN I	DATA FOR V	WATER YE	ARS 1997 -	2001, BY	WATER Y	EAR (WY)#		
MEAN MAX (WY) MIN (WY)	19.4 25.7 2000 11.8 1998	24.9 38.0 2001 12.4 2000	17.0 25.7 2001 8.89 1999	20.1 58.0 2001 5.23 1998	8.67 12.0 2001 3.34 1999	9.57 15.6 1998 2.69 1999	20.6 38.6 1998 7.65 1999	53.5 67.9 1998 43.5 2001	46.2 70.7 1998 12.6 1997	12.7 19.2 1998 6.11 1997	8.48 14.3 2001 6.04 1999	20.8 35.3 1997 6.66 2000
SUMMARY	STATIST	rics	FOR 20	000 CALENI	DAR YEAR	F	OR 2001 WAT	ER YEAR		WATER YEA	RS 1997	- 2001#
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM INSTANT ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN T ANNUAL ANNUAL M T DAILY ME SEVEN-DA M PEAK FI M PEAK ST TANEOUS I RUNOFF (IEAN IEAN EAN EAN IY MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES) EEDS			Nov 20 Sep 9 Sep 4		9974.1 27.3 205 7.1 8.2 269 7.32 6.9 19780 4.39 59.65 55 17 9.7	Oct 4 Aug 11 Jan 19 Jan 19 Feb 23		22.4 27.3 16.3 205 a2.1 2.2 269 7.32 b1.5 16230 48.95 56 12	Mar Mar Jan Jan Apr	

See Period of Record, partial year used in monthly statistics Mar. 9 and 10, 1999 From temporary blockage of channel upstream from gage

SOUTH-CENTRAL ALASKA

15238600 SPRUCE CREEK NEAR SEWARD

LOCATION.--Lat $60^{\circ}04'10''$, long $149^{\circ}27'08''$, in $SW^{1}/_{4}$ SE $^{1}/_{4}$ sec. 21, T. 1 S., R. 1 W. (Seward A-7 quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on left bank 0.7 mi upstream from mouth at Resurrection Bay and 2.4 mi south of Seward.

DRAINAGE AREA. -- 9.26 mi².

PERIOD OF RECORD.--September 1967 to September 1979, annual maximum, water years 1980-90. October 1990 to current

REVISED RECORDS.--WDR AK-76-1: 1966-67(M), 1970(M), 1972(M). WDR AK-77-1: 1969(M).

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 75 ft above sea level, from topographic map.

REMARKS.--Records good, except January 8 to March 1 and April 25 to June 5, which are fair, and estimated daily discharges and discharges below $7.0~{\rm ft}^3/{\rm s}$, which are poor. Precipitation gage at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 21, 1966, reached a stage of 10.1 ft, from floodmarks; discharge, 3,090 $\,\mathrm{ft}^3/\mathrm{s}$, by slope-area measurement.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 1,000 ft3/s, and maximum (*):

	Date	Time	Dis	scharge Et ³ /s)	Gage Heig (ft)	ht D	ate	Time	Discharge (ft ³ /s)	Gage I (f		
	Jul 19	20:0	0 1	L,060	6.25	Au	ıg 28	15:30	*1,070	*6.	. 26	
		DISCHAR	GE, CUBIO	C FEET PE	ER SECOND, N	WATER YE MEAN VA		BER 2000 T	O SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	24 22 20 22 38	21 19 18 16 16	31 25 27 25 87	48 31 23 19 16	12 11 9.7 9.2 9.0	17 14 12 10	3.1 2.8 7.7 7.4 6.3	23 21 18 15 13	190 222 240 206 177	323 309 267 222 318	175 195 160 153 149	232 183 147 344 239
6 7 8 9 10	192 195 101 62 48	15 14 14 16 107	55 48 34 27 30	e14 e20 e59 33 19	9.5 9.1 8.7 8.4 7.9	13 11 9.9 10	5.9 5.4 4.9 4.5 4.6	12 11 10 10	182 170 156 190 230	306 274 232 225 227	164 146 125 115 108	134 109 96 80 69
11 12 13 14 15	41 37 50 161 92	132 52 53 53 37	31 29 23 21 19	16 16 19 158 256	7.5 7.2 6.7 6.2 5.9	14 14 12 11	11 9.1 8.7 8.3 8.0	11 12 18 24 31	236 213 207 284 332	283 280 245 227 247	113 149 168 137 126	59 94 287 303 165
16 17 18 19 20	84 68 53 45 37	36 72 68 194 233	18 17 16 29 29	66 61 130 131 50	5.7 5.3 5.0 4.9 5.1	9.9 8.9 8.1 7.2 6.5	7.6 7.0 6.6 6.4 6.7	36 38 41 49 65	346 310 284 242 234	231 251 254 446 655	126 121 148 165 413	123 124 115 106 104
21 22 23 24 25	33 39 37 36 153	154 111 71 56 45	31 23 21 22 27	37 35 28 23 22	5.1 5.1 4.9 4.9 5.5	5.6 e5.0 4.6 4.1 3.7	7.3 8.3 9.2 10	62 60 54 59 65	264 303 469 600 506	347 294 226 203 189	382 296 180 146 168	101 88 290 276 140
26 27 28 29 30 31	53 39 32 28 25 23	36 31 73 72 43	52 44 36 160 121 84	22 22 16 14 13	8.9 30 24 	3.8 3.9 3.6 3.5 e3.5	14 15 19 20 24	58 56 85 102 104 147	633 642 600 501 367	196 197 175 147 145 173	168 166 518 428 470 318	98 79 73 68 62
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1890 61.0 195 20 3750 6.58 7.59	1878 62.6 233 14 3730 6.76 7.54	1242 40.1 160 16 2460 4.33 4.99	1429 46.1 256 12 2830 4.98 5.74	242.4 8.66 30 4.9 481 .93 .97	265.1 8.55 17 3.3 526 .92 1.06	270.8 9.03 24 2.8 537 .97	1321 42.6 147 10 2620 4.60 5.31	9536 318 642 156 18910 34.3 38.31	8114 262 655 145 16090 28.3 32.60	6396 206 518 108 12690 22.3 25.69	4388 146 344 59 8700 15.8 17.63
	S	STATISTICS	S OF MONT	HLY MEAN	DATA FOR W	ATER YE.	ARS 1967	- 2001, E	BY WATER YE	AR (WY)#		
MEAN MAX (WY) MIN (WY)	86.2 333 1970 17.0 1997	37.4 129 1977 9.40 1974	16.3 51.1 1970 3.52 1997	10.6 46.1 2001 .65 1974	9.76 46.6 1994 .000 1972	4.06 15.3 1970 .000 1971	12.7 35.6 1969 .12 1972	72.2 135 1993 30.6 1971	203 318 2001 116 1972	193 371 1977 104 1997	150 323 1977 56.9 1969	170 372 1995 48.8 2000

See Period of Record, partial year used in monthly statistics

15238600 SPRUCE CREEK NEAR SEWARD--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1967 - 2001#
ANNUAL TOTAL	28948.8	36972.3	
ANNUAL MEAN	79.1	101	80.0
HIGHEST ANNUAL MEAN			123 1977
LOWEST ANNUAL MEAN			50.6 1996
HIGHEST DAILY MEAN	697 Aug 2	655 Jul 20	1650 Oct 11 1969
LOWEST DAILY MEAN	2.1 Mar 12	2.8 Apr 2	a.00 Mar 1 1969
ANNUAL SEVEN-DAY MINIMUM	2.8 Mar 8	3.4 Mar 27	.00 Mar 1 1969
MAXIMUM PEAK FLOW		1070 Aug 28	b13600 Oct 11 1986
MAXIMUM PEAK STAGE		6.26 Aug 28	c13.96 Oct 11 1986
INSTANTANEOUS LOW FLOW		2.6 Apr 2	.00 Mar 1 1969
ANNUAL RUNOFF (AC-FT)	57420	73330	57970
ANNUAL RUNOFF (CFSM)	8.54	10.9	8.64
ANNUAL RUNOFF (INCHES)	116.30	148.53	117.40
10 PERCENT EXCEEDS	222	275	210
50 PERCENT EXCEEDS	38	43	34
90 PERCENT EXCEEDS	6.0	6.9	1.5

See Period of Record, partial year used in monthly statistics
No flow many days in water years 1969, 1971-76, 1992, 1996, and 1999
Slope-area measurement of the release of water temporarily stored behind a
debris-avalanche dam. Inflow into the ponded area was 5,420 ft³/s, from a
slope-area measurement made about 0.3 mi upstream at a site with a drainage area of 8.98 mi²
From floodmarks

Location of the Bradley Lake Hydroelectric Project area.

15238648 UPPER NUKA RIVER NEAR PARK BOUNDARY NEAR HOMER

LOCATION.--Lat 59°41′04″, long 150°42′12″ (Seldovia C-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020202, on left bank, 0.4 mi downstream from terminus of Nuka Glacier, 4.9 mi southeast of Bradley Lake, and 29 mi east of Homer, Alaska.

DRAINAGE AREA.--Indeterminate. Prior to July 29, 1990, drainage area was about 3 \min^2 and varied according to position of glacier terminus.

PERIOD OF RECORD.--Occasional low-flow measurements, water years 1980-81, prior to shift in glacier terminus; September 1984 to current year. Records prior to July 29, 1990, are not equivalent. Published as "Upper Nuka River near Homer" prior to October 1989. Low-flow records not equivalent prior to November 1987 because most lowflow measurements were made at site 0.5 mi downstream.

REVISED RECORDS. -- WDR AK-89-1: 1985 (M), 1986-88.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,300 ft above sea level, from topographic map.

REMARKS.--Records fair except estimated daily discharges, which are poor. Water is diverted, 300 ft upstream from gage, into Bradley River drainage since July 29, 1990. Precipitation gage and air temperature recorder at station; daily values of precipitation and air temperature are available from the computer files of the Alaska District. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JIIN JUL AUG SEP 6.6 e.00 .00 e.00 e.00 e7.0 3.7 6.9 4.1 e1.6 e.10e.003.7 6.5 e.00 e.00 e6.0 6.4 e1.4 e.10 e.00 .00 e.00 3.8 3 6.3 3.9 e1.2 e.00 e.00 e.00 .00 e.00 e.10 e5.0 3.8 6.2 6.8 6.7 6.3 3.8 e1.0e.00e.00e.00.00 e.00e.10e5.05 3.7 7.0 3.5 e1.0 e.00 e.00 e.00 .00 e.00 e.10 e8.0 6 7.5 e.00 e.00 e.00 . 00 e.00 e6.0 3.4 e.80 e.10 3.8 6.3 5.9 7.6 3.3 e.70 e.00 e.00 e.00 .00 e.00 e6.0 3.7 e.10 .00 8 7 2 3 0 e.60 e.00 e.00 e.00 e.00 e.10 e5.0 3.7 5.2 6.9 4.6 e.50e.00 .00 e.00 4.4 e.00e.00e.10e5.03.7 10 6.7 8.0 e.40 e.00 e.00 e.00 e.00 e.10 4.3 e6.0 3.9 11 6.5 7.0 e.40 e.00 e.00 e.00 .00 e.00 e.10 4.1 6.2 5.0 e.30 e.00 e.00 e.00 e.00 e.20 6.4 6.9 13 5 0 e.30 e.00 e.00 e.00 e.00 e.00 e.20 e5 0 4 9 e.00 7.6 4.6 e.30 e.20 e.00 e.00 e.00 e.20 e6.0 5.2 14 7.0 e.20 e.00 e.00 e.00 16 7.0 3.9 e.20 e.30 e.00 e.00 e.00 e.00 e.40 e5.0 6.0 5.9 e.20 e.00 e.00 e.20 e5.0 5.7 17 6.6 5.2 e.00 e.00 e.50 18 6.1 6.5 e.10 e.20 e.00 e.00 e.00 e.00 e.70 e10 7.1 5.0 7.8 e.00 e.00 e200 4.9 e.10 e.20 e.00 e.00 e.90 19 20 3.2 9.2 e.00 e.00 e1.2 8.9 5.3 e.10 e.10 e.00 e.00 e40 21 2.7 7.8 e.10 e.10 e.00 e.00 e.00 e.00 e1.6 4.5 8.4 6.5 22 2.9 6.7 e.00 e.10 e.00 e.00 e.00 .00 e2.1 e3.0 4.4 7.9 5.9 23 5.0 .00 4.3 7.1 6.4 e.00 e.00 e.00 e.00 e.00 e.00 e.00 2.9 e.00 e.00 e.00 e.00 e4.0 4.0 6.9 25 6.4 3.2 e.00 e.00 e.00 e.00 e.00 e5.5 3.9 6.8 5.5 e.00 e.00 e.00 e7.0 26 4.6 3.0 e.00 e.00 e.00 e.00 3.9 6.6 27 3.9 7.3 e2.6 e2.4 e.00 e.00 e.00 e.00 e.00 e.00 e10 e15 3.8 6 5 3.8 28 e.00 8.0 e.00 e.00 e.00 e.00 e.00 e2.2 e.40 e.00 e.00 e.00 e.00 e10 3.8 8.1 3.6 e2.0 e.30 e.00 e.00 30 5.6 ___ 0.0 e.00 e8.0 3.7 8 1 3.2 7.6 31 5.4 e.20 e.00e.00 e.00 0 00 TOTAL. 181 8 137 4 12 40 1 90 0 0 0 0 00 0 0 0 71 70 389 8 179 8 165 1 5.86 4.58 .061 .000 .000 .000 .000 12.6 5.50 MEAN .40 2.39 5.80 7.6 9.2 1.6 .00 .00 .00 .00 200 6.9 MAX .30 8.9 2.7 2.0 MTN .00 .00 .00 .00 .00 .00 .00 3.7 3.2 273 3.8 142 327 AC-FT 361 25 .00 .00 .00 .00 357 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1991 - 2001. BY WATER YEAR (WY)# MEAN 2.98 1.61 .12 .035 .14 .000 .003 .69 37.3 17.6 10.4 XAM 5.86 6.45 .83 .16 1.56 .000 .015 2.73 209 272 53.1 31.9 1998 2000 1995 1994 (WY) 2001 1991 1991 1996 1999 1999 1998 1998 MIN .000 .000 .000 .000 .000 .000 .000 .000 1.06

1991

1991

1991

1992

1998

1992

1991

1991

1991

1992

1992

1991

(WY)

[#] See Period of Record and Remarks. Not adjusted to account for changes in drainage area

e Estimated

15238648 UPPER NUKA RIVER NEAR PARK BOUNDARY NEAR HOMER--Continued

	STATISTICS	OF MONT	THLY MEAN	DATA FOR	WATER Y	YEARS 1991 -	- 2001, B	Y WATER	YEAR (WY)#		
MEAN 2.98 MAX 5.86 (WY) 2001 MIN .000 (WY) 1992	1.61 6.45 1998 .000 1992	.12 .83 2000 .000 1991	.035 .16 1995 .000 1991	.14 1.56 1994 .000 1991	.000 .000 1991 .000 1991	.003 .015 1991 .000 1992	.69 2.73 1996 .000 1998	27.5 209 1999 1.06 1992	37.3 272 1999 2.96 1991	17.6 53.1 1998 .97 1991	10.4 31.9 1998 1.72 1991
SUMMARY STATIS	STICS	FOR 2	000 CALEN	DAR YEAR		FOR 2001 WAS	TER YEAR		WATER YEA	RS 1991	- 2001#
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL	_ MEAN		1189.60 3.25			1139.90 3.12			8.24 a45.6		1999
LOWEST ANNUAL HIGHEST DAILY LOWEST DAILY M ANNUAL SEVEN-D	MEAN IEAN		17 b.00			e200 c.00	Jul 19 Dec 22 Dec 22		1.09 335 d.00 .00	Jul Nov Nov	1991 4 1999 3 1990 3 1990
MAXIMUM PEAK F MAXIMUM PEAK S ANNUAL RUNOFF	LOW TAGE		2360	oun 1		2260	DCC 22		451 4.30 5970	Jul Jul	4 1999 4 1999
10 PERCENT EXC 50 PERCENT EXC 90 PERCENT EXC	CEEDS		7.5 1.6 .00			6.9 .30 .00			11 .10 .00		

PRIOR TO REGULATION AND DIVERSION OF NUKA RIVER

		STATISTICS	OF	MONTHLY MEAN	DATA	FOR	WATER	YEARS 19	85 - 1989,	BY WATER	YEAR	(WY)#	
	OCT	NOV	DEC	JAN	FEB		MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	47.6	7.01	2.83	1.48	.49		.21	.22	23.8	34.7	141	180	131
MAX (WY)	72.0 1987		9.00 1987		2.24 1985		.87 1985	.72 1985	117 1986	81.2 1989	307 1989	432 1989	321 1989
MIN (WY)	3.84 1989		.000 1989		.000 1988		.000 1988	.000 1988	.016 1987		5.41 1988	12.1 1986	7.08 1988

SUMMARY STATISTICS	WATER YEARS 19	85 - 1989#
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE ANNUAL RUNOFF (AC-FT)	f.00 M .00 M g1630 A	1989 1988 ug 25 1989 ay 6 1987 ay 6 1987 ug 25 1989 ug 25 1989
10 PERCENT EXCEEDS	183	

⁵⁰ PERCENT EXCEEDS 90 PERCENT EXCEEDS .00

See Period of Record and Remarks. Not adjusted to account for changes in drainage area Diversion dam failed Jun. 17, 1999; repaired Sep. 25, 1999
From Jan. 1 to May 11 and Dec. 22 to 28.
From Dec. 22 - 28, Jan. 3 - 13, and Jan. 23 to Jun. 2
No flow most days during winter
Estimated
No flow many days each year since 1987 during winter through Jun.
See Period of Record for remark on low-flow records
From rating curve extended above 380 ft³/s

c d

Discharge Gage height

15238978 BATTLE CREEK DIVERSION ABOVE BRADLEY LAKE NEAR HOMER

PERIOD OF RECORD. -- August 1992 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,350 ft above sea level, from topographic

REMARKS.--Records good except for estimated daily discharges, which are poor. The entire flow of Battle Creek at the station has been diverted into Bradley Lake since October 1991.

EXTREMES FOR CURRENT YEAR.-- Peak discharges greater than base discharge of 50 ${\rm ft}^3/{\rm s}$ and maximums (*).

Discharge Gage Height

	Date	Time	Discl (ft	narge ³ /s)	Gage Heigh (ft)	t	Date		Time	Discharge (ft ³ /s)		height (ft)
	Jul. 19 Aug. 28	1645 1500		32 51	*6.63 6.10		Sep.	23	1830	50	6	.08
		DISCH	ARGE, CUB	IC FEET	PER SECOND,		YEAR OCTOB	ER 2000	TO SEPTEM	MBER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	.54 .51 .39 .51	.08 .04 .02 .00	.05 .00 .00 .00 e.05	.17 .02 .00 .00	.00	.00 .00 .00 .00	.00	e.02 .01 .00 .00	3.7 4.5 7.4 6.3 5.3	21 18 17 17 18	11 12 13 12 10	8.9 7.0 6.3 13
6 7 8 9 10	8.7 9.8 4.5 2.9	.00 .00 .00 .06 2.9	e.02 e.01 e.01 .00	.00 .95 .59 .11	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00	5.3 5.1 5.7 7.7	19 17 15 16 17	9.6 11 17 15 12	7.0 5.2 4.0 3.0 2.5
11 12 13 14 15	1.8 1.6 6.4 14 4.1	2.3 .84 1.3 1.2 .45	.00 .00 .00 .00	.00 .00 .00 e.02 e.02	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.01 .09 .16 .25	13 14 13 15	27 26 17 13 23	8.5 9.7 11 20 25	2.1 4.5 18 15 7.9
16 17 18 19 20	3.1 2.3 1.7 1.3	.35 .31 .34 2.8 7.6	.00 .00 .00 e.01 e.01	e.05 e.05 e.04 e.03 e.02	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.59 .77 .74 .78 1.0	17 16 16 16 17	24 21 23 57 50	21 19 19 18 28	5.9 6.0 4.6 4.4 6.9
21 22 23 24 25	.45 .61 .74 .74	4.6 2.1 1.0 .61 .32	e.02 .00 .00 e.02 e.02	e.01 e.01 e.00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.00 .00 .00 .00	.99 .95 1.0 1.1	18 22 24 25 23	32 22 16 13 11	12 9.8 8.7 11 7.6	17 7.0 22 28 11
26 27 28 29 30 31	1.7 .90 .49 .32 .27	.10 .00 .51 .77 .28	e.02 e.03 .03 e1.0 e5.0	.00 .00 .00 .00	.00 .00 .00 	.00 .00 .00 .00	.00 .00 .00 .00	1.0 1.0 1.5 2.6 3.6 2.9	28 30 30 36 30 	10 11 10 9.7 15	5.9 5.9 23 19 27 18	7.2 5.3 4.3 3.7 2.9
TOTAL MEAN MAX MIN AC-FT CFSM IN.	79.65 2.57 14 .18 158 2.70 3.12	30.88 1.03 7.6 .00 61 1.08 1.21	7.00 .23 5.0 .00 14 .24	2.09 .067 .95 .00 4.1 .07	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00	0.01 .000 .01 .00 .02 .00	22.59 .73 3.6 .00 45 .77	480.0 16.0 36 3.7 952 16.8 18.80	621.7 20.1 57 9.7 1230 21.1 24.34	449.7 14.5 28 5.9 892 15.3 17.61	252.6 8.42 28 2.1 501 8.86 9.89
		STATISTI	CS OF MON	THLY ME	AN DATA FOR	WATER	YEARS 1992	- 2001,	BY WATER	YEAR (WY)#	ŧ	
MEAN MAX (WY) MIN (WY)	2.57 5.84 1994 .21 1997	1.06 2.83 1998 .009 2000	.19 1.22 2000 .000 1996	.041 .19 1995 .000 1996	.13 .48 1994 .000 1996	.002 .015 1998 .000 1994	.14 .67 1997 .000 1999	2.52 7.67 1993 .21 1999	14.2 23.5 1998 5.55 1996	11.5 20.1 2001 1.83 1996	6.09 14.5 2001 .094 1996	7.04 16.9 1995 .91 1992

See Period of Record and Remarks, partial years used in monthly statistics

Estimated

15238978 BATTLE CREEK DIVERSION ABOVE BRADLEY LAKE NEAR HOMER--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1992 - 2001#
ANNUAL TOTAL	1254.34	1946.22	
ANNUAL MEAN	3.43	5.33	3.86
HIGHEST ANNUAL MEAN			5.34 1998
LOWEST ANNUAL MEAN			1.23 1996
HIGHEST DAILY MEAN	41 Aug 2	57 Jul 19	104 Sep 20 1995
LOWEST DAILY MEAN	a.00 Jan 1	a.00 Nov 4	b.00 Jun 3 1992
ANNUAL SEVEN-DAY MINIMUM	.00 Jan 1	.00 Dec 9	.00 Jan 11 1993
MAXIMUM PEAK FLOW		82 Jul 19	134 Sep 20 1995
MAXIMUM PEAK STAGE		6.63 Jul 19	7.32 Sep 20 1995
MAXIMUM PEAK STAGE			c8.09 May 20 1999
ANNUAL RUNOFF (AC-FT)	2490	3860	2800
ANNUAL RUNOFF (CFSM)	3.61	5.61	4.06
ANNUAL RUNOFF (INCHES)	49.12	76.21	55.19
10 PERCENT EXCEEDS	15	18	13
50 PERCENT EXCEEDS	.26	.45	.34
90 PERCENT EXCEEDS	.00	.00	.00

See Period of Record and Remarks, partial years used in monthly statistics No flow many days during the winter No flow many days most winters, and Jun. 3, 1992 (observation), Aug. 4, Aug. 5, Aug. 9, and Aug. 14 to Sept. 11, 1996 Backwater from ice jam a b

15238990 UPPER BRADLEY RIVER NEAR NUKA GLACIER NEAR HOMER

LOCATION.--Lat 59°42'02", long 150°42'09", (Seldovia C-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on left bank 1.0 mi downstream from Nuka Glacier terminus, 2.7 mi upstream from confluence with Kachemak Creek, 3.7 mi southeast of Bradley Lake, and 29 mi east of Homer. Prior to July 22, 1991 at site 0.2 mi downstream.

DRAINAGE AREA.--Indeterminate. Prior to July 29, 1990, drainage area was about 10 mi^2 and varied according to position of glacier terminus.

PERIOD OF RECORD.--October 1979 to current year. Prior to October 1989, published as Upper Bradley River near Homer.

REVISED RECORDS.--WDR AK-86-1: 1980-85, WRD AK-96-1: 1991-95

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 1,250 ft above sea level, from topographic map. Prior to July 22, 1991 at site 0.2 mi downstream at different datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Flow diverted from Upper Nuka River into Upper Bradley River drainage since July 29, 1990. Air temperature recorder at station, daily values of air temperature available from the computer files of the Alaska District. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	48	e17	e12	e10	e1.8	e.00	e.00	e.00	e70	758	514	509
2	40	17	e11	e8.0	e1.7	e.00	e.00	e.00	e100	743	537	444
3 4	32 48	17 e16	e11 e10	e6.5 e5.5	e1.6 e1.5	e.00 e.00	e.00 e.00	e.00 e.00	e130 e130	711 671	496 468	396 535
5	129	16	e10 e10	e5.5 e4.6	e1.5 e1.0	e.00	e.00	e.00	e110	780	480	517
3	127		010	01.0	01.0	0.00	2.00	2.00	0110	, 00	100	51,
6	249	e15	e9.0	e4.6	e1.0	e.00	e.00	e.00	e100	901	489	358
7	261	15	e8.0	e4.6	e.50	e.00	e.00	e.00	e90	837	457	283
8	132	15	e7.5	e3.8	e.50	e.00	e.00	e.00	e100	768	451	225
9 10	68 47	33 88	e6.5 e6.0	e3.4 e2.9	e.00 e.00	e.00 e.00	e.00 e.00	e.00 e.00	e120 e140	755 745	438 427	180 161
10	4 /	00	e0.0	62.9	e.00	e.00	e.00	e.00	6140	745	427	101
11	37	46	e5.5	e2.5	e.00	e.00	e.00	e.00	e150	827	456	136
12	33	26	e5.0	e2.2	e.00	e.00	e.00	e.00	e170	874	544	295
13	72	30	e4.6	e2.0	e.00	e.00	e.00	e.00	e180	803	588	528
14	148	27	e4.2	e8.0	e.00	e.00	e.00	e.00	e200	762	564	468
15	74	22	e3.8	e10	e.00	e.00	e.00	e.50	e220	825	592	376
16	68	21	e3.6	e6.5	e.00	e.00	e.00	e.50	e250	851	580	314
17	43	20	e3.2	e6.0	e.00	e.00	e.00	e1.0	e290	893	569	329
18	33	22	e3.0	e8.0	e.00	e.00	e.00	e1.5	e320	915	673	286
19	28	90	e2.8	e6.5	e.00	e.00	e.00	e2.0	e360	1330	723	265
20	26	167	e2.7	e5.5	e.00	e.00	e.00	e3.0	e420	1160	999	356
21	25	79	e2.5	e4.8	e.00	e.00	e.00	e4.0	452	1060	832	456
22	24	45	e2.4	e4.4	e.00	e.00	e.00	e6.0	500	874	762	312
23	23	27	e2.2	e4.0	e.00	e.00	e.00	e8.0	637	709	543	458
24	31	23	e2.1	e5.0	e.00	e.00	e.00	e12	580	619	478	435
25	66	22	e2.0	e3.4	e.00	e.00	e.00	e18	524	569	444	220
26	28	e19	e1.9	e3.0	e.00	e.00	e.00	e24	706	537	411	171
27	24	e17	e1.8	e2.7	e.00	e.00	e.00	e28	889	520	426	136
28	25	e15	e1.8	e2.5	e.00	e.00	e.00	e36	1070	492	886	130
29	19	e13	e20	e2.3		e.00	e.00	e42	1010	449	995	128
30	19	e12	e17	e2.1		e.00	e.00	e44	885	450	975	103
31	e18		e12	e1.9		e.00		e50		480	686	
TOTAL	1918	992	195.1	147.2	9.60	0.00	0.00	280.50	10903	23668	18483	9510
MEAN	61.9	33.1	6.29	4.75	.34	.000	.000	9.05	363	763	596	317
MAX	261	167	20	10	1.8	.00	.00	50	1070	1330	999	535
MIN	18	12	1.8	1.9	.00	.00	.00	.00	70	449	411	103
AC-FT	3800	1970	387	292	19	.00	.00	556	21630	46950	36660	18860
		STATISTI	CS OF MON	THLY MEAN	DATA FOR	WATER	YEARS 1991	- 2001,	BY WATER	YEAR (WY)	#	
MEAN	72.1	15.6	2.78	.56	.42	.000	.078	20.8	220	407	445	357
MAX	213	38.4	19.4	4.75	4.35	.000	.55	93.6	363	763	597	851
(WY)	1994	1998	2000	2001	1994	1991	1993	1993	2001	2001	1993	1995
MIN	12.9	2.39	.000	.000	.000	.000	.000	.008	94.4	106	293	117
(WY)	1997	2000	1995	1991	1991	1991	1992	1998	1999	1999	1998	1992

[#] See Period of Record and Remarks. Not adjusted to account for changes in drainage area

e Estimated

15238990 UPPER BRADLEY RIVER NEAR NUKA GLACIER NEAR HOMER--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1991 - 2001#
ANNUAL TOTAL	33915.30	66106.40	
ANNUAL MEAN	92.7	181	129
HIGHEST ANNUAL MEAN			181 2001
LOWEST ANNUAL MEAN			91.1 1998
HIGHEST DAILY MEAN	1010 Aug 3	1330 Jul 19	a3600 Sep 21 1995
LOWEST DAILY MEAN	b.00 Jan 2	c.00 Feb 9	d.00 Dec 5 1990
ANNUAL SEVEN-DAY MINIMUM	.00 Jan 2	.00 Feb 9	.00 Dec 5 1990
MAXIMUM PEAK FLOW		2050 Jul 19	f4100 Sep 20 1995
MAXIMUM PEAK STAGE		13.85 Jul 19	g15.10 Sep 20 1995
ANNUAL RUNOFF (AC-FT)	67270	131100	93510
10 PERCENT EXCEEDS	320	672	420
50 PERCENT EXCEEDS	10	17	5.0
90 PERCENT EXCEEDS	.00	.00	.00

PRIOR TO DIVERSION FROM UPPER NUKA RIVER

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1980 - 1989, BY WATER YEAR (WY)#

	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	106	22.8	10.2	4.67	1.74	1.35	1.29	38.3	161	290	349	292
MAX	279	75.7	54.6	15.1	4.82	6.50	4.67	92.0	270	458	595	673
(WY)	1980	1980	1987	1981	1981	1984	1981	1986	1988	1981	1986	1982
MIN	26.3	2.60	.50	.000	.000	.000	.000	.33	102	149	133	63.1
(WY)	1986	1988	1989	1989	1989	1989	1986	1987	1985	1985	1985	1983

SUMMARY STATISTICS	WATER	YEARS 1980 - 1989 #							
ANNUAL MEAN	107								
HIGHEST ANNUAL MEAN	154	1986							
LOWEST ANNUAL MEAN	49.6	1985							
HIGHEST DAILY MEAN	1890	Aug 27 1986							
LOWEST DAILY MEAN	d.00	Dec 25 1979							
ANNUAL SEVEN-DAY MINIMUM	.00	Dec 25 1979							
INSTANTANEOUS PEAK FLOW	h2530	Oct 10 1986							
INSTANTANEOUS PEAK STAGE	i9.86	Oct 10 1986							
ANNUAL RUNOFF (AC-FT)	77650								
10 PERCENT EXCEEDS	338								
50 PERCENT EXCEEDS	50 PERCENT EXCEEDS 15								
90 PERCENT EXCEEDS	.50								

See Period of Record and Remarks. Not adjusted to account for changes in drainage area Estimated discharge, but may have been higher during period of no gage-height record, Sep. 21 to Sep. 22, 1995 From Jan. 2 to May 2 From Feb. 9 to May 14 No flow in winter most years From rating curve extended above 400 ft³/s on basis of slope-area measurement of peak flow From floodmarks From rating curve extended above 440 ft³/s on basis of slope-area measurement of peak flow Site and datum then in use

15239000 BRADLEY RIVER NEAR HOMER

- LOCATION.--Lat $59^{\circ}45'30''$, long $150^{\circ}51'02''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 8, T. 5 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, about 1,300 ft downstream from Bradley Lake dam, 3.3 mi upstream from confluence with Middle Fork Bradley River, and 26 mi northeast of Homer.
- DRAINAGE AREA.--About 65 mi² since July and August 1990, when additional water was diverted into the basin. Prior drainage area was about 54 mi².
- PERIOD OF RECORD.--July to August 1955, October 1957 to September 1990 (discharge). October 1991 to current year (beginning month reservoir contents and monthly discharges).
- REVISED RECORDS.--WSP 2136: 1960(M), 1965. WDR AK-77-1: 1958, 1961, 1963(M), 1966, 1967, 1970, 1972, 1974, 1976.
- GAGE. -- Nonrecording gage. Datum of gage is 1,054.16 ft above sea level (levels of dam-site survey for Alaska Power Authority). Totalizing flow meters on penstocks to two turbines in Bradley powerhouse. Lake-level sensor. Authority). Totalizing flow meters on penstocks to two turbines in Bradley powerhouse. Lake-level sensor. July 13-22, 1955, non-recording lake gage at site 1 mi upstream and July 23 to August 5, 1955, at site 3 mi upstream at different datum. Prior to November 4, 1980, and April 29 to October 5, 1986, water-stage recorder at site 500 ft upstream at different datum and November 4, 1980 to April 28, 1986, water-stage recorder 1,300 ft upstream at different datum. April 29, 1986 to September 30, 1989, water-stage recorder at present site and datum.
- REMARKS.--Reservoir is formed by an earthen dam with impermeable core and concrete face at the outlet of Bradley Lake. Construction began November 1986 and was completed in April 1991. Total and usable capacities below the spillway crest of 1,180 ft are 547,500 and 284,200 acre-ft, respectively. Reservoir is used for power. Discharge released through turbines is computed using totalizing flow meters; release flow enters Kachemak Bay and is not returned to stream. Spill, dam seepage, and fish-water bypass are measured at Bradley River below Dam (15239001) gage. Reservoir capacity table furnished by the Alaska Energy Authority.
- COOPERATION.--Reservoir elevations and power generation discharge provided by the Homer Electric Association, for the Alaska Energy Authority.
- AVERAGE DISCHARGE.--42 years (water years 1958 to 1989, and 1992 to current year), 453 ft³/s, 328,200 acre-ft/yr. The inflow diversions from Middle Fork Bradley River and Battle Creek into the reservoir are excluded. Flow diverted from Upper Nuka River into Upper Bradley since July 29, 1990 was not measurable and is included in the following tabulations.
- EXTREMES FOR PERIOD OF RECORD.--Maximum contents observed, 549,400 acre-ft, October 1, 1991, elevation 1180.5 ft; minimum contents observed, 246,600 acre-ft, April 23, 1997, elevation 1069.3 ft. Maximum computed discharge, 8,800 ft²/s, October 10, 1986, gage height, 10.90 ft from floodmarks, site and datum then in use. Maximum discharge, September 21-22, 1995 was probably higher, as indicated by extremes for period of record on these dates for other sites in the Bradley River basin; minimum daily, about 9.0 ft³/s, December 7, 1986, result of power tunnel construction at dam site.
- EXTREMES FOR CURRENT YEAR.--Maximum contents observed, 534,500 acre-ft, September 26, elevation 1176.7 ft; minimum contents observed, 316,900 acre-ft, May 15, elevation 1106.9 ft.

BEGINNING OF MONTH RESERVOIR ELEVATION, IN FEET ABOVE SEA LEVEL, AND CONTENTS, IN ACRE FEET WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	ELEVATION	CONTENTS	CHANGE IN CONTENTS
Oct 1	1,135.1	393,100	
Nov 1	1,133.1	386,900	-6,200
Dec 1	1,130.6	379,200	-7,700
Jan 1	1,127.5	369,700	-9,500
Feb 1	1,125.2	362,600	-7,100
Mar 1	1,118.9	346,800	-15,800
Apr 1	1,111.2	327,600	-19,200
May 1	1,108.8	321,600	-6,000
Jun 1	1,109.4	323,100	+1,500
Jul 1	1,126.5	366,600	+43,500
Aug 1	1,150.7	441,500	+74,900
Sep 1	1,173.2	521,400	+79,900
Oct 1	1,175.4	529,400	+8,000
		CAL YR 2000	-37,300
		WTR YR 2001	+136,300

DISCHARGE, IN CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 MEAN VALUES

MONTH	CHANGE IN CONTENTS	POWER GENERATION	BRADLEY RIVER BELOW DAM 15239001	MIDDLE FORK BRADLEY RIVER 15239050	BATTLE CREEK DIVERSION 15238978	BRADLEY RIVER 15239000
OCT	-101	397	37.0	25.2	2.57	305
NOV	-129	403	25.2	33.6	1.03	264
DEC	-154	342	35.1	10.8	0.23	211
JAN	-116	358	33.8	8.47	0.07	268
FEB	-284	344	36.1	5.61	0.00	89.9
MAR	-312	340	36.8	4.93	0.00	59.5
APR	-101	136	35.3	4.42	0.00	65.5
MAY	+24	220	30.7	7.31	0.73	267
JUN	+731	560	0.40	117	16.0	1,160
JUL	+1,220	574	1.53	221	20.1	1,550
AUG	+1,300	582	21.3	204	14.5	1,680
SEP	+134	965	31.5	102	8.42	1,020
CAL YR 2000	-54	505	37.5	44.6	3.43	442
WTR YR 2001	+184	435	27.0	62.5	5.33	579

15239001 BRADLEY RIVER BELOW DAM NEAR HOMER

LOCATION.--Lat $59^{\circ}45'30''$, long $150^{\circ}51'02''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 8, T. 5 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank about 1,300 ft downstream from Bradley Lake Dam, 3.3 mi upstream from Middle Fork Bradley River, and 26 mi northeast of Homer.

DRAINAGE AREA.--About 66 mi 2 since October 1991, when additional water was diverted into the basin. Prior drainage area was about 54 mi 2 .

PERIOD OF RECORD.--October 1989 to current year. Prior to 1990 water year, records are equivalent to "Bradley River near Homer" (station no. 15239000).

GAGE.--Water-stage recorder. Datum of gage is 1,054.16 ft above sea level (levels of dam-site survey for Alaska Power Authority).

REMARKS.--No estimated daily discharges. Records fair. Nuka River and Middle Fork Bradley River were diverted into Bradley Lake, upstream from dam, beginning July 29 and August 7, 1990, respectively. Reservoir began filling April 26, 1991. Water has been diverted out of the basin through the turbines since hydro-power generation began on June 28, 1991. Battle Creek was diverted into reservoir in October 1991. Rain gage and air temperature recorder at station, daily values of precipitation and air temperature available from the computer files of the Alaska District.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 2,450 $\rm ft^3/s$ September 21, 1990, gage height, 7.11 ft; minimum, 0.00 $\rm ft^3/s$, from rating curve extended below 0.18 $\rm ft^3/s$, most likely ponded water, but no measurable flow, June 9 and June 10, 1997.

EXTREMES FOR CURRENT YEAR.--Maximum discharge, 85 ft³/s, August 6, gage height, 3.03 ft; minimum, 0.10 ft³/s, July 13-15.

		DISCHA	ARGE, CUBI	C FEET P), WATER Y LY MEAN V		DBER 2000	TO SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	44	38	25	35	37	36	38	32	.79	.18	5.7	17
2	44	38	38	37	36	37	39	32	.75	.16	4.8	19
3	42	38	39	40	36	40	39	37	.86	.18	4.8	30
3 4	38	38	39	41	36	39	36	48	.65	.18	9.4	21
5	39	37	40	41	37	38	36	55	.56	.22	17	6.0
6	39	37	39	38	36	35	36	57	.53	.21	21	13
7	34	43	39	32	36	35	36	73	.44	.36	21	17
8	39	46	35	31	36	36	36	81	.41	.22	21	27
9	38	46	35	30	36	35	36	81	.45	.15	21	27
10	39	35	34	30	36	35	36	81	.43	.15	22	50
11	38	27	36	35	38	35	36	81	.41	.14	36	64
12	38	22	35	37	36	35	36	72	.39	.14	42	56
13	39	25	35	37	36	35	36	65	.36	.12	29	35
14	34	19	38	40	36	35	36	55	.35	.10	15	13
15	28	17	38	41	36	35	37	36	.38	.13	9.2	26
16	27	22	38	38	36	35	37	11	.38	.14	1.5	29
17	39	24	38	39	35	35	37	4.0	.39	.12	14	43
18	39	27	38	40	36	37	36	3.8	.34	.15	17	38
19	38	22	39	35	36	38	36	3.9	.28	.33	25	34
20	38	12	39	28	36	38	36	4.3	.28	6.4	12	49
21	38	11	38	24	36	38	37	3.9	.27	4.6	14	50
22	38	11	38	17	36	38	34	3.8	.26	.32	16	51
23	38	10	38	30	36	38	33	3.9	.74	.33	27	63
24	39	10	38	31	36	38	32	4.0	.22	.94	30	37
25	41	15	33	31	36	38	32	3.9	.19	.31	45	49
26	39	23	31	37	36	38	32	3.8	.20	1.4	56	47
27	38	23	31	30	36	38	32	3.9	.20	2.6	62	19
28	26	20	30	30	36	38	32	4.3	.19	.21	31	5.3
29	26	10	23	30		38	32	4.7	.21	5.9	11	5.3
30	31	9.8	20	30		38	32	1.9	.17	14	11	5.3
31	38		31	34		38		.72		7.0	9.6	
TOTAL	1146	755.8	1088	1049	1011	1142	1059	951.82	12.08	47.39	661.0	945.9
MEAN	37.0	25.2	35.1	33.8	36.1	36.8	35.3	30.7	.40	1.53	21.3	31.5
MAX	44	46	40	41	38	40	39	81	.86	14	62	64
MIN	26	9.8	20	17	35	35	32	.72	.17	.10	1.5	5.3
AC-FT	2270	1500	2160	2080	2010	2270	2100	1890	24	94	1310	1880

CAL YR 2000 TOTAL 13735.13 MEAN 37.5 MAX 109 MIN .10 AC-FT 27240 WTR YR 2001 TOTAL 9868.99 MEAN 27.0 MAX 81 MIN .10 AC-FT 19580

15239050 MIDDLE FORK BRADLEY RIVER NEAR HOMER

LOCATION.--Lat $59^{\circ}46'42''$, long $150^{\circ}45'15''$, in NW_{4}^{1} NE_{4}^{1} sec.2, T.5 S., R.9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on left bank 6.0 mi upstream from mouth and 27 mi east of Homer.

DRAINAGE AREA.--9.25 mi².

Date

Jun 29

Time

0330

PERIOD OF RECORD.--October 1979 to current year. Published as Bradley River tributary near Homer prior to October 1989.

REVISED RECORDS.-- WDR AK-86-1: 1980(P), 1981-82(M), 1984(M). WRD AK-2000-1: 1995-1997.

Discharge

 (ft^3/s)

368

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 2,300 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Precipitation gage and air temperature recorder at station; daily values of air temperature and precipitation are available from the computer files of the Alaska District.

Date

Aug 20

Discharge

 (ft^3/s)

334

Time

0715

Gage height

8.25

(ft)

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 300 ft^3/s and maximums (*).

Gage Height

(ft)

8.32

	oun 25	0550	5.		0.52		nag 20	0713	331		0.23	
	Jul 19	2045	*5	20	*8.59		Aug 28	1530	431		8.44	
		DISCHA	RGE, CUBI	IC FEET PEI		, WATER LY MEAN		BER 2000 T	O SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAF	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	35 32 30 29 38	e8.5 e8.5 e8.0 e7.5	e24 e23 e20 e18 e16	e9.0 e8.0 7.4 7.4 7.2	e6.0 5.8 5.8 5.9 6.1	5.1 5.1 5.1 5.3 5.4	4.5 4.7 4.7 4.5 4.5	4.3 4.2 4.1 4.0 4.0	28 38 47 46 40	226 209 193 178 188	174 181 173 162 159	179 156 146 178 186
6 7 8 9 10	40 43 39 34 31	e7.0 e7.0 e6.5 e6.5 e10	e16 e14 e12 e11 e9.5	e10 e12 e9.0 7.3 e6.5	6.4 5.8 5.7 5.7	5.2 5.1 5.2 5.1 5.1	4.5 4.4 4.5 4.6 4.6	3.9 3.9 3.8 3.8	39 37 35 41 45	201 194 181 200 203	154 156 159 160 156	134 106 87 75 67
11 12 13 14 15	28 26 31 44 35	e11 e10 e9.0 e8.0 e7.5	e8.5 e8.0 7.4 8.4 8.3	e6.5 e6.0 e6.0 e13 e14	5.9 5.7 5.6 5.5	5.1 5.0 4.9 5.0 5.0	4.5 4.5 4.4 4.4	e3.8 e4.0 e4.2 e4.4 e4.6	48 50 52 60 71	219 216 181 174 193	146 154 171 203 238	61 80 118 127 102
16 17 18 19 20	30 26 23 22 20	e7.0 e6.5 e6.0 e100 e120	7.6 e7.5 e7.5 e7.5	e12 11 13 9.6 8.9	5.6 5.5 5.4 5.4	4.9 4.9 4.9 4.9	4.5 4.5 4.5 4.5 4.6	e4.8 e5.0 e5.5 e6.0 e6.5	89 93 92 93 109	198 197 203 375 460	256 250 266 242 305	88 89 87 88 89
21 22 23 24 25	e19 18 e16 15 e13	e130 e110 e90 e75 e60	e7.0 e7.0 e7.0 7.1 6.8	8.2 7.4 7.4 8.4 8.3	5.3 5.3 5.3 5.2 e5.0	4.8 4.8 4.8 4.8	4.5 4.2 4.2 4.1 4.2	e7.0 e7.5 e8.0 e8.5 e9.0	124 149 174 200 e230	423 322 259 218 197	254 240 200 172 153	100 86 106 139 94
26 27 28 29 30 31	e12 e12 e11 e10 e9.5 e9.0	e50 e44 e38 e25 e24	6.7 e6.5 e7.0 e15 e12 e10	e8.0 6.6 6.4 e6.0 e6.0	e6.0 5.4 5.1 	4.8 4.7 4.6 4.6 4.6 4.6	4.2 4.2 4.2 4.1 4.3	e10 11 14 19 22 22	302 291 321 302 277	181 176 170 159 164 179	133 129 290 312 330 258	73 61 55 50 45
TOTAL MEAN MAX MIN AC-FT CFSM IN.	780.5 25.2 44 9.0 1550 2.72 3.14	1008.0 33.6 130 6.0 2000 3.63 4.05	333.3 10.8 24 6.5 661 1.16 1.34	262.5 8.47 14 6.0 521 .92 1.06	157.1 5.61 6.4 5.0 312 .61	152.9 4.93 5.4 4.6 303 .53	132.5 4.42 4.7 4.1 263 .48 .53	226.6 7.31 22 3.8 449 .79	12.7	6837 221 460 159 13560 23.8 27.50	6336 204 330 129 12570 22.1 25.48	3052 102 186 45 6050 11.0 12.27

e Estimated

15239050 MIDDLE FORK BRADLEY RIVER NEAR HOMER--Continued

	STATISTICS	OF MOI	NTHLY MEAN	DATA FOR	WATER Y	EARS 1980 -	2001, BY	WATER	YEAR (WY)#	
MEAN 43.8 MAX 144 (WY) 1987 MIN 15.6 (WY) 1997	17.1 34.5 1980 5.29 1985	8.54 33.4 1987 4.45 1985	17.0 1981	4.69 9.32 1981 2.86 1991	7.17 1981	4.42 2001	16.3 44.5 1990 5.45 1987	162 1998	161 221 2001 111 1996	145 204 2001 86.9 1996
SUMMARY STATISTI	CS	FOR	2000 CALEN	DAR YEAR	F	OR 2001 WAT	ER YEAR		WATER YEA	RS 1980 - 2001
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL ME HIGHEST DAILY ME LOWEST DAILY ME LOWEST DAILY MEA ANNUAL SEVEN-DAY MAXIMUM PEAK STA MAXIMUM PEAK STA MAXIMUM PEAK STA ANNUAL RUNOFF (A ANNUAL RUNOFF (C ANNUAL RUNOFF (I 10 PERCENT EXCEE 50 PERCENT EXCEE	AN AN N MINIMUM W GE GE C-FT) FSM) NCHES) DS		16340.7 44.6 389 a2.5 2.6 32410 4.83 65.72 133	Aug 3 Mar 28 Mar 27		22801.4 62.5 460 b3.8 3.9 520 8.59 f9.42 45230 6.75 91.70 197	May 5 Jul 19 Jul 19 Jun 25		51.0 63.8 34.6 966 c1.1 1.1 1470 d8.86 g16.16 36950 74.91 153 12	Mar 28 1986 Mar 28 1986 Sep 20 1995 Sep 20 1995

a From Mar. 28 to Apr. 2
b May 8-11
c From Mar. 28 to Apr. 10, 1986
d From recorded range in stage
f Backwater from snow bridge collapse
g Backwater from ice

15239060 MIDDLE FORK BRADLEY RIVER BELOW NORTH FORK BRADLEY RIVER NEAR HOMER

LOCATION.--Lat $59^{\circ}47'54''$, long $150^{\circ}51'48''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 29, T. 4 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on left bank 100 ft upstream from confluence with the main stem Bradley River, 0.2 mi below the mouth of the North Fork Bradley River, 5.5 mi downstream from the Middle Fork Bradley River diversion dam, and 25 mi east of Homer.

DRAINAGE AREA. -- 24.8 mi²

PERIOD OF RECORD. -- August 1996 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 200 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Water from upper Middle Fork Bradley River (15239050) is diverted into Bradley Lake at Middle Fork Bradley River diversion dam, located 5.5 mi upstream. Air temperature recorder at station, daily values of air temperature are available from the computer files of the Alaska District.

		DISCHAR	GE, CUBI	C FEET PER			YEAR OCTOBE	R 2000	TO SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	27 26 26 25 30	33 32 29 27 27	48 e46 e44 44 92	69 53 46 39 36	23 23 22 20 18	e10 e9.5 e9.0 e9.0	e8.0 8.0 15 12	48 40 34 31 29	252 273 320 299 270	245 222 211 188 218	133 137 132 123 116	115 111 102 111 118
6 7 8 9 10	33 46 47 43 40	26 25 25 30 88	86 69 54 47 43	34 114 96 67 49	18 17 e16 16 e15	e12 e11 e11 e10 e11	10 9.7 9.5 9.2	26 25 24 25 28	264 239 217 229 242	240 214 195 186 185	110 114 116 112 107	99 93 82 73 66
11 12 13 14 15	37 36 47 119 93	90 68 84 88 69	40 39 35 33 31	47 42 41 113 288	15 e14 e12 e11 e11	e13 e14 e14 e14 e13	19 18 16 15 16	29 36 48 64 92	253 252 236 230 259	217 206 163 152 188	98 101 110 129 135	60 70 95 111 92
16 17 18 19 20	82 69 57 49 43	63 69 73 143 222	30 28 32 37 38	127 149 217 155 97	12 12 11 12 12	e13 13 13 e11 e10	15 15 16 16 19	111 119 120 128 156	295 304 294 268 255	191 181 196 326 325	133 125 130 115 157	83 78 76 77 71
21 22 23 24 25	37 36 34 37 132	179 152 105 84 67	40 35 34 33 35	76 66 50 39 40	12 11 e10 e10 e11	e9.5 e8.5 e8.5 e8.5	22 30 35 33 32	150 134 133 148 158	271 295 302 304 286	249 197 165 148 139	126 123 108 97 87	77 67 102 204 141
26 27 28 29 30 31	85 66 50 47 39 38	51 47 86 91 67	41 41 38 173 176 98	35 37 32 29 27 25	e12 e11 e11 	e8.5 e8.5 e8.5 8.5 8.3	31 32 36 38 44	149 150 190 269 266 228	298 329 340 342 298	132 137 140 136 138 141	77 72 149 151 160 143	111 94 85 76 66
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1576 50.8 132 25 3130 2.05 2.36	2240 74.7 222 25 4440 3.01 3.36	1660 53.5 176 28 3290 2.16 2.49	2335 75.3 288 25 4630 3.04 3.50	398 14.2 23 10 789 .57 .60	324.5 10.5 14 8.2 644 .42 .49	600.4 20.0 44 8.0 1190 .81	3188 103 269 24 6320 4.15 4.78	8316 277 342 217 16490 11.2 12.47	5971 193 326 132 11840 7.77 8.96	3726 120 160 72 7390 4.85 5.59	2806 93.5 204 60 5570 3.77 4.21
		STATISTICS	OF MON	THLY MEAN	DATA FOR	WATER	YEARS 1996 -	2001,	BY WATER YE	EAR (WY)#		
MEAN MAX (WY) MIN (WY)	47.8 75.4 2000 23.2 1997	51.0 96.3 1998 16.2 2000	20.7 53.5 2001 7.69 1997	19.4 75.3 2001 2.68 1999	11.4 16.7 1998 2.00 1999	9.95 20.7 1998 2.74 1999	23.4 36.4 1998 9.59 1999	110 131 1998 97.0 2000	201 277 2001 103 1997	114 193 2001 45.7 1997	51.6 120 2001 12.5 1996	78.4 116 1997 27.6 2000
SUMMARY	STATIST	ICS	FOR 2	2000 CALENI	DAR YEAR		FOR 2001 WAT	TER YEAR	2	WATER YE	ARS 1996	- 2001#
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL ANNUAL ANNUAL 10 PERC	MEAN ANNUAL II ANNUAL MI DAILY ME SEVEN-DA I PEAK FLO I PEAK ST RUNOFF (A RUNOFF (A RUNOFF (C) RUNOFF (C) RUNOFF (C)	EAN EAN AN Y MINIMUM OW AGE AC-FT) CFSM) INCHES) EDS		20544.7 56.1 285 a3.8 3.9 40750 2.26 30.82 146	Jun 7 Jan 29 Jan 28		33140.9 90.8 342 b8.0 8.3 d432 11.61 65730 3.66 49.71 229	Jun 29 Apr 1 Mar 27 Jul 19 Jul 19	L 7 9	63.0 90.8 44.0 626 c1.0 1.0 d875 13.64 45610 2.54 34.49	Nov Nov	
	ENT EXCE			34 5.5			64 11			31 5.5		

See Period of Record partial years used in monthly statistics
From Jan. 29 to Feb. 1
Apr. 1-2
Feb. 5-12, 1999
From rating curve extended above 50 ft³/s on basis of comparison of instantaneous discharge of Bradley River below Dam (15239001)
and instantaneous discharge of Bradley River near Tidewater (15239070)
Fatinated

Estimated

15239070 BRADLEY RIVER NEAR TIDEWATER NEAR HOMER

LOCATION.--Lat $59^{\circ}48'06''$, long $150^{\circ}52'58''$, in $SE^{1}_{/4}$ $NE^{1}_{/4}$ sec. 30, T. 4 S., R. 9 W. (Seldovia D-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank 0.7 mi upstream from mouth, 0.8 mi downstream from Middle Fork Bradley River, 4.3 mi downstream from Bradley Lake outlet and dam site, and 25 mi east of Homer.

DRAINAGE AREA. -- Indeterminate.

PERIOD OF RECORD. -- May 1983 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 25 ft above sea level, from topographic map.

REMARKS.--Records good, except for estimated daily discharges, which are poor. Flow occasionally affected by high tides. Intermittent regulation during construction at the Bradley River dam site began in November 1986. Flow has been regulated since the reservoir began filling April 26, 1991. (See station 15239001.) Upper Nuka River was diverted into Upper Bradley River on July 29, 1990; flow from about 10 mi² of Middle Fork Bradley River upstream drainage has been seasonally diverted into the Bradley Lake reservoir since August 7, 1990. Battle Creek was diverted into the reservoir in October 1990. Water has been diverted out of the basin through the turbines since hydropower generation began June 28, 1991. Rain gage and air temperature recorder at station; daily values of precipitation and air temperature available from the computer files of the Alaska District.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001
DAILY MEAN VALUES

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e100 e65 e48 e95 e65 e48 e100 e60e50e50 e60 e100 e60 e50 e60 e48 e59 e55 e48 e55 e55 e48 e85 e55 e48 e55 e48 e55 e48 e48 e48 e48 e50 e50 e50 e48 e50 e48 e50 e46 e50 e46 1 / 2 ΩΩ e48 e48 47 TOTAL MEAN 48.8 MAX MIN

70.5

43.9

70.7

93.8

50 5

2001, BY WATER YEAR (WY)#

91.5

51 2

64.6

47.1

41.6

63.6

42.2

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1992 -

94.4

64.0

AC-FT

MEAN

MAX

MIN

(WY)

(WY)

[#] See Period of Record and Remarks

[#] See Period e Estimated

15239070 BRADLEY RIVER NEAR TIDEWATER NEAR HOMER--Continued

SUMMARY STATISTICS	FOR 2000 CALEND	AR YEAR	FOR 2001 WATE	ER YEAR	WATER YEARS	1992 - 2001#
ANNUAL TOTAL	39137		46428			
ANNUAL MEAN	107		127		106	
HIGHEST ANNUAL MEAN					127	2001
LOWEST ANNUAL MEAN					83.8	1996
HIGHEST DAILY MEAN	315	Nov 20	477	Jan 15	954	Sep 21 1995
LOWEST DAILY MEAN	a44	Jan 13	b46	Feb 25	c40	Dec 15 1992
ANNUAL SEVEN-DAY MINIMUM	45	Jan 10	47	Feb 23	40	Jan 28 1999
MAXIMUM PEAK FLOW			749	Jan 15	1320	Nov 9 1997
MAXIMUM PEAK STAGE			6.82	Jan 15	7.59	Nov 9 1997
MAXIMUM PEAK STAGE			d7.11	Mar 11	d8.80	Dec 22 1999
INSTANTANEOUS LOW FLOW					30	Dec 1 1997
ANNUAL RUNOFF (AC-FT)	77630		92090		76750	
10 PERCENT EXCEEDS	172		233		177	
50 PERCENT EXCEEDS	102		112		89	
90 PERCENT EXCEEDS	47		50		48	

PRIOR TO REGULATION AND DIVERSION OF BRADLEY DAM

		STAT	ISTICS OF	MONTHLY	MEAN DATA	FOR	WATER YEARS	1983 -	1989, BY	WATER	YEAR (WY)#	
	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
MEAN	808	224	198	145	82.1	74.0	72.8	462	1032	1390	1318	966
MAX	1908	480	503	223	114	163	101	676	1357	1577	1781	1746
(WY)	1987	1984	1987	1985	1985	1984	1989	1987	1988	1988	1988	1989
MIN	363	86.1	78.9	72.5	37.4	27.4	42.5	282	862	1153	907	470
(WY)	1984	1986	1988	1989	1989	1989	1985	1985	1986	1983	1983	1983

SUMMARY STATISTICS	WATER YEARS	1983 - 1989#
ANNUAL MEAN	583	
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	722 475	1987 1985
HIGHEST DAILY MEAN LOWEST DAILY MEAN	10000 19	Oct 11 1986 Dec 7 1986
ANNUAL SEVEN-DAY MINIMUM	22	Mar 26 1989
MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW		Oct 11 1986 Oct 11 1986 Mar 28 1989
ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (IN)	422700 7.11 96.67	
10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	1470 388 52	

[#] See Period of Record and Remarks
a Jan. 13 to 16
b Feb. 25, 26
c Dec. 15 to Dec. 18, 1992; Apr. 20 to Apr. 21, 1995; Jan. 9 and Apr. 22, 1997; Mar. 5, 1998; Jan. 16 to Jan. 20, and Jan. 28 to Feb. 12, 1999
d Backwater from ice and high tide
f From rating curve extended above 2,400 ft³/s on basis of runoff comparisons with nearby stations
g From floodmarks
h Minimum recorded, but may have been less during period of ice effect, Mar. 28 to Mar. 31, 1989

15241600 NINILCHIK RIVER AT NINILCHIK

LOCATION.--Lat $60^{\circ}02'56''$, long $151^{\circ}39'48''$, in $\mathrm{NE}^{1}/_{4}$ sec. 34, T. 1 S., R. 14 W. (Kenai A-5 quad), Kenai Peninsula Borough, Hydrologic Unit 19020301, on right bank 60 ft downstream from bridge, 0.9 mi upstream from mouth, at Ninilchik. DRAINAGE AREA. -- 135 mi² (revised).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--April 1963 to September 1985, October 1998 to September 2001 (discontinued).

GAGE.--Water-stage-recorder. Elevation of gage is 30 ft above sea level, from topographic map. Prior to October 1, 1965, at site 0.2 mi upstream at different datum.

REMARKS.--Records good, except for estimated daily discharges, which are poor.

	necola	DISCHAR		C FEET PER	SECOND,		EAR OCTOBER	2000 TO	SEPTEMBE	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MEAN V	ALUES	MAY	JUN	JUL	AUG	SEP
1	98	e85	e70	e70	e55	e60	e60	556	202	58	72	87
2	94 94	e80 e80	e70 e70	e70 e65	e55 e55	e60 e60	e60 e65	467 372	182 163	57 58	69 67	82 87
4	125	e80	e70	e65	e55	e60	e65	281	144	70	80	88
5	168	e80	e70	e65	e55	e65	e65	214	125	91	91	127
6	174	e80	e70	e65	e55	e65	e70	193	113	110	82	116
7	158	e80	e70	e65	e55	e65	e80	193	115	88	73	102
8	167	e80	e70	e65	e55	e65	e90	215	117	76	69	99
9 10	160 141	e80 e80	e70 e70	e65 e65	e55 e55	e65 e65	e100 e110	238 297	108 97	87 84	69 68	88 82
11	130	e85	e70	e65	e55	e65	e130	338	91	90	66	79
12	127	e85	e70	e65	e55	e65	e150	298	89	105	65	76
13	121	e80	e70	e65	e55	e65	e180	265	91	107	63	78
14	132	e80	e70	e65	e55	e65	e200	253	87	94	62	87
15	148	e80	e70	e65	e55	e65	e250	257	82	87	62	91
16	135	e80	e70	e65	e60	e65	e300	254	78	101	64	84
17 18	125 113	e80 e80	e70 e70	e65	e60	e60	343 371	231 212	75 73	98 82	75 120	85 92
19	106	e85	e70	e65 e60	e60 e60	e60 e60	413	208	73	83	138	133
20	101	e85	e75	e60	e60	e60	409	211	72	139	144	174
21	91	e80	e70	e60	e60	e60	503	215	70	141	126	149
22	e85	e80	e65	e60	e55	e60	585	217	68	169	104	129
23	e85	e80	e70	e60	e55	e60	654	201	66	197	85	109
24	e85	e75	e70	e60	e55	e60	653	196	64	155	81	99
25	e90	e75	e70	e60	e60	e60	665	189	63	125	97	95
26	e85	e75	e70	e60	e65	e65	689	191	61 59	107 89	94	92 89
27 28	e85 e85	e75 e75	e70 e70	e60 e55	e65 e60	e65 e65	668 625	191 198	59 58	79	86 87	89 86
29	e85	e75	e75	e55		e65	567	232	50 57	74	109	88
30	e85	e70	e70	e55		e60	561	292	58	71	103	86
31	e85		e70	e55		e60		257		72	96	
TOTAL	3563	2385	2175	1940	1600	1940	9681	7932	2801	3044	2667	2959
MEAN	115	79.5	70.2	62.6	57.1	62.6	323	256	93.4	98.2	86.0	98.6
MAX	174	85	75	70 55	65 55	65 60	689	556	202	197	144	174
MIN	85	85 70 4730	65	55			60	189	57	57	62	76
AC-FT	7070	4730	4310	3850	3170	3850	19200	15730	5560	6040	5290	5870
CFSM IN.	.88 1.01	.61 .68	.54 .62	.48 .55	. 44 . 45	.48 .55	2.46 2.75	1.95 2.25	.71 .80	.75 .86	.66 .76	.75 .84
IIV.											. 70	.01
		STATISTICS	S OF MONT	HLY MEAN I	DATA FOR V	VATER YE	ARS 1963 -	2001, BY	WATER Y	EAR (WY)#		
MEAN	131	97.4	64.0	55.7	57.1	64.6	160	233	119	87.8	89.0	116
MAX	221	314	98.5	86.0	93.9	108	548	488	238	151	155	204
(WY)	1981	1980	1980	1980	1982	1970	1974	1977	1964	1980	1981	1982
MIN	78.2	41.1	42.0	36.8	36.0	36.9	41.4	81.7	62.2	57.6	47.8	54.6
(WY)	1969	1964	1966	1974	1974	1974	1985	1969	1969	1983	1969	1969
SUMMARY	STATISTI	ICS	FOR 2	000 CALEN	DAR YEAR	F	OR 2001 WAT	ER YEAR		WATER YEAR	RS 1963	- 2001#
ANNUAL '				37709			42687					
ANNUAL I	MEAN ANNUAL N	ME AN		103			117			107 151		1980
	ANNUAL M ANNUAL ME									55.4		1969
	DAILY ME			e650	May 1		689	Apr 26		1220	Apr	24 1974
	DAILY MEA			a50	Mar 26		b55	Apr 26 Jan 28			Jul	24 1974 20 1966
ANNUAL	SEVEN-DAY	MINIMUM		52	Mar 23		55	Jan 28		30 32	Jan	9 1983
	PEAK FLO						767	Jan 28 Apr 23		1240	Apr	24 1974
	PEAK STA						5.52	Apr 23		6.04 c8.69	Apr	24 1974
	PEAK STA RUNOFF (A			74800			84670			c8.69 77210	Apr	14 1969
	RUNOFF (.79			.89			.81		
	RUNOFF ()			10.71			12.12			11.05		
	ENT EXCE			180			213			200		
	ENT EXCE			75			80			76		

60

49

55

90 PERCENT EXCEEDS

See Period of Record, partial years used in monthly statistics From Mar. 26 to 29 From Jan. 28 to Feb. 15, and Feb. 22 to 24 Backwater from ice

SOUTH-CENTRAL ALASKA

15241600 NINILCHIK RIVER AT NINILCHIK--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1952-53, 1955-58, 1963-65, 1967-68, 1975, 1978-79, and 1998 to September 2001 (discontinued).

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: May to September 1963, October 1964 to July 1965, and October 1998 to September 2001. SEDIMENT: October 1963 to July 1965.

INSTRUMENTATION. -- Electronic water temperature recorder set for 15-minute recording interval.

REMARKS.--Records represent water temperature at sensor within 0.5°C . Temperature at the sensor was compared with the average for the river by cross sections on February 5, and June 5. No variation was found within the cross sections. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD. -

WATER TEMPERATURE: Maximum, 20.5°C, July 4, 1999; minimum, 0.0°C on many days during fall and winter periods.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 20.0°C, June 28 ; minimum, 0.0°C on many days during fall and winter.

		SAMPLE						
		LOCA-		PH WATER				OXYGEN,
		TION,		WHOLE				DIS-
		CROSS	SPECIFIC	FIELD	TEMPERA-	BAROMET-	OXYGEN,	SOLVED
		SECTION	CONDUC-	(STAN-	TURE	RIC PRES-	DIS-	(PERCENT
			CONDUC-					•
		(FT FM L	TANCE	DARD	WATER	SURE (MM	SOLVED	SATURA-
		BANK)	(US/CM)	UNITS)	(DEG C)	OF HG)	(MG/L)	TION)
DATE	TIME	(00009)	(00095)	(00400)	(00010)	(00025)	(00300)	(00301)
FEB								
05	1400	4.00	100	7.2	0	772	11.8	79.7
05	1401	11.0	100	7.3	0	772	11.8	79.7
05	1402	18.0	100	7.3	0	772	11.8	79.7
05	1403	25.0	100	7.3	0	772	11.8	79.7
JUN								
05	1630	6.00	68	7.9	12.5	762	11.0	103
05	1631	18.0	68	7.8	12.5	762	10.8	101
05	1632	30.0	68	7.8	12.5	762	10.8	101
05	1633	42.0	68	7.8	12.5	762	10.7	100
05	1634	54.0	68	7.8	12.5	762	10.7	100

DATE		EDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	(CODE)	VISIT (CODE)	INDICA- TOR CODE	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	AIR (DEG C)
OCT													
04 NOV	0900	9	9	42.	0 4.	23 1	L1	10 30	45 10	01	8	37 7	7.4
06	1520	9	9	42.	0 4.	66	30	10 30	45 10	01		39 7	7.7
JAN	1.500		•	4.0	•				45 10	0.7	,		
02 FEB	1630	9	9	42.	0 -	- 6	9	10 30	45 10	01	9	90 7	7.3
05	1420	9	9	30.	0 -	- 5	6	LO 304	15 10	01 -	10	0 7	.3 -1.5
MAR													
05 APR	1450	9	9	28.	0 –	- 6	7	10 30	45 10	01 .	10)8 7	7.0 4.0
17	1220	9	9	53.	0 4.	81 3:	23	10 30	45 10	06		72 7	7.7 5.5
20	1630	9	9	56.				10 30					7.7 8.0
MAY													
08	1440	9	9	60.	5 4.	64 2:	20	10 30	45 10	01	5	57 7	7.7 2.5
JUN 05	1600	9	7	50.	0 4.	30 12	12	10 30	45 10	01 3	0 6	8 7	.8 14.5
JUL	1600	9	,	50.	0 4.	30 1.	. 3	10 30	45 10	01 3	0 6	00 /	.0 14.5
11	1500	9	9	49.	0 4.	12 9	2	10 30	45 10	01	9	94 7	.6 13.0
AUG													
06	1630	9	7					10 30					7.6
22 22	1112	D 9	9 9	 59.			- 80	10 80 10 30				 94 7	.5 17.0
SEP	1240	9	9	59.	0 4.	10 10	12	10 30	#5 IU	00	9	74 /	.5 17.0
05	1610	9	9	50.	0 4.	33 1	57	10 30	45 10	01 1	0 9	95 7	7.5

SOUTH-CENTRAL ALASKA

15241600 NINILCHIK RIVER AT NINILCHIK--Continued

DATE	TEMP- ERATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MMOF HG) (00025)	OXYGEN DIS- OLVED (MG/L) (00300)	OXYGEN, DIS- OLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICARBO NATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/S AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
OCT 04	3.0	770	13.0	96	30	6.77	3.14	6.3	41	1.98	48	39	.6
NOV 06	.0		14.2	98	29	6.58		6.8	41	1.62	48	40	.7
JAN 02	.0		13.6	94	32	7.14	3.40	6.7	41	1.86	50	41	.7
FEB 05	.0	0 772	11.8	80	37	8.56	3.87	7.5	49	2.03	58	48	.6
MAR 05	.0	0 749	11.2	78	38	8.57	4.01	7.4	51	2.24	60	50	.7
APR 17	.5		13.5	94	27	6.13	2.74	4.3	31	1.58	37	30	. 3
20 MAY 08	1.5		13.4	95 97	22 19	5.01 4.46	2.30 1.99	3.3	28 25	1.31	33 30	27 24	.2
JUN 05	12.5		10.8	101	23	5.30		4.6	32	1.40	38	31	.5
JUL 11	12.5		10.8	101	34	7.83		7.1	44	1.63	51	43	. 3
AUG 06	16.0		9.7	97	37	8.56		7.2	48	1.85	56	46	. 4
22 22	12.5		 9.7	 92									
SEP 05	11.5	756	11.0	102	36	8.25	3.73	6.9	42	2.03	51	43	. 4
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLOU- RIDE DIS- SOLVED (MG/L AS F) (00950)	SIL- ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOL- IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOL- IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 04 NOV	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 04 NOV 06 JAN	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.6	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 28.0 30.0	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHORUS TOTAL (MG/L AS P) (00665) .182	PHORUS DIS- SOLVED (MG/L AS P) (00666) .066	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 04 NOV 06	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 04 NOV 06 JAN 02 FEB	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.6 2.8	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 28.0 30.0 31.5	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 75 76	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .083 .081	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .049	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .49 .18	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .19 .16	PHORUS TOTAL (MG/L AS P) (00665) .182 .070	PHORUS DIS- SOLVED (MG/L AS P) (00666) .066 .051	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .058 .045
OCT 04 NOV 06 JAN 02 FEB 05 MAR 05 APR 17	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.6 2.8 2.6 2.6 3.3	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 E.1 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 28.0 30.0 31.5 32.9 32.1 18.6	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 84 81 91 92 103 66	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 75 76 80 88 89 55	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002 .002 .003 .002	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .083 .081 .129 .132 .138	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .049 .037 .039 .057	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .49 .18 .21 .24 .29	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .19 .16 .19 .20 .26	PHORUS TOTAL (MG/L AS P) (00665) .182 .070 .075 .073 .093	PHORUS DIS- SOLVED (MG/L AS P) (00666) .066 .051 .055 .052 .059	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .058 .045 .045 .051
OCT 04 NOV 06 JAN 02 FEB 05 MAR 05 APR 17	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.6 2.8 2.6 2.6 3.3 1.8	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 E.1 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 28.0 30.0 31.5 32.9 32.1 18.6 15.7	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 84 81 91 92 103 66 71	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 75 76 80 88 89 55 47	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002 .002 .003 .002	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .083 .081 .129 .132 .138 .030 .024	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .049 .037 .039 .057 .059	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .49 .18 .21 .24 .29 .41	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .19 .16 .19 .19 .20	PHORUS TOTAL (MG/L AS P) (00665) .182 .070 .075 .073 .093 .186 .309	PHORUS DIS- SOLVED (MG/L AS P) (00666) .066 .051 .055 .052 .059	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .058 .045 .048 .051 .052
OCT 04 NOV 06 JAN 02 FEB 05 MAR 05 APR 17 20 MAY 08 JUN	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.6 2.8 2.6 2.6 3.3 1.8 1.9	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 E.1 <.2 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 28.0 30.0 31.5 32.9 32.1 18.6 15.7	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 84 81 91 92 103 66 71 69	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 75 76 80 88 89 55 47	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002 .002 .003 .002 .001 .003	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .083 .081 .129 .132 .138 .030 .024	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .049 .037 .039 .057 .059 .004 .018	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .49 .18 .21 .24 .29 .41 1.0 .43	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .19 .16 .19 .20 .26 .24 .25	PHORUS TOTAL (MG/L AS P) (00665) .182 .070 .075 .073 .093 .186 .309 .118	PHORUS DIS- SOLVED (MG/L AS P) (00666) .066 .051 .055 .052 .059 .057 .049	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .058 .045 .048 .051 .052 .042 .035
OCT 04 NOV 06 JAN 02 FEB 05 MAR 17 20 MAY 08 JUN 05	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.6 2.8 2.6 2.6 3.3 1.8 1.9 1.9	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 28.0 30.0 31.5 32.9 32.1 18.6 15.7 19.8 20.5	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 84 81 91 92 103 66 71 69 66	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 75 76 80 88 89 55 47 50	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002 .003 .002 .003 .002 .001 .003 .002	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .083 .081 .129 .132 .138 .030 .024 .046 .029	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .049 .037 .039 .057 .059 .004 .004	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .49 .18 .21 .24 .29 .41 1.0 .43 .28	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .19 .16 .19 .20 .26 .24 .25	PHORUS TOTAL (MG/L AS P) (00665) .182 .070 .075 .073 .093 .186 .309 .118	PHORUS DIS- SOLVED (MG/L AS P) (00666) .066 .051 .055 .052 .059 .057 .049	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .058 .045 .045 .051 .052 .042 .035
OCT	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.6 2.8 2.6 2.6 3.3 1.8 1.9 1.9	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 28.0 30.0 31.5 32.9 32.1 18.6 15.7 19.8 20.5 29.0	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 84 81 91 92 103 66 71 69 66	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 75 76 80 88 89 55 47 50 56 77	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002 .003 .002 .003 .002 .001 .003	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .083 .081 .129 .132 .138 .030 .024 .046 .029 .040	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .049 .037 .039 .057 .059 .004 .004 .018 .017	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .49 .18 .21 .24 .29 .41 1.0 .43 .28 .34	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .19 .16 .19 .20 .26 .24 .25 .20 .22	PHORUS TOTAL (MG/L AS P) (00665) .182 .070 .075 .073 .093 .186 .309 .118 .085	PHORUS DIS- SOLVED (MG/L AS P) (00666) .066 .051 .055 .052 .059 .057 .049 .051	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .058 .045 .048 .051 .052 .042 .035 .039
OCT 04 NOV 06 JAN 02 FEB 05 MAR 17 20 MAY 08 JUN 05 JUN 05	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 3.6 2.8 2.6 2.6 3.3 1.8 1.9 1.9	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 28.0 30.0 31.5 32.9 32.1 18.6 15.7 19.8 20.5	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 84 81 91 92 103 66 71 69 66	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 75 76 80 88 89 55 47 50	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .003 .002 .003 .002 .003 .002 .001 .003 .002	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .083 .081 .129 .132 .138 .030 .024 .046 .029	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .049 .037 .039 .057 .059 .004 .004	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .49 .18 .21 .24 .29 .41 1.0 .43 .28	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .19 .16 .19 .20 .26 .24 .25	PHORUS TOTAL (MG/L AS P) (00665) .182 .070 .075 .073 .093 .186 .309 .118	PHORUS DIS- SOLVED (MG/L AS P) (00666) .066 .051 .055 .052 .059 .057 .049	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .058 .045 .045 .051 .052 .042 .035

15241600 NINILCHIK RIVER AT NINILCHIK--Continued

				CAR-		CAR-							
				BON,	CAR-	BON,	NITRO-	CHLOR-A		PERIPH-			
			CAR-	INOR-	BON,	INORG +	GEN,	PERIPH-	PERIPH-	YTON			SEDI-
		MANGA-	BON,	GANIC,	ORGANIC	ORGANIC	PARTIC-	YTON	YTON	BIO-	PHEO-		MENT,
	IRON,	NESE,	ORGANIC	PAR-	PARTIC-	PAR-	ULATE	CHROMO-	BIO-	MASS	PHYTIN	SEDI-	DIS-
	DIS-	DIS-	DIS-	TIC.	ULATE	TIC.	WAT FLT	GRAPHIC	MASS	TOTAL	Α,	MENT,	CHARGE,
	SOLVED	SOLVED	SOLVED	TOTAL	TOTAL	TOTAL	SUSP	FLUO-	ASH	DRY	PERI-	SUS-	SUS-
	(UG/L	(UG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	ROM	WEIGHT	WEIGHT	PHYTON	PENDED	PENDED
	AS FE)	AS MN)	AS C)	AS C)	AS C)	AS C)	AS N)	(MG/M2)	G/SQ M	G/SQ M	(MG/M2)	(MG/L)	(T/DAY)
DATE	(01046)	(01056)	(00681)	(00688)	(00689)	(00694)	(49570)	(70957)	(00572)	(00573)	(62359)	(80154)	(80155)
OCT													
04	650	115	4.9	<.1	1.4	1.4	.110					19	5.7
NOV													
06	480	81.2	3.9	< .1	. 2	. 2	<.022					4	.86
JAN													
02	550	45.2	4.2	< .1	. 2	.3	.037					4	.75
FEB				_								_	
05	610	99.6	3.6	<.1	.2	.2	<.022					6	.91
MAR 05	680	116	3.7	<.1	. 4	. 4	.036					8	1.4
APR	680	110	3.7	<.1	. 4	. 4	.036					8	1.4
17	1250	136	7.4			1.7	.148					70	61
20	1070	172	7.4			9.0	.668					164	182
MAY	1070	1/2	,			5.0	.000					101	102
08	620	42.1	6.5			1.5	.113					33	20
JUN													
05	500	70.0	6.0			1.0	.065					16	5.3
JUL													
11	600	86.5	5.7			1.3	.105					19	4.7
AUG													
06	850	81.1	6.0			E1.4	E.110					19	4.1
22								. 5	38.5	39.4	.3		
22													
SEP						2 0	04:					4.0	1.0
05	780	70.7	6.5			3.0	.244					40	17

DATE	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT	
04	75
NOV	
06	
JAN 02	97
FEB	91
05	89
MAR	
05	78
APR	
17 20	53 60
MAY	60
08	70
JUN	
05	72
JUL	
11	80
AUG 06	80
22	
22	
SEP	
05	74

SOUTH-CENTRAL ALASKA

15241600 NINILCHIK RIVER AT NINILCHIK--Continued

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1 2 3 4 5	3.5 3.0 3.5 4.0 5.0	1.0 2.0 2.5 3.0 3.5	2.0 2.5 3.0 3.5 4.0	.0.0.0.0	.0	.0 .0 .0 .0	.0	.0	.0.0.0.0	. 0 . 0 . 0 . 0	.0	.0 .0 .0 .0
6 7 8 9 10	5.5 5.0 4.5		4.5 5.0 4.5 4.0 2.0	.0	0	. 0 . 0 . 0 . 0	.0.0.0	.0.0.0.0	.0.0.0.0	. 0 . 0 . 0 . 0	.0.0.0	. 0 . 0 . 0 . 0
11 12 13 14 15	3.0 3.0 2.0 3.5 2.5	1.0 1.5 .5 2.0 2.0	2.0 2.0 1.5 2.5 2.5	.0.0.0.0	.0	.0 .0 .0 .0	.0	.0		. 0 . 0 . 0 . 0	. 0 . 0 . 0	. 0 . 0 . 0 . 0
16 17 18 19 20	3.0 3.0 2.5 2.0 1.5	2.0 1.5 1.0 1.0	2.5 2.5 2.0 1.5	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0	.0.0.0	.0.0.0.0	.0.0.0.0	. 0 . 0 . 0 . 0	.0.0.0	.0 .0 .0 .0
21 22 23 24 25	.5 1.0 1.0 1.5 2.0	.0 .0 .5 .5	.0 .5 .5 1.0 1.5	.0	.0	. 0 . 0 . 0 . 0	.0	.0.0.0.0	.0.0.0.0	.0 .0 .0 .0	.0.0.0	. 0 . 0 . 0 . 0
26 27 28 29 30 31		.5 .0 .0 .0		.0 .0 .0 .0	.0	.0 .0 .0 .0	.0.0.0	.0.0.0.0.0	.0.0.0.0.0	. 0 . 0 . 0 . 0	.0.0.0	.0.0.0.0.0
MONTH	5.5	.0	1.9	.0	.0	.0	.0	.0	.0	.0	.0	.0
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	.0.0.0	.0 .0 .0 .0	.0.0.0	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0	1.0 .0 .0 .0	.0.0.0.0	.0 .0 .0 .0	4.0 4.0 4.0 3.5 3.5	2.0 2.0 1.5 1.5	3.0 3.0 3.0 2.5 2.0
6 7 8 9 10	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .5 .0	.0.0.0.0	.0.0.0.0	5.0 6.5 7.0 5.0 5.5	2.0 2.5 3.0 3.0	3.0 4.0 4.5 3.5 3.5
11 12 13 14 15	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0 .0 .0 .0	.0 .0 .0 .0	1.0 .0 .0 .5	. 0	.0.0.0.0	6.5 7.5 8.0 9.0 8.0	3.5 4.0	4.5 5.5 6.0 6.5 7.0
16 17 18 19	. 0	.0	.0	. 0	0	0					F 0	<i>c</i> 0
20	. 0 . 0 . 0	. 0 . 0 . 0	.0.0	.0	.0	.0 .0 .0	.0 .5 1.0 1.0	.0 .0 .0 .0	.0 .0 .0 .0	7.0 8.0 9.0 10.0 9.0	5.0 4.5 4.5 5.5 6.5	6.0 6.0 7.0 7.5 8.0
	.0	. 0 . 0 . 0	. 0 . 0 . 0	.0 .0 .0	.0 .0 .0	. 0 . 0 . 0	.5 1.0 1.0	.0.0	.0.0	8.0 9.0 10.0	4.5 4.5 5.5	6.0 7.0 7.5
20 21 22 23 24	.0.0	.0.0.0	.0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0	.0.0.0	.5 1.0 1.0 1.5 2.0 2.5 2.0 3.0	.0 .0 .0 .0	.0 .0 .5 1.0 1.5 1.0	8.0 9.0 10.0 9.0 8.0 9.0 9.0 7.0	4.5 4.5 5.5 6.5 5.5 5.5 5.0	6.0 7.0 7.5 8.0 7.0 7.0 7.0

15241600 NINILCHIK RIVER AT NINILCHIK--Continued

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		1	AUGUST		S	EPTEMBE	R
1 2 3 4 5	13.5 15.0 13.0 13.0	9.5 9.5 10.5 9.0 9.0	11.5 12.0 12.0 11.0	17.5 18.5 15.5 14.0 14.5	11.5 11.5 11.5 11.0	14.5 15.0 12.5 12.0	17.5 17.0 15.0 13.5 15.5	11.5 11.5 12.5 11.5 10.0	14.5 14.5 13.5 12.5 12.5	12.0 11.0 13.0 11.0	7.5 9.0 8.5 9.5 8.5	10.0 10.0 10.5 10.0 9.5
6 7 8 9 10	12.0 12.0 14.5 15.5	9.5 8.5 8.5 9.0 9.5	10.5 10.0 11.5 12.0 12.5	16.0 14.5 15.0 16.5 14.5	10.5 12.0 11.5 10.0 11.5	13.0 13.5 13.0 13.0	16.0 16.0 15.0 14.5 15.0	10.5 10.5 12.5 12.0 12.0	13.5 13.5 13.5 13.0 13.5	10.0 11.5 11.0 10.5 10.0	7.5 8.5 6.5 6.0 5.5	9.0 9.5 9.0 8.0
11 12 13 14 15	14.0 12.5 15.5 16.5 17.0	10.5 10.0 9.5 10.0 10.5	12.5 11.0 12.0 13.0 14.0	12.5 12.5 14.5 16.5 14.0	10.5 10.5 10.5 11.0	11.5 11.5 12.5 13.5 13.0	16.5 16.5 17.5 16.0 17.0	11.0 12.5 11.5 13.0 13.5	14.0 14.5 14.5 14.5 15.0	9.5 8.5 9.0 9.0	5.0 7.0 6.5 7.0 7.5	7.5 7.5 7.5 8.0 8.5
16 17 18 19 20	17.5 17.5 16.5 16.5	11.0 11.0 11.0 11.5	14.5 14.5 14.0 14.0	15.0 17.0 14.5 13.5	11.5 11.0 12.0 12.0	13.0 14.0 13.5 13.0	15.0 13.5 13.5 12.5 12.5	13.5 12.0 11.0 11.5 10.5	14.0 12.5 12.0 12.0 11.5	9.0 10.5 10.0 9.5 10.0	7.0 8.0 8.5 8.5	8.0 9.0 9.0 9.0 9.0
21 22 23 24 25	18.0 18.5 19.0 19.0	12.5 11.5 12.0 13.0 12.5	15.0 15.0 16.0 16.0	12.5 12.5 14.5 16.0 15.0	12.0 11.5 11.5 11.5 12.5	12.0 12.0 12.5 13.5 14.0	13.5 14.5 14.0 12.5 12.5	9.5 10.0 9.5 10.5 10.0	11.5 12.0 12.0 11.0 11.0	9.0 8.5 8.0 8.0	7.5 6.5 6.5 6.0 5.0	8.0 7.5 7.5 7.0 6.5
26 27 28 29 30 31	19.5 19.0 20.0 18.0 17.5	13.0 13.5 13.5 14.0 11.5	16.5 16.5 17.0 16.0 14.5	17.0 17.5 17.0 17.5 16.0 16.5	11.5 12.5 12.0 12.0 13.0 12.5	14.5 15.0 14.5 14.5 14.5	12.5 11.5 10.5 10.0 11.0	10.0 9.0 9.5 9.0 9.0	11.5 10.5 10.0 9.5 10.0	7.5 6.5 7.0 7.0 6.0	5.5 4.0 4.0 4.0	6.5 5.5 5.5 5.0
MONTH	20.0	8.5	13.6	18.5	10.0	13.2	17.5	8.5	12.5	13.0	4.0	8.0
YEAR	20.0	.0	4.7									

15243900 SNOW RIVER NEAR SEWARD

LOCATION.--Lat $60^{\circ}17'42''$, long $149^{\circ}20'38''$, in $\mathrm{NE}^{1}/_{4}$ SW $^{1}/_{4}$ sec. 6, T. 2 N., R. 1 E. (Seward B-7 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, on left bank, 0.5 mi below the Alaska Railroad bridge, 3.0 mi upstream from the mouth at Kenai Lake, and 13.5 mi north of Seward.

DRAINAGE AREA. -- 128 mi² (revision pending).

PERIOD OF RECORD.--August to September of 1970, 1974, 1977 and April 1997 to current year.

GAGE.--Water stage recorder. Elevation of gage is 470 ft above sea level, from topographic map. Prior to April 9, 1998 at site 0.5 mi upstream at different datum.

REMARKS.--Records fair, except estimated daily discharges which are poor. Rain gage at station. GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Glacier-dammed lake outburst flood about August 31, 1967, $55,000 \text{ ft}^3/\text{s}$ from rating curve extended above 27,000 ft³/s, gage-height 42.60 ft from floodmarks, site and datum then in use.

		DISCHA	RGE, CUBI	C FEET PER			YEAR OCTO	BER 2000	TO SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAI		MAY	JUN	JUL	AUG	SEP
1	596	244	e250	620	e160	e130	e110	316	1470	3480	2750	4150
2	537	230	e200	538	e160	e130	e110	304	1680	3460	2980	3290
3	493	216	e220	447	e150	e130	e120	296	2010	3360	2910	3040
4	458	153	400	371	e150	e130	e120	209	2000	3030	2770	3110
5	477	216	494	e280	e150	e130	e110	e140	1780	3220	2780	3210
6	672	198	428	e300	e150	e120	e110	e130	1660	3150	2780	2700
7	1190	190	367	e450	e150	e120	e110	e110	1490	2900	2540	2500
8	1370	171	210	499	e150	e120	e110	e120	1330	2820	2360	2270
9	760 599	173	e200	421	e150	e120	e110	182	1480	2660	2300	2130
10	599	311	e230	294	e150	e120	e110	196	1650	2630	2200	2120
11 12	524 494	466 331	257 152	e200 e200	e150 e150	e120 e120	e120 e120	254 322	1680 1600	2520 2690	2220 2580	2210 3530
13	494	368	e160	e200	e150 e150	e120	e120 e120	356	1610	2890	2890	5100
14	1290	393	e160	505	e150	e120	e110	408	1680	2780	2860	5520
15	739	302	e160	1190	e150	e120	e110	475	2100	2790	2680	5740
16 17	785 734	321 341	e160 e160	694 751	e150 e150	e120 e120	e110 e110	539 535	2570 2850	2610 2790	2650 2500	6830 8870
18	569		e160	1540	e150	e120	e110	537	2900	2990	2670	11200
19	479	510	e160	2030	e140	e120	e110	559	2910	3310	2550	12700
20	420	632	146	886	e140	e120	e110	713	2790	4630	4290	13500
21	380	873	303	658	e130	e120	e110	845	2630	4580	4250	13500
22 23	386 365	726 545	e160 e160	578 518	e130	e120	e110 e110	769 634	2840 3600	4660 4340	3740 2980	13400 9040
23	334	502	e180	434	e130 e130	e110 e110	e110 e110	589	3460	3650	2980 2570	6800
25	449	453	354	381	e130	e110	e110	571	3320	3280	2420	3410
26	384	372	388	332	e130	e110	e110	559	3950	3110	2430	2300
27 28	340 302	302 399	370 366	252 e180	e160 e130	e110 e110	e130 145	549 698	4320 4430	3100 2960	2520 6520	1710 1560
29	285	396	845	e170	 e130	e110	221	927	4270	2680	7500	1440
30	282		1020	e170		e110	284	1100	3840	2520	7050	1060
31	265		804	e170		e110		1290		2630	5880	
TOTAL	17432	11049	9624	16259	4070	3670	3690	15232	75900	98220	102120	157940
MEAN	562	368	310	524	145	118	123	491	2530	3168	3294	5265
MAX	1370	873	1020	2030	160	130	284	1290	4430	4660	7500	13500
MIN	265	153	146	170	130	100	110	110	1330	2520	2200	1060
AC-FT	34580	21920	19090	32250	8070	7280	7320	30210	150500	194800	202600	313300
		STATISTIC	S OF MON	THLY MEAN I	DATA FOR	WATER	YEARS 1970	0 - 2001,	BY WATER	YEAR (WY)#	
MEAN	983	322	204	201	117	108	178	713	2228	3163	3016	3369
MAX	2506	514	312	524	188	220	277	841	2530	3281	5598	6294
(WY)	1999	1998	2000	2001	1998	1998	1998	2000	2001	1998	1977	1974
MIN	279	188	87.3	57.0	42.0	39.2	81.8	491	1780	2866	1764	1157
(WY)	1998	2000	1999	1999	1999	1999	1999	2001	1999	1999	1998	2000
SUMMARY	STATIST:	ICS	FOR :	2000 CALEND	AR YEAR		FOR 2001	WATER YEAR	3	WATER Y	EARS 1970	- 2001#
ANNUAL	TOTAT			357799			515206					
ANNUAL				978			1412			1114		
	C ANNUAL I									1412		2001
	ANNUAL M									965		2000
	DAILY M			4620	Jul 17		ab13500	Sep 20		b23800	Sep	20 1974
	DAILY ME	AN Y MINIMUM		43 44	Mar 31 Mar 27		100 109	Mar 29 Mar 23		c36 37		3 1999 26 1999
	SEVEN-DA 1 PEAK FL			-11	rial 2/		b14900	riat 23)	b26400		20 1999
	I PEAK ST							Sep 22 20 Sep 22	2	d40.7		20 1974
	CANEOUS L									36		3 1999
ANNUAL	RUNOFF (AC-FT)		709700			1022000			807100		
	CENT EXCE			2890			3380			3490		
	CENT EXCE			451			453			672		
90 PERC	CENT EXCE	EDS		69			120			71		

See Period of Record, partial years used in monthly summary statistics Sept. 20 and Sept. 21
Result of release of stored water from glacier-dammed lake
Mar. 3 and Mar. 4, 1999
Site and datum then in use

c d

Estimated

15258000 KENAI RIVER AT COOPER LANDING

LOCATION.--Lat 60°29'34", long 149°48'28", in SE¹/₄ sec. 28, T. 5 N., R. 3 W. (Seward B-8 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, Chugach National Forest, on right bank 10 ft downstream from bridge on Sterling Highway, 0.9 mi upstream from Bean Creek, 0.9 mi east of Cooper Landing, and at Kenai Lake outlet.

DRAINAGE AREA. -- 634 mi².

PERIOD OF RECORD. -- May 1947 to current year.

REVISED RECORDS. -- WSP 2136: 1964 (M).

GAGE.--Water-stage recorder. Datum of gage is 419.92 ft above sea level (levels by Alaska Department of Transportation). See WSP 2136 for history of changes prior to August 28, 1965. August 28, 1965 to January 21, 1974, at site 10 ft upstream at present datum. January 22, 1974 to September 30, 1981, non-recording gage at site 40 ft upstream at present datum.

REMARKS.--No estimated daily discharges. Records good. Diversion from Cooper Lake to Kenai Lake above gage through Cooper Lake power plant began May 1961. No diversions occurred from October 2000 to February 2001. Rain gage at station. GOES satellite telemetry and telephone modem at station.

COOPERATION. -- Records of diversion provided by Chugach Electric Association.

		DISCHA	ARGE, CUBI	C FEET	PER SECOND, DAII	WATER LY MEAN		BER 2000	TO SEPTEM	MBER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2980 2820 2690 2570 2450	1610 1550 1490 1460 1400	1370 1330 1310 1280 1290	1270 1290 1310 1320 1300	1830 1730 1650 1580 1520	791 779 773 775 756	605 616 630 618 624	944 998 1040 1080 1110	3950 4350 4830 5290 5630	12400 12100 11700 11300 10900	8140 8000 7930 7840 7730	12100 11300 10400 9610 8920
6 7 8 9	2370 2370 2460 2480 2480	1360 1300 1280 1260 1250	1300 1300 1280 1280 1270	1300 1370 1450 1470 1460	1440 1360 1310 1240 1220	746 745 748 725 722	639 639 643 651 664	1140 1150 1170 1180 1200	5840 6010 6010 6040 6160	10700 10500 10200 9920 9640	7670 7540 7280 7060 6910	8420 7840 7330 6760 6250
11 12 13 14 15	2400 2340 2300 2320 2370	1240 1240 1290 1300 1300	1260 1220 1190 1150 1130	1460 1440 1410 1430 1620	1200 1140 1090 1070 1040	717 703 699 699 686	667 665 668 673 682	1210 1250 1290 1340 1410	6330 6510 6600 6730 6950	9360 9090 8910 8750 8650	6690 6600 6610 6790 6880	5810 5600 5800 6160 6380
16 17 18 19 20	2390 2430 2420 2390 2310	1300 1300 1320 1350 1380	1090 1100 1090 1070 1050	1770 1860 2080 2600 2900	1020 969 932 911 879	675 668 651 642 638	680 685 694 704 719	1500 1600 1710 1840 2000	7390 7880 8370 8760 9070	8500 8400 8450 8570 9080	6890 6900 6920 6930 7020	6620 7040 7790 8870 10400
21 22 23 24 25	2250 2170 2110 2070 2030	1440 1530 1570 1580 1560	1030 1010 1000 988 975	3040 3060 3000 2910 2730	849 826 806 786 784	630 620 612 605 595	727 737 749 758 776	2170 2330 2490 2600 2690	9240 9360 9720 10400 10900	9750 10300 10700 10700 10500	7530 7900 7970 7730 7380	12300 14700 15000 13900 12600
26 27 28 29 30 31	1990 1900 1840 1790 1700 1660	1540 1510 1510 1470 1430	982 981 985 1010 1110 1210	2600 2420 2290 2170 2030 1910	786 806 796 	597 592 588 587 590 593	787 809 836 863 902	2770 2820 2940 3140 3330 3590	11400 11900 12500 12900 12700	10200 9890 9560 9220 8800 8440	7040 6800 7250 9420 11200 12200	11100 9740 8600 7680 6880
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	70850 2285 2980 1660 2370 140500 3.60 4.16	42120 1404 1610 1240 1390 83550 2.21 2.47	35641 1150 1370 975 1130 70690 1.81 2.09	60270 1944 3060 1270 1770 119500 3.07 3.54	31570 1128 1830 784 1060 62620 1.78 1.85	20947 676 791 587 675 41550 1.07	21110 704 902 605 681 41870 1.11 1.24	57032 1840 3590 944 1500 113100 2.90 3.35	239720 7991 12900 3950 7170 475500 12.6 14.07	305180 9845 12400 8400 9750 605300 15.5 17.91	236750 7637 12200 6600 7280 469600 12.0 13.89	271900 9063 15000 5600 8510 539300 14.3 15.95
				ADJUSTEI	TO EXCLUD	E DIVER	SION FROM	COOPER L	AKE			
MEAN CFSM IN AC-FT	2285 3.60 4.15 140500	1404 2.21 2.47 83550	1150 1.81 2.09 70690	1943 3.06 3.53 119500	1128 1.78 1.85 62620	482 0.76 0.88 29630	568 0.90 1.00 33790	1606 2.53 2.92 98720	7683 12.12 13.52 457200	9605 15.15 17.47 590590	7518 11.86 13.67 462260	8924 14.08 15.70 531020

15258000 KENAI RIVER AT COOPER LANDING--Continued

STAT	ISTICS OF MONTHLY MEA	AN DATA FOR WAT	ER YEARS 1947	- 2001, BY WATER	R YEAR (WY)#	
MEAN 3271 17 MAX 8955 48 (WY) 1980 19 MIN 1264 6 (WY) 1956 19	77 3469 2807 58 1986 1981 54 364 310	2066 11 1981 19 251 2	512 546 122 1071 977 1980 208 262 951 1952	1907 5413 3508 10010 1990 1953 658 3268 1952 1972	10480 114 1980 19 4868 36	381 5308 130 11490 277 1967 551 2629 269 1969
SUMMARY STATISTICS	FOR 2000 CAL	ENDAR YEAR	FOR 2001 W	ATER YEAR	WATER YEARS	1947 - 2001#
ANNUAL TOTAL ANNUAL MEAN ANNUAL MEAN HIGHEST ANNUAL MEAN HIGHEST DAILY MEAN HOWEST ANNUAL MEAN HOWEST DAILY MEAN ANNUAL SEVEN-DAY MIN MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FL ANNUAL RUNOFF (AC-FT ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHE 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS	OW 1928000 1905060 *4.	Apr 14 Apr 9	592 a15700 a14.78 578 2763000 *2680070	Mar 29 Mar 25 Sep 22 8 Sep 22 Mar 29	100 190 a23100 17.18	1977 1969 Sep 21 1974 Mar 28 1964 Mar 15 1951 Sep 21 1974 Sep 21 1974 Mar 27 1964

[#] See Period of Record and Remarks; partial years used in monthly statistics.
Values shown on this page are unadjusted for inflow from diversion, unless otherwise noted
* Adjusted to account for inflow from diversion, see Remarks
a Result of release of stored water from glacier-dammed lake at head of unnamed glacier in the Snow River Basin
b No flow, Mar. 27 and Mar. 28, 1964, caused by earthquake

15261000 COOPER CREEK AT MOUTH NEAR COOPER LANDING

LOCATION.--Lat $60^{\circ}28'50''$, long $149^{\circ}52'50''$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$ sec. 31, T. 5 N., R. 3 W. (Seward B-8 quad), Hydrologic Unit 19020302 Kenai Peninsula Borough, on left bank, approximately 0.5 mi upstream from mouth, and 1.5 mi west of Cooper Landing.

DRAINAGE AREA. -- 48.6 mi².

WATER DISCHARGE RECORDS

PERIOD OF RECORD.--October 1957 to January 1965, August 1998 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 450 ft above sea level, from topographic map. From October 1957 to January 1965, 0.4 mi upstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. Since July 1959, entire flow from $31.8\,$ mi 2 of drainage area has been regulated by dam at Cooper Lake outlet. No spilling since 1959 except for period May 1961 to October 1962. GOES satellite telemetry at station.

		DISCHA	RGE, CUBIC	FEET PE		, WATER LY MEAN	YEAR OCTOBER	2000	TO SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	34 33 32 32 34	e25 e24 23 e22 e22	e32 e30 e30 e30 e30	27 e26 e25 e23 e22	17 e17 e16 e16 e15	e10 e9.5 e9.5 e9.5 e9.5	e7.0 e7.5 e7.5 e7.5 e7.5	31 28 26 24 22	154 170 184 158 149	158 151 154 151 152	97 95 96 93 90	75 71 69 70 73
6 7 8 9 10	35 38 37 34 33	21 21 23 23 29	e29 27 27 e25 e24	e20 e18 e17 e15 e15	e15 e14 e14 e13 e13	9.3 9.1 9.0 9.1 9.3	e7.5 e8.0 e8.0 e8.0 e8.0	21 21 24 27 30	146 138 132 140 149	153 152 154 145 141	85 81 80 78 74	66 65 60 55 53
11 12 13 14 15	33 32 31 39 36	31 e30 29 29 e27	e23 22 21 21 e21	e14 e13 e13 e12 e12	e12 e12 e12 e12 e12	9.7 9.7 10 9.6 9.5	e8.0 e8.5 8.6 9.0 9.3	35 40 45 53 62	152 150 150 151 172	143 140 124 117 119	71 71 73 77 75	50 50 51 48 46
16 17 18 19 20	36 35 34 32 31	25 25 27 35 47	e20 e20 e20 19 19	e11 40 54 70 48	e11 e11 e11 e11	9.3 e9.0 e9.0 e9.0	9.7 9.9 10 11 14	67 73 74 76 88	207 214 207 184 177	124 121 127 144 175	75 72 74 70 88	44 44 46 49 46
21 22 23 24 25	33 33 30 29 38	46 45 40 36 35	19 e18 e18 e18 17	38 32 28 25 23	11 11 e10 e10 e10	e9.0 e9.0 e9.0 e8.5 e8.5	16 18 20 20 21	89 85 81 86 87	191 216 240 253 250	154 147 133 120 113	84 76 68 63 59	45 43 50 67 57
26 27 28 29 30 31	34 30 e29 e28 e27 26	e35 e35 e35 35 32	17 16 15 30 36 29	21 20 e19 e18 e17 e17	e10 e10 e10 	e8.5 e8.5 e8.5 8.3 e8.0 e7.5	23 26 29 30 32	86 88 106 127 144 138	246 242 240 234 206	113 114 107 100 95 100	55 53 100 140 104 88	53 49 47 45 42
TOTAL MEAN MAX MIN AC-FT	1018 32.8 39 26 2020	912 30.4 47 21 1810	723 23.3 36 15 1430	753 24.3 70 11 1490	347 12.4 17 10 688	280.9 9.06 10 7.5 557	409.5 13.6 32 7.0 812	1984 64.0 144 21 3940	5602 187 253 132 11110	4141 134 175 95 8210	2505 80.8 140 53 4970	1629 54.3 75 42 3230
	٤	STATISTIC	S OF MONT	HLY MEAN	DATA FOR	R WATER	YEARS 1958 -	2001,	BY WATER Y	EAR (WY)‡	ŧ	
MEAN MAX (WY) MIN (WY)	74.8 264 1958 20.7 1964	52.7 285 1958 11.9 1964	25.4 82.9 1958 10.0 1964	20.5 58.9 1958 8.00 1964	14.0 32.4 1958 6.43 1999	11.9 28.0 1958 4.50 1999	18.9 50.3 1958 9.00 1960	101 219 1961 42.6 1964	204 412 1958 73.7 1963	156 326 1961 68.1 1960	88.8 226 1961 38.0 1963	79.5 309 1961 21.6 1963
SUMMARY	STATISTIC	CS FOR	2000 CALE	NDAR YEAR		FOR 2001	WATER YEAR		WATER Y	EARS 1958	- 2001#	
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM		AN AN N MINIMUM W GE		Jun 5	7 7 6	25 28 1	55.6 53 Jun 24 7.0 Apr 1 7.4 Mar 31		71. a174 29. ab810 c4. 4. ab841 b2. f3.	9 Sep 0 Mar 0 Mar Sep 10 Sep	1958 1963 22 1961 19 1999 19 1999 21 1961 21 1961 1 1960	
10 PERC 50 PERC	RUNOFF (AGENT EXCEED ENT EXCEUTER ENT EXCEED ENT EXCEUTER ENT EX	DS DS	28080 89 31 9.!	5					51990 195 34 9.	5		

See Period of Record, partial years used in monthly statistics Includes natural flow or spill from area upstream from Cooper Lake dam Caused by release of water behind log jam upstream. Site and datum then in use From Mar. 19 to Apr. 14, 1999

Not determined. See lowest daily mean Estimated

Caused by temporary storage behind ice jam upstream (observed)

Caused by temporary storage behind ice jam upstream (observed)

15261000 COOPER CREEK AT MOUTH NEAR COOPER LANDING--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1998 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: August 1998 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for 15 minute recording interval.

REMARKS.--Records represent water temperature at the sensor within $0.5^{\circ}C$. Temperature at the sensor was compared with the average for the stream by cross section on December 12. No variations were found within the cross section. No variation was found between mean stream temperature and sensor temperature. Heavy shore ice occurs near the gage.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum, 11.5°C, July 14, 1999; Minimum, 0.0°C on many days during winter periods.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 10.0° C, August 13; Minimum, 0.0° C on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)
DEC									
12	1346	31.0	5.00	9.92	21	10	8010	1.0	2.5
12	1348	31.0	10.0	9.92	21	10	8010	1.0	2.5
12	1350	31.0	15.0	9.92	21	10	8010	1.0	2.5
12	1352	31.0	20.0	9.92	21	10	8010	1.0	2.5
12	1354	31.0	25.0	9.92	21	10	8010	1.0	2.5

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		N	NOVEMBER			DECEMBER			JANUAR:	Y
1 2 3 4 5	2.0 3.0 4.0 4.0 5.0	.0 .5 2.0 3.0 3.0	1.0 1.5 3.0 3.5 4.0	1.0 1.0 .5 .0	.0.0.0.0	.0 .0 .0 .0	.0 .0 .0	. 0 . 0 . 0 . 0	.0 .0 .0 .0	1.0 .0 .0 .0	.0 .0 .0 .0	.5 .0 .0 .0
6 7 8 9 10	5.5 4.5 4.0 3.5 3.0	4.0 3.5 2.0 .5	4.5 4.0 3.0 2.0 1.5	1.5 1.0 1.5 2.0 2.5	.0 .0 .0 1.5 2.0	1.0 .5 .5 2.0 2.5	.5 1.0 .0 .0	.0.0.0	.0 1.0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0
11 12 13 14 15	3.0 3.5 3.5 4.0 3.5	2.0 2.5 2.0 3.0 2.0	2.5 2.5 3.0 3.5 3.0	2.5 .0 1.0 1.0	.0.0.0	1.0 .0 .5 .5	1.0 1.0 .5 .5	.0 .5 .0 .0	.5 1.0 .0 .0	.0 .0 .0 .0	.0 .0 .0 .0	.0 .0 .0
16 17 18 19 20	3.5 3.5 3.0 3.0 2.5	2.5 2.0 1.5 1.5	3.0 2.5 2.0 2.0 1.5	1.5 1.5 1.0 2.0 2.0	.5 .5 .5 1.0	1.0 1.0 1.0 1.5 2.0	.5 .0 .0 1.0	.0 .0 .0 .0	.0 .0 .0 1.0	1.0 1.5 1.5 1.5	.5 1.0 1.0 1.0	.5 1.0 1.0 1.0
21 22 23 24 25	1.5 2.0 1.5 2.0 2.5	.0 1.0 .0 .0	.5 1.5 1.5 1.0 2.0	2.0 1.5 2.0 2.0 1.5	1.0 1.5 1.0 1.0	1.5 1.5 1.5 1.5	.5 .0 .0 1.0	.0 .0 .0 .0	.5 .0 .0 .5	1.5 1.5 1.5 1.5	1.0 .5 1.0 1.0	1.0 1.0 1.0 1.0
26 27 28 29 30 31	1.5 .5 .0 .0 .5	.5 .0 .0 .0	1.0 .5 .0 .0	.0 .0 .0 1.0	.0 .0 .0 .0	.0 .0 .5 .5	1.0 1.5 1.5 1.5	.5 1.0 .0 .5	1.0 1.0 1.0 1.0 1.0	1.0 1.0 .0 .0	.5 .0 .0 .0	1.0 .5 .0 .0
MONTH	5.5	.0	2.0	2.5	.0	.8	1.5	.0	. 4	1.5	.0	. 4

15261000 COOPER CREEK AT MOUTH NEAR COOPER LANDING--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	.5 .0 .0 .0	.0.0.0	.0.0.0.0	.0 .0 .0 .0	.0.0.0	.0 .0 .0 .0	.0 1.0 2.0 1.5	.0.0.0	.0 .5 1.0 1.0	3.5 4.0 3.0 4.0 3.5	.5 .5 1.0 .5	2.0 2.0 1.5 1.5
6 7 8 9 10			.0.0.0.0	1.0 1.0 1.0 1.5	.0 .0 .0 .5	.5 .5 .5 1.0	1.0 2.0 2.0 2.0 2.0	.0 .0 .5 .0	.5 .5 1.0 1.0	4.0 5.0 5.5 5.0 6.0	1.0 1.0 1.5 1.0	2.5 3.0 3.0 2.5 3.0
11 12 13 14 15	.0.0.0.0	.0.0.0	.0.0.0.0	1.5 1.5 1.0 2.0 2.0	.5 .5 .0 .5		2.0 2.5 3.0 2.5 3.0		1.0 1.5 1.5 1.0	5.0 5.0 5.5 5.5 4.5	1.0 1.0 1.0 1.0	2.5 2.5 2.5 2.5 3.0
16 17 18 19 20	.0 .0 .0 .0			2.0 .5 .0 .0		1.0 .0 .0 .0	3.5 3.5 4.0 4.0 3.5	.5 .5 1.0 .5	1.5 1.5 2.0 1.5 2.0	4.5 5.0 4.0 5.5 4.5	1.5 1.0 1.5 1.5 2.0	2.5 2.5 2.5 3.0 3.0
21 22 23 24 25	1.0 .5 .0 .0	.5 .0 .0 .0	.5 .5 .0 .0	.0 .5 .5 .0	.0	.0 .0 .0 .0	4.0 4.0 3.0 4.5 4.0	1.5 1.0 .5 .5	2.0 2.0 1.5 2.0 2.5	4.0 4.5 5.0 5.0	2.0 1.5 1.5 1.5	2.5 2.5 3.0 3.0
26 27 28 29 30 31	.0	.0	.0 .0 .0 	.0 1.5 1.5 .5	.0 .0 .5 .0	.0 .0 .5 1.0 .0	4.0 4.0 3.5 5.0 4.5	1.0 1.0 1.5 1.0	2.5 2.5 2.5 2.5 2.0	5.0 5.5 6.0 5.0 4.0 5.5	2.0 1.5 2.0 2.0 2.5 2.0	3.0 3.0 3.5 3.5 3.0 3.5
MONTH	1.0	.0	.0	2.0	.0		5.0	.0	1.5	6.0	.0	2.7
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE			JULY			MIN AUGUST		:	MIN SEPTEMBE	
DAY 1 2 3 4 5	5.5			7.0 7.0 6.0 5.5 6.0	JULY		9.0 9.0 6.5 8.0 9.0	AUGUST 5.0 5.0 5.5 5.0	MEAN 6.5 6.5 6.0 6.5 6.5	7.0 7.0 8.0 6.5 6.0	4.5 5.5 5.5 5.5 4.0	
1 2 3 4	5.5 5.5 5.0 4.5 5.0	JUNE 2.5	3.5 3.5 3.5 3.5 3.5		JULY 3.0 3.5 3.5 4.0 4.0			AUGUST 5.0 5.0 5.5 5.0		7.0 7.0 8.0 6.5 6.0	4.5 5.5 5.5 5.5 4.0 3.0 4.5 3.5 3.0	6.0 6.0 6.5 6.0
1 2 3 4 5 6 7 8	5.5 5.5 5.0 4.5 5.0 4.5 6.0 6.5	JUNE 2.5 2.0 2.5 2.5 2.5	3.5 3.5 3.5 3.5 3.5 3.5 3.5 4.0	7.0 7.0 6.0 5.5 6.0	JULY 3.0 3.5 3.5 4.0 4.0 4.0 4.0 4.0 3.5	5.0 5.0 4.5 4.5 4.5 4.5 5.0 5.0	9.0 9.0 6.5 8.0 9.0 9.0 9.0 8.0 8.0	5.0 5.0 5.5 5.0 5.0 5.0 5.0 5.0	6.5 6.5 6.0 6.5 6.5	7.0 7.0 8.0 6.5 6.0	4.5 5.5 5.5 5.5 4.0 3.0 4.5 3.5 3.0	6.0 6.0 6.5 6.0 5.0 4.5 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	5.5 5.5 5.0 4.5 5.0 4.5 6.0 4.5 4.5 6.0	JUNE 2.5 2.0 2.5 2.5 2.5 2.5 3.0 2.0 2.0 2.5 3.0 3.0 3.0 3.0 2.5	3.5 3.5 3.5 3.5 3.5 3.5 4.0 4.0 3.5 3.5 4.0	7.0 7.0 6.0 5.5 6.0 5.5 6.0 7.5 6.5 5.5 6.0 7.5	JULY 3.0 3.5 4.0 4.0 4.0 4.0 4.0 3.5 4.5 4.0 4.0	5.0 5.0 5.5 4.5 4.5 4.5 5.0 5.0 5.0 5.5	9.0 9.0 6.5 8.0 9.0 9.0 9.0 8.0 7.5 9.5 9.5 9.5	5.0 5.0 5.5 5.0 5.0 5.0 5.0 5.0 6.0 5.5 5.5	6.5 6.5 6.5 6.5 6.5 6.5 7.5 6.0 7.5 7.5	7.0 7.0 8.0 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0	4.5 5.5 5.5 5.5 4.0 3.0 4.5 3.0 3.0 4.5 4.5	6.0 6.0 6.5 6.0 5.0 4.5 4.5 4.5 4.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	5.5 5.5 5.0 4.5 6.5 6.5 6.5 6.5 6.5 6.0 4.5 6.5 6.0 6.5 6.0 6.5	JUNE 2.5 2.0 2.5 2.5 2.5 2.5 3.0 2.0 2.0 2.5 2.5 3.0 3.0 3.0 2.5 3.0 3.0 2.5 3.0	3.5 3.5 3.5 3.5 3.5 3.5 4.0 4.0 3.5 4.0 4.0 4.0 4.0 3.5 4.0	7.0 7.0 6.0 5.5 6.0 5.5 5.5 6.5 7.5 6.5 7.0 6.0 7.5 6.0	JULY 3.0 3.5 4.0 4.0 4.0 4.0 4.0 3.5 4.5 4.0 4.5 4.5 4.5	5.00 5.05 4.55 4.55 4.55 5.00 5.05 5.55 5.5	9.0 9.0 6.5 8.0 9.0 9.0 9.0 8.0 7.5 9.5 9.5 9.5 8.0 9.5	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.5 5.5 6.0 5.5 6.0 5.5 6.0	6.5 6.5 6.5 6.5 6.5 6.5 7.5 6.0 7.5 7.0 7.0 6.5 6.5	7.0 7.0 8.0 6.5 6.0 6.5 6.0 6.0 6.0 6.0 6.0 7.0 6.5 7.0 7.0	\$EPTEMBE 4.5 5.5 5.5 5.5 4.0 3.0 4.5 3.0 3.0 4.5 4.5 4.5 4.5 6.5 6.5 6.5	6.0 6.0 6.0 6.0 5.0 4.5 4.5 4.5 5.5 5.5 5.5 5.6 6.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	5.5 5.5 5.0 4.5 4.5 6.5 4.5 6.5 6.6 6.5 6.5 5.5 6.5 6.5 6.5 6.5 6	JUNE 2.5 2.0 2.5 2.5 2.5 2.5 3.0 2.0 2.5 2.5 3.0 3.0 3.0 2.5 3.0 3.0 3.5 3.0 3.5 3.0 3.0 3.5 3.0	3.5 3.5 3.5 3.5 3.5 3.5 4.0 4.0 3.5 4.0 4.0 4.0 4.5 4.5 4.5	7.0 7.0 6.0 5.5 6.0 5.5 5.5 6.5 7.5 6.5 7.0 6.0 7.5 6.0 7.5 6.0 7.0 6.0 6.0 6.0	JULY 3.0 3.5 4.0 4.0 4.0 4.0 4.0 3.5 4.5 4.0 4.5 4.5 4.0 4.5 5.0	5.005 54.55 5.000 54.55 5.000 55.55 56.000 55.55 55.55	9.0 9.0 6.5 8.0 9.0 9.0 9.0 8.0 7.5 9.5 9.5 9.5 8.0 9.5 8.0 9.5 8.0 9.5 8.0 9.5	5.0 5.0 5.5 5.0 5.0 5.0 5.0 5.5 5.5 5.5	6.5 6.5 6.5 6.5 6.5 6.5 6.5 7.5 7.5 7.0 6.5 7.5 7.0 6.5 7.5 6.5 6.5 7.5 7.5 7.6 6.5 7.5 7.6 6.5 7.6 6.5 7.6 6.5 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6	7.0 7.0 8.0 6.5 6.0 6.5 6.0 6.0 6.0 6.0 6.0 7.0 6.5 7.0 7.0 7.0 6.5	\$EPTEMBE 4.5 5.5 5.5 5.5 4.0 3.0 4.5 3.0 3.0 4.5 4.5 4.5 6.0 5.5 6.0 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	6.00 6.50 5.05 4.55 5.55 5.55 5.55 5.55 5.55 5

15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING

LOCATION.--Lat $60^{\circ}28'00''$, long $150^{\circ}35'56''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 1, T. 4 N., R. 8 W. (Kenai B-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, on right bank, 3.5 mi downstream from Skilak Lake, 7 mi southeast of Sterling. DRAINAGE AREA.--1,206 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- June 1997 to current year.

REVISED RECORDS. -- WRD-AK-00-1: Drainage area.

GAGE.--Water stage recorder. Elevation of gage is 240 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. Rain gage recorder at station. GOES satellite telemetry and phone modem at station.

	Г	DISCHARGE	, CUBI	C FEET PER		WATER MEAN		BER 2000 TC	SEPTEMB	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2 e50 3 e49 4 e49	000 2 900 2 800 2	2850 2770 2690 2620 2550	2570 2510 2480 2440 2480	1890 1900 1910 1910 1910	3450 3330 3210 3060 3000	1600 1590 1540 1580 1540	1100 1170 1210 1070 1080	1290 1370 1410 1450 1500	4260 4600 5010 5380 5770	16100 16200 16200 16200 16200	15000 14600 14300 14200 14000	17700 18200 18300 18000 17400
7 e4! 8 e4 9 e4	500 2 400 2 400 2	2480 2400 2320 2350 2360	2430 2420 2360 2320 2310	1900 2150 2220 2270 2280	2960 2790 2680 2620 2530	1510 1490 1530 1450 1450	1070 1070 1060 1070 1270	1530 1550 1580 1610 1640	6140 6480 6750 6980 7190	16200 15900 15900 15700 15400	13700 13400 13300 13100 12900	16700 16000 15200 14300 13500
12 e43 13 43 14 40	130 2 130 2 080 2	2210 2170 2290 2210 2190	2290 2210 2170 2160 2070	2280 2330 2410 2570 2710	2440 2420 2340 2250 2050	1480 1390 1380 1410 1340	1170 1070 1080 1060 1060	1670 1690 1740 1780 1840	7420 7650 7840 7990 8170	15200 14900 14600 14300 14000	12500 12200 12000 12000 12100	12700 11900 11400 10900 10600
17 38 18 3' 19 3'	870 2 780 2 720 2	2180 2260 2210 2260 2230	2030 2020 2030 2110 2000	2830 2960 3160 3490 3610	2280 2140 1970 1930 1860	1330 1310 1280 1250 1220	1070 1070 1080 1090 1130	1900 1970 2060 2160 2290	8430 8800 9260 9700 10100	13900 13800 13600 13800 14000	12300 12600 12800 13000 13100	10500 10500 10500 10800 11200
22 3! 23 34 24 3!	520 2 490 2 500 2	2350 2400	1960 1890 1860 1830 1800	3800 3950 4050 4190 4120	1810 1760 1710 1660 1610	1210 1180 1160 1150 1130	1160 1110 1130 1150 1190	2420 2530 2670 2810 2960	10500 10900 11400 11900 12500	14600 15300 15900 16300 16600	13500 13800 14200 14300 14400	11800 12800 14100 15000 15500
27 33 28 33 29 30 30 29	200 2 120 2 030 2 960 2	2420 2520 2570 2590	1790 1780 1730 1810 1860 1880	4120 3980 3880 3750 3670 3570	1650 1680 1620 	1120 1110 1090 1070 1090 1110	1190 1210 1270 1260 1290	3110 3260 3410 3560 3760 3990	13200 13800 14500 15200 15800	16600 16600 16400 16200 15700 15200	14200 13800 13700 14500 15500 16700	15400 14900 14200 13300 12500
MAX 50 MIN 29 AC-FT 2423 CFSM 3	939 2 000 2 920 2 100 143	2403 2850 2170 3000 13	5600 2116 2570 1730 0100 1.75 2.02	91770 2960 4190 1890 182000 2.45 2.83	64810 2315 3450 1610 128600 1.92 2.00	41090 1325 1600 1070 81500 1.10 1.27	34010 1134 1290 1060 67460 .94 1.05	68510 2210 3990 1290 135900 1.83 2.11	273620 9121 15800 4260 542700 7.56 8.44	477500 15400 16600 13600 947100 12.8 14.73	421700 13600 16700 12000 836400 11.3 13.01	415800 13860 18300 10500 824700 11.5 12.83
	STA	TISTICS	OF MONT	THLY MEAN I	DATA FOR I	WATER Y	EARS 1997	- 2001, B	Y WATER	YEAR (WY)#		
MAX 74 (WY) 19 MIN 39	498 4 998 2 939 2	1441 2000 2403	1835 2116 2001 1528 1999	1761 2960 2001 1164 1999	1424 2315 2001 891 1998	1052 1325 2001 870 1998	1103 1241 1998 995 1999	2394 2637 1998 2210 2001	8048 9795 1998 6156 1997	13300 15400 2001 11960 1999	11930 13600 2001 10310 1998	10220 13860 2001 5659 2000
SUMMARY STA	ATISTICS		FOR 2	2000 CALEN	DAR YEAR		FOR 2001	WATER YEAR		WATER Y	EARS 1997	- 2000#
ANNUAL TOT: ANNUAL MEAI HIGHEST ANNI HIGHEST DA: LOWEST DAI: ANNUAL SEVI MAXIMUM PE: MAXIMUM PE: INSTANTANE ANNUAL RUN ANNUAL RUN 10 PERCENT 50 PERCENT 90 PERCENT	N NUAL MEAN UAL MEAN LY MEAN LY MEAN EN-DAY MI AK FLOW AK STAGE OUS LOW F OFF (AC-F OFF (TNCH EXCEEDS EXCEEDS	ENIMUM FLOW FT)		1628721 4450 14500 915 929 3231000 3.69 50.24 11900 2440 1060			2148540 5887 18300 a1060 1070 18500 4262000 466 15000 2830 1210	Apr 12 Sep 2 .21 Sep 2 Apr 8		5200 5887 4742 18300 776 792 18500 13.2 5767000 4.3 13100 3410 1040	Mar Sep 21 Sep Mar	2001 2000 3 2001 13 1998 9 1998 2 2001 2 2001 12 1998

[#] See Period of Record, partial year used in monthly statistics

a Apr 8, 14, and 15 b Mar 12 and 13, 1998

e Estimated

15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1998 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: October 1998 to current year.

INSTRUMENTATION. -- Electronic water-temperature recorder set at 15-minute recording interval.

REMARKS.--No record October 1-12 due to low powerto the data recorder, and March 18 to May 1 when the sensor was out of water. Records represent water temperature at the sensor within 0.5° C. Temperature at the sensor was compared with the river average by cross section on October 6 and July 31. No variation was found within the cross-sections. No variation was found between mean stream temperature and temperature at the sensor.

EXTREMES FOR PERIOD OF DAILY RECORD .--

WATER TEMPERATURE: Maximum observed, 15.0°C, July 7, but may have been higher during period of missing record in June and July 1999; minimum, 0.0°C on many days in winter periods.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 15.0° C, August 7 and 14; minimum, 0.0° C on many days in winter.

DATE	TIME	SAMPLE LOCA- TION, CROSS SECTION (FT FM L BANK) (00009)	SPECIFIC CONDUC- TANCE (US/CM)	PH WATER WHOLE FIELD (STAN- DARD UNITS) (00400)	TEMPERA- TURE WATER (DEG C) (00010)	RIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PERCENT SATURA- TION) (00301)
	11112	(0000)	(000)37	(00100)	(00010)	(00025)	(00500)	(00301)
OCT 12	1802	30.0	62	0 1	7.0	751	12.6	105
			62	8.1				
12	1804	100		8.1	7.0	751	12.5	104
12	1806	170	62	8.0	7.0	751	12.5	104
12	1808	240	62	8.1	7.0	751	12.5	104
12	1810	310	62	8.1	7.0	751	12.5	104
AUG								
07	1540	40.0	68	8.1	15.0	773	10.9	107
07	1541	120	68	8.1	15.0	773	10.7	105
07	1542	200	68	8.1	15.0	773	10.6	104
07	1543	280	68	8.1	15.0	773	10.6	104
07	1544	360	68	8.1	15.0	773	10.5	103
SEP								
04	1535	40.0	64	7.8	11.5	744	10.7	101
04	1536	120	64	7.8	11.5	744	10.8	101
04	1537	200	64	7.8	11.5	744	10.7	101
04	1538	280	64	7.8	11.5	744	10.6	100
04	1539	360	64	7.8	11.5	744	10.6	100

DATE	N TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	(CODE)	VISIT (CODE)	QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400	AIR (DEG	E R C)
OCT														
12	1740	9	9	340	8.	29 448	30	10 30	053 10	001		62	8.1	
NOV	1400	9	9	325	7	26 22	7.0	10 30	053 10	0.01		64	7 0	
07 JAN	1420	9	9	345	7.	36 23	70	10 30	J53 II	001		04	7.9	
03	1120	9	9	395	7.	06 192	2.0	10 30	045 10	001		63	7.7	
FEB	1120		_	3,3				10 00		, 0 1		0.5		
06	1050	9	9	390	7.	69 303	0	10 30	10	01		61 8	3.0	-1.5
MAR														
06	1100	9	7	375	6.	78 149	0	10 30)45 10	001 3	0	62	7.5	4.0
MAY							_							
09	1620	9		385	6.								7.6	.00
09	1621	D	9				- :	10 80	10 10	199				
JUN	1500			255				10 00			•			
13	1520	9	9	357	9.					01 1			3.0	14.5
22	1230	9	9	375	10.								7.9	18.0
27	1310	9	9	390	11.	91 1390) ()	10 30)53 10	001		68	7.8	22.5
JUL														
12	1250	9	9	380	12.								7.3	15.5
24	1630	9	9	380	12.	64 1640	00	10 30)53 10	002		64 '	7.8	15.5
AUG														
07	1530	9	9	390	11.	78 136	00	10 30	053 10	001		68	8.1	
SEP		_	_											
04	1520	9	9	380	13.	09 175	JU	10 30	053 10	001		64	7.8	

SOUTH-CENTRAL ALASKA

15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING--Continued

DATE	TEMP- ERATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MMOF HG) (00025)	OXYGEN DIS- OLVED (MG/L) (00300)	OXYGEN, DIS- OLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	HCO3	ALKA- LINITY WAT DIS TOT IT FIELD MG/S AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
OCT 12	7.0	751	12.5	104	27	9.71	.683	1.0	23	.67	26	21	6.2
NOV 07	4.5	755	12.6	98	27	9.65	.671	1.0	23	.90	27	22	6.3
JAN 03	2.5	755	13.7	101	28	9.96	.733	1.1	23	.80	28	23	6.1
FEB 06	1.5	759	13.0	93	29	10.4	.723	1.1	24	.81	28	23	6.2
MAR 06	1.5	748	13.5	98	27	9.61	.696	1.0	23	1.10	26	22	6.6
MAY 09	5.0	758	13.0	102	27	9.83	.694	1.1	24	.76	27	22	6.5
09 JUN													
13 22	10.5	761 762	11.6 10.3	104 98	29 29	10.4	.759 .745	1.1	23 24	.70 .61	27 27	23 22	1.2
27 JUL	13.0	763	11.1	105	30	10.8	.778	1.2	24	.72	26	23	6.4
12 24	11.0 12.0	760 765	11.0 10.5	100 97	29 30	10.4 10.7	.773 .776	1.2 1.2	24 27	.73 .69	28 29	23 24	6.7 6.9
AUG 07	15.0	773	10.6	104	29	10.4	.752	1.1	24	.70	28	23	6.8
SEP 04	11.5	744	10.7	101	29	10.3	.742	1.1	22	.69	25	21	6.7
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLOU- RIDE DIS- SOLVED (MG/L AS F) (00950)	SIL- ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOL- IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOL- IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 12	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE DIS- SOLVED (MG/L AS F)	ICA, DIS- SOLVED (MG/L AS SIO2)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L)	GEN NITRITE DIS- SOLVED (MG/L AS N)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N)	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)
OCT 12 NOV 07	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 12 NOV 07 JAN 03	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 12 NOV 07 JAN 03 FEB 06	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .159	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.05	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.006	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.007
OCT 12 NOV 07 JAN 03 FEB 06	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 2.6 2.6	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 41 37 43	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 35 36 37	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .159 .150	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .017 .002	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.05 <.08	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10	PHORUS TOTAL (MG/L AS P) (00665) .009 .007	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.006	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.007 <.007
OCT 12 NOV 07 JAN 03 FEB 06 MAR 06 MAY 09	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .8 .8 .8 .9	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 2.6 2.6 2.9 2.8 2.6 2.7	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 41 37 43 36 39 45	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 35 36 37 37	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .001 .002 <.001 <.001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .159 .150 .189 .172 .165	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .017 .002 <.002 .003 .003 <.002	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.05 <.08 <.08 E.04 E.07 E.06	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10 <.10	PHORUS TOTAL (Mg/L AS P) (00665) .009 .007 .006 .005 .005	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.006 <.006 <.006 <.006	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.007 <.007 <.007 <.007 <.007
OCT 12 NOV 07 JAN 03 FEB 06 MAR 06 MAY 099 JUN 13 22 27	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .8 .8 .8	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 2.6 2.6 2.9 2.8 2.6	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 41 37 43 36 39	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 35 36 37 37	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .001 .002 <.001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .159 .150 .189 .172 .165	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .017 .002 <.002 .003 .003	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.05 <.08 <.08 E.04 E.07	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 E.06	PHORUS TOTAL (MG/L AS P) (00665) .009 .007 .006 .005	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.006 <.006 <.006	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.007 <.007 <.007 <.007
OCT 12 NOV 07 JAN 03 FEB 06 MAR 06 MAY 199 22 27 JUL 12 24	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .8 .8 .9 .8	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 2.6 2.6 2.9 2.8 2.6 2.7 	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 41 37 43 36 39 45 	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 35 36 37 36 36 37 36	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .001 .002 <.001 .001 <.001 .001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .159 .150 .189 .172 .165 .155154 .158	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .017 .002 <.002 .003 .003 <.002	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.05 <.08 <.08 E.04 E.07 E.06 <.08 E.06	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10 <.10	PHORUS TOTAL (MG/L AS P) (00665) .009 .007 .006 .005 .005 .005	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.006 <.006 <.006 <.006 <.006	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.007 <.007 <.007 <.007 <.007 <.007 <.007
OCT 12 NOV 07 JAN 03 FEB 06 MAR 09 13 22 27 JUL 12	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .8 .8 .9 .8 .7 .8 .8 .8	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 2.6 2.6 2.9 2.8 2.6 2.7 3.0 3.0 3.1	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 41 37 43 36 39 45 39 33 42	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 35 36 37 36 36 32 37 37 37	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 .001 .002 <.001 .001 .001 .001 .001 .001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .159 .150 .189 .172 .165 .155154 .158 .159 .164	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .017 .002 <.002 .003 .003 <.002002 .003 <.002	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.05 <.08 <.08 E.04 E.07 E.06 <.08 E.06 E.06	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1	PHORUS TOTAL (MG/L AS P) (00665) .007 .006 .005 .005 .005 .005 .005	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007 <.007

15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING--Continued

	IRON, DIS- SOLVED (UG/L	MANGA- NESE, DIS- SOLVED (UG/L	CAR- BON, ORGANIC DIS- SOLVED (MG/L	CAR-BON, INOR-GANIC, PAR-TIC. TOTAL	CAR-BON, ORGANIC PARTIC-ULATE TOTAL (MG/L	CAR-BON, INORG + ORGANIC PAR- TIC. TOTAL (MG/L	NITRO- GEN, PARTIC- ULATE WAT FLT SUSP (MG/L	CHLOR-A PERIPH- YTON CHROMO- GRAPHIC FLUO- ROM	PERIPH- YTON BIO- MASS ASH WEIGHT	PERIPH- YTON BIO- MASS TOTAL DRY WEIGHT	PHEO- PHYTIN A, PERI- PHYTON	SEDI- MENT, SUS- PENDED	SEDI- MENT, DIS- CHARGE, SUS- PENDED
	AS FE)	AS MN)	AS C)	AS C)	AS C)	AS C)	AS N)	(MG/M2)	G/SQ M	G/SQ M	(MG/M2)	(MG/L)	(T/DAY)
DATE	(01046)	(01056)	(00681)	(00688)	(00689)	(00694)	(49570)	(70957)	(00572)	(00573)	(62359)	(80154)	(80155)
OCT 12 NOV	<10	<3.2	.59	<.1	<.1	<.1	<.022					3	36
07 JAN	<10	<3.2	.44	<.1	<.1	<.1	<.022					7	45
03 FEB	<10	<3.2	.56	<.1	<.1	<.1	.024					5	26
06 MAR	<10	<3.2	. 49	<.1	.1	.1	<.022					7	57
06 MAY	<10	<3.2	.47	<.1	<.1	<.1	<.022					4	16
09 09 JUN	M 	E2.4	.47			<.1	<.022	1.8	39.6	41.5	.6	2	8.7
13 22	<10 <10	<3.0 <3.0	.58			. 2	<.022 <.022					1 2	22 59
27 JUL	<10	<3.0	.51			. 2	.044					3	113
12 24	<10 <10	<3.0 <3.0	.64 .55			.3	.031					4 5	159 221
AUG 07 SEP	<10	<3.0	.51			E.2	E.017					2	73
04	<10	<3.0	.44			.2	.026					3	142

DATE	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT	
12	
NOV	
07	
JAN 03	83
FEB	0.3
06	96
MAR	, ,
06	
MAY	
09	
09	
JUN	
13	
22	
27 JUL	
12	
24	82
AUG	02
07	
SEP	
04	

15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	OVEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5		 	 	5.0 4.5 5.0 4.0 4.5	4.0 4.0 4.0 3.5 3.5	4.5 4.0 4.5 4.0	3.5 2.5 2.5 3.0 3.5	2.0 2.0 2.0 2.0 3.0	2.5 2.0 2.0 2.5 3.5	2.5 2.5 2.0 2.5 2.5	2.0 2.0 2.0 2.0 1.5	2.5 2.0 2.0 2.0 2.0
6 7 8 9 10		 	 	4.0 4.5 4.5 4.5 5.0	3.0 3.0 3.5 4.0 4.0	4.0 3.5 4.0 4.5	3.5 3.5 3.5 3.5 3.0	3.0 3.0 3.0 2.5 2.5	3.5 3.5 3.5 3.0	1.5 2.0 2.5 2.5 2.5	.5 1.0 2.0 2.5 1.0	1.0 1.5 2.5 2.5 2.0
11 12 13 14 15	 7.0 7.0 6.5	 6.0 6.0 6.0	 6.5 6.5 6.5	5.0 4.0 4.0 4.5 4.0	4.0 4.0 3.5 4.0 3.5	4.5 4.0 4.0 4.5 4.0	3.5 3.5 3.0 3.0 2.5	3.0 3.0 2.5 2.0 2.0	3.5 3.5 3.0 2.5 2.5	1.5 1.5 2.0 3.0 3.0	.5 .5 1.5 2.0 2.5	1.0 1.0 2.0 2.5 2.5
16 17 18 19 20	7.0 6.5 6.5 6.5	6.0 6.0 6.5 5.5	6.5 6.0 6.0 6.0	4 0	3.5 3.5 3.5 4.0 4.0	4.0 4.0 4.0 4.0	2.5 2.0 3.0 3.5 3.0	2.0 1.5 2.0 2.5 2.5	2.0 2.0 2.5 3.0 3.0	2.5 2.5 3.0 3.0	2.0 1.5 2.5 2.5 2.5	2.0 2.0 2.5 2.5 2.5
21 22 23 24 25	5.5 5.5 6.0 5.5 6.0	4.5 4.5 5.0 5.0	5.0 5.0 5.5 5.5	4.5 4.0 4.0 3.5 3.5	4.0 4.0 3.5 3.0	4.0 4.0 4.0 3.0 3.5	2.5 2.0 2.0 2.0 2.5	2.0 1.5 1.5 1.5	2.5 2.0 2.0 2.0 2.0	2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.0 2.0 2.0	2.5 2.5 2.5 2.0 2.5
26 27 28 29 30 31	5.5 5.5 5.0 4.5 5.0	5.0 4.5 4.5 4.5 3.5	5.0	3.5 3.5 4.0 4.5 4.0	3.0 3.0 3.0 4.0 3.5	3.0 3.5 3.5 4.0 4.0	2.5 2.5 3.0 3.0 3.0	2.0 2.0 2.0 3.0 2.5 2.5	2.5 2.0 2.5 3.0 3.0	2.5 2.5 2.0 2.0 1.5	2.0 2.0 1.5 1.5 1.5	2.5 2.5 2.0 1.5 1.5
MONTH				5.0	3.0	4.0	3.5	1.5	2.7	3.0	.5	2.1
DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1 2 3 4 5		1.0 1.5 1.0 1.0	1.5 2.0 1.5 1.5	2.0 3.0 2.0	1.0	1.0 1.5 1.0 1.0	 	 	 	6.0 5.0 6.0 9.5	1.5 2.0 1.5 1.5	3.5 3.5 3.0 4.5
6 7 8 9 10	2.0 2.0 1.5 2.0	1.5 1.0 1.0 1.0	1.5 1.5 1.0 1.5	2.5 4.0 2.0 3.5 4.5	1.0 .5 .5 .5	1.5 2.0 1.0 1.5 2.5	 		 	7.0 7.0 7.5 7.0 8.0	3.5 3.0 3.5 3.5 3.5	4.5 4.5 5.0 5.0
11 12 13 14 15	1.5 2.0 1.5 1.0	.5 1.0 .5 .0	1.0 1.5 1.0 .5	4.0 4.0 5.5 4.5 3.5	1.5 1.0 .5 1.0	2.5 2.5 2.0 2.0	 		 	8.5 8.0 9.5 9.5	3.5 3.5 4.0 5.0 6.0	5.5 6.0 6.0 7.0 7.5
16 17 18 19 20	1.5 2.0 1.5 2.5	.0 1.0 .5 1.5	1.0 1.0 1.0 1.5 2.0	6.5 5.5 	.5 .0 	2.5 1.5 	 		 	8.0 8.5 7.5 7.5 9.5	6.0 4.5 5.0 4.0 5.0	6.5 6.0 6.0 6.0 7.0
21 22 23 24 25	2.5 2.5 2.5 2.5 1.0	1.5 1.5 .5 .0	2.0 1.5 1.5 1.0	 			 	 		7.0 6.5 6.0 6.5 5.5	5.5 4.5 4.0 4.0	6.0 5.0 5.0 5.0 5.0
26 27 28 29	1.5 2.5 2.5	.0 .5 .0	.5 1.5 1.0		 		 		 	5.5 7.5 8.0 8.0	4.0 3.5 4.5 5.0	4.5 5.5 6.0 6.0
30 31										7.0 7.5	4.5 4.0	5.5 5.5

15266110 KENAI RIVER BELOW SKILAK LAKE OUTLET NEAR STERLING--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	8.0 8.5 10.5 9.0 8.5	4.0 4.0 7.0 7.5	6.0 6.5 9.0 8.0	12.0 12.0 10.5 10.5	9.5 9.5 9.5 9.5 10.0	11.0 11.0 10.0 10.0	12.5 13.0 11.5 11.5	11.5 11.0 10.0 10.0	11.5 12.0 10.5 11.0 11.5	11.5 11.0 11.5 12.0 11.0	11.0 11.0 11.0 11.0 8.5	11.0 11.0 11.0 11.5 10.0
6 7 8 9 10	7.5 7.5 9.0 10.0	5.5 5.0 6.0 6.5 6.5	6.5 6.0 7.5 8.0	12.0 13.0 14.0 14.0 14.0	10.5 12.0 13.0 13.0	11.0 12.5 13.5 13.5	14.0 15.0 14.5 14.0 14.5	12.0 12.5 13.0 13.0	13.0 14.0 13.5 13.5	9.5 10.0 10.0 10.0	8.0 9.5 9.0 9.0	8.5 9.5 9.5 9.5 10.0
11 12 13 14 15	9.5 10.5 11.5 11.5	6.0 9.0 9.0 8.5 7.0	7.5 10.0 10.0 10.0 9.0	13.0 11.5 11.5 12.0 11.5	11.5 10.5 11.0 10.5 11.0	13.0 11.0 11.0 11.5	14.5 14.5 14.5 15.0 14.5	13.0 13.0 13.0 12.5 12.5	13.5 13.5 13.5 14.0 13.5	11.0 10.5 10.0 9.5 10.0	10.0 10.0 9.5 9.0	10.5 10.0 9.5 9.5 9.5
16 17 18 19 20	12.0 12.5 12.0 12.0 13.0	8.0 8.0 10.5 10.5 9.5	10.0 10.5 11.5 11.5	13.0 12.5 14.0 14.0	11.0 11.0 11.0 12.0 11.5	11.5 12.0 12.0 13.5 12.0	13.0 13.5 13.0 13.0	12.0 12.5 12.5 12.0 11.0	12.5 13.0 12.5 12.5 11.5	10.0 10.0 9.5 9.5	9.5 9.5 9.0 9.0	9.5 9.5 9.5 9.5
21 22 23 24 25	14.0 13.5 14.0 13.5 14.5	11.0 10.0 11.0 9.0 9.0	12.5 12.0 12.5 11.0 12.0	11.5 13.0 12.5 12.0 12.0	10.5 10.5 12.0 11.5 11.5	11.0 11.5 12.0 12.0	11.5 12.5 12.5 12.5 12.5	10.5 11.0 11.5 12.0 12.0	11.0 11.5 11.5 12.5 12.0	9.5 9.0 9.0 9.0	9.0 9.0 8.5 8.5	9.5 9.0 9.0 8.5 8.5
26 27 28 29 30 31	14.0 14.0 12.5 14.0 11.5	10.5 11.0 8.5 10.0 9.5	12.5 12.5 10.5 12.0 10.0	12.5 13.5 12.5 13.0 13.0	11.5 12.0 11.5 11.5 12.0 11.5	12.0 12.5 12.0 12.0 12.5 12.0	13.0 13.0 12.0 11.5 12.0 11.5	12.5 11.5 11.5 11.5 11.0	12.5 12.0 11.5 11.5 11.5	9.0 9.0 8.5 9.0 8.5	8.5 8.5 8.0 8.0	8.5 8.5 8.5 8.5
MONTH	14.5	4.0	9.7	14.0	9.5	11.8	15.0	10.0	12.4	12.0	8.0	9.5

15266150 KENAI RIVER BELOW MOUTH OF KILLEY RIVER NEAR STERLING

LOCATION.--Lat $60^{\circ}29'28''$, long $150^{\circ}37'50''$, in $NW^{1}_{/4}$ $SW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 26, T. 5 N., R. 8 W. (Kenai B-2 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, on right bank, 1.5 mi downstream from Killey River, 4.5 mi southeast of Sterling.

DRAINAGE AREA. -- 1,496 mi².

PERIOD OF RECORD. -- June 1997 to current year.

GAGE.--Water stage recorder. Elevation of gage is 230 ft above sea level, from topographic map.

REMARKS.--Records good except for February 15 which is fair. GOES satellite telemetry and phone modem at station.

CAMMITA	Kecord	is good ex	cept IOI	repruary	TO WILLCII IS	s lail.	GOES SALE.	TITCE CETE	шесту ат	ia piione iii	Jueili at s	tation.
		DISCHA	RGE, CUB	IC FEET P	ER SECOND, DAILY	WATER Y		ER 2000 TC	SEPTEME	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5520 5390 5280 5190 5080	3060 2970 2890 2780 2720	2750 2620 2590 2580 2660	2130 2100 2050 2010 2000	3530 3380 3210 3070 3000	1650 1630 1590 1610 1580	1180 1220 1290 1180 1180	1590 1630 1640 1660 1700	5190 5660 6080 6610 7000	18900 18700 18700 18700 18800	17900 17500 17100 17000 16700	19000 18900 18900 18700 18200
6 7 8 9 10	5030 4980 4930 4830 4690	2670 2580 2480 2520 2620	2660 2650 2580 2530 2470	1970 2190 2300 2400 2390	2980 2810 2690 2620 2510	1560 1540 1560 1510 1500	1170 1180 1180 1180 1330	1720 1730 1760 1800 1800	7340 7680 7940 8200 8490	18900 18700 18700 18600 18300	16100 16000 15900 15700 15500	17400 16500 15700 14600 13700
11 12 13 14 15	4600 4490 4460 4570 4510	2490 2400 2510 2460 2370	2470 2380 2310 2300 2200	2350 2410 2470 2650 2890	2430 2410 2340 2250 e2250	1540 1480 1470 1480 1420	1320 1300 1310 1300 1290	1830 1870 1920 1980 2070	8750 8990 9220 9380 9640	18000 17800 17400 16900 16500	15000 14600 14400 14400 14400	12800 12000 11700 11200 10900
16 17 18 19 20	4380 4290 4150 4060 3970	2420 2490 2430 2500 2500	2160 2140 2160 2240 2150	3190 3280 3510 3980 4050	2240 2150 1980 1950 1890	1410 1390 1370 1330 1300	1300 1310 1320 1330 1360	2170 2270 2380 2470 2620	10100 10700 11300 11700 12000	16600 16400 16400 16600 17500	14700 14900 15100 15300 15500	10700 10600 10800 11100 11500
21 22 23 24 25	3850 3810 3770 3740 3690	2630 2670 2700 2700 2660	2130 2030 1970 1950 1930	4140 4250 4310 4410 4320	1850 1800 1740 1680 1640	1280 1260 1250 1260 1230	1420 1400 1430 1430 1450	2790 2930 3070 3220 3380	12400 13000 13600 14300 15100	18500 18900 19100 19300 19400	16000 16000 16100 16100 16000	12000 12800 14200 15800 16000
26 27 28 29 30 31	3540 3430 3280 3190 3180 3130	2590 2560 2680 2860 2850	1930 1920 1880 1970 2090 2170	4300 4130 3970 3810 3740 3650	1660 1710 1670 	1210 1200 1190 1170 1190 1200	1460 1480 1540 1530 1570	3550 3730 3890 4160 4470 4730	15800 16600 17500 18300 18800	19400 19300 19100 18900 18400 18100	15700 15300 15100 17200 18000 18500	15700 15300 14400 13500 12700
TOTAL MEAN MAX MIN AC-FT CFSM IN.	133010 4291 5520 3130 263800 2.87 3.31	78760 2625 3060 2370 156200 1.75 1.96	70570 2276 2750 1880 140000 1.52 1.75	97350 3140 4410 1970 193100 2.10 2.42	65440 2337 3530 1640 129800 1.56 1.63	43360 1399 1650 1170 86000 .93 1.08	39940 1331 1570 1170 79220 .89 .99	78530 2533 4730 1590 155800 1.69 1.95	327370 10910 18800 5190 649300 7.29 8.14	565500 18240 19400 16400 1122000 12.2 14.06	493700 15930 18500 14400 979300 10.6 12.28	427300 14240 19000 10600 847500 9.52 10.63
		STATISTI	CS OF MON	THLY MEAN	DATA FOR	WATER YE	ARS 1997	- 2001, B	Y WATER	YEAR (WY)#		
MEAN MAX (WY) MIN (WY)	6076 7859 1998 4291 2001	3393 4451 2000 2625 2001	1952 2276 2001 1646 1999	1850 3140 2001 1126 1999	1469 2337 2001 989 1998	1130 1399 2001 926 1999	1276 1490 1998 1010 1999	2660 2962 1998 2456 1999	9240 11080 1998 7701 1997	14710 18240 2001 12580 1999	12910 15930 2001 11020 1998	10710 14240 2001 6196 2000
SUMMAR	Y STATIST	rics	FOR	2000 CALE	NDAR YEAR	F	OR 2001 W	ATER YEAR		WATER Y	EARS 1997	- 2001#
TOTTE	MEAN T ANNUAL	4TT 7 3 7		1743040 4762	- 1 1-		2420830 6632	* 3 0=		5635 6632 5010		2001
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (AC-FT)				Jul 17 Mar 27 Mar 22		a19400 b1170 1190 d19600 12.2 1150 4802000	Jul 25 Mar 29 Mar 26 Jul 24 S Sep 1 Apr 8		WATER YI 5635 6632 5010 a19400 c800 836 d19600 12.2 4083000 3.7 51.1 14200 3730	Jul Apr Apr Jul 25 Sep	25 2001 19 1997 1 1999 24 2001 1 2001	
ANNUAL 10 PER 50 PER	RUNOFF CENT EXCI CENT EXCI	F (AC-FT) 3457000 F (CFSM) 3.18 F (INCHES) 43.34 XCEEDS 12500					4.4 60.2 17400 3060	13		3.7 51.1 14200 3730	-8	

1410

1100

90 PERCENT EXCEEDS

See Period of Record, partial year used in monthly statistics Jul. 25 and 26
Mar. 29 and Apr. 6
Apr 19, 1997 and Apr. 6-7, 1999
Jul. 24 and 25
Estimated

b

Not determined, see lowest daily mean

15266300 KENAI RIVER AT SOLDOTNA

LOCATION.--Lat $60^{\circ}28'39''$, long $151^{\circ}04'46''$, in $W^{1}/_{2}$ SW $^{1}/_{4}$ sec. 32, T. 5 N., R. 10 W. (Kenai B-3 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, near center of span on downstream side of bridge on Sterling Highway, 1.0 mi southwest of Soldotna.

DRAINAGE AREA.--1,951 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1965 to current year.

REVISED RECORDS.--WRD AK-00-1 drainage area.

GAGE.--Water-stage recorder. Datum of gage is 35.34 ft above sea level. Prior to May 1, 1997, non-recording gage at same site and datum.

REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry and phone modem at station.

		DISCHA	RGE, CUB	C FEET PE		WATER Y	YEAR OCTOBER VALUES	R 2000 TO	SEPTEMB	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	5640	3260	2910	2210	3780	1840	1340	2330	5850	18400	18100	19300
2	5550	3170	2880	2180	3580	1820	1350	2330	6370	18300	17800	19500
3	5490	3100	2660	2210	3460	1870	1670	2300	6770	18100	17500	19800
4	5470	2990	2700	2120	3300	1890	1530	2290	7320	18300	17300	19600
5	5550	2950	2890	2110	3190	1790	1430	2310	7700	18400	17000	19300
6	5570	2920	2740	2160	3240	1750	1450	2350	8050	18600	16700	18600
7	5480	2850	2780	2430	3030	1710	1480	2390	8420	18200	16200	17800
8	5160	2660	2710	2540	2960	1730	1540	2390	8660	17800	16000	17000
9	5050	2700	2660	2510	2840	1730	1560	2460	8900	17700	15900	16200
10	4950	3030	2620	2550	2810	1770	1810	2500	9120	17300	15800	15400
11	4830	2970	2590	e2500	2690	1960	2220	2550	9340	17200	15500	14500
12	4750	2760	2510	e2500	2670	1790	2170	2630	9590	17000	15300	13800
13	4700	2880	2440	2550	2580	1690	2140	2730	9810	16800	15000	13200
14	4960	2870	2390	2770	e2500	1760	2140	2800	9970	16400	15000	12500
15	4910	2660	2290	3020	e2400	1740	2170	2980	10200	16200	15000	12100
16	4800	2740	2270	3300	2450	1700	2170	2970	10500	16300	15100	12000
17	4590	2810	2300	3370	2500	1640	2170	3010	11100	16200	15300	12100
18	4390	2730	2330	3620	2250	1620	2140	3070	11600	15900	15500	12200
19	4290	2850	2400	4000	2300	1650	2140	3170	12000	16200	15900	12500
20	4210	2880	2370	4160	2220	1630	2210	3330	12300	16800	16200	13000
21	4120	3020	2270	4230	2120	1590	2400	3540	12600	17600	16700	13500
22	4140	3100	2290	4340	2030	1560	2450	3660	13000	18100	16600	14100
23	4000	3060	2140	4410	1970	1530	2500	3790	13600	18400	16700	15200
24	3930	3100	2150	4510	e1900	1580	2480	3940	14200	18700	16600	16700
25	4030	2880	2170	4460	e1900	1570	2460	4110	15000	18900	16600	17000
26 27 28 29 30 31	3840 3660 3500 3380 3480 3430	2690 2640 2730 2980 3020	2110 1960 2090 2190 2280 2370	4480 4300 4160 4010 3920 3940	e1800 e1800 1840 	1510 1490 1440 1350 1360 1370	2450 2490 2550 2500 2450	4290 4510 4770 4930 5280 5570	15600 16300 16900 17600 18200	19200 19500 19200 19000 18800 18300	16400 15900 15700 17200 18300 18800	16800 16200 15400 14600 13600
TOTAL MEAN MAX MIN AC-FT CFSM IN.	141850	87000	75460	101570	72110	51430	61560	101280	336570	551800	507600	463500
	4576	2900	2434	3276	2575	1659	2052	3267	11220	17800	16370	15450
	5640	3260	2910	4510	3780	1960	2550	5570	18200	19500	18800	19800
	3380	2640	1960	2110	1800	1350	1340	2290	5850	15900	15000	12000
	281400	172600	149700	201500	143000	102000	122100	200900	667600	1094000	1007000	919400
	2.35	1.49	1.25	1.68	1.32	.85	1.05	1.67	5.75	9.12	8.39	7.92
	2.70	1.66	1.44	1.94	1.37	.98	1.17	1.93	6.42	10.52	9.68	8.84
		STATISTIC	CS OF MON	THLY MEAN	DATA FOR	WATER Y	EARS 1965 -	2001, BY	WATER Y	EAR (WY)#	:	
MEAN	7156	3447	2223	1864	1634	1341	1563	3141	8496	13480	14440	11770
MAX	14370	7335	5469	4290	4575	2696	2836	5645	12570	18740	24890	21280
(WY)	1970	1980	1977	1981	1981	1981	1980	1990	1980	1977	1977	1995
MIN	2852	1631	1132	823	822	800	812	1950	4940	9696	8706	5873
(WY)	1993	1974	1976	1976	1976	1976	1972	1973	1972	1973	1969	1969
SUMMAR	Y STATIST	rics	FOR	2000 CALE	NDAR YEAR		FOR 2001 WA	TER YEAR		WATER Y	EARS 1965	- 2001#
LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU MAXIMU	MEAN T ANNUAL ANNUAL N T DAILY M DAILY ME	MEAN MEAN EAN AY MINIMUM LOW PAGE		1839650 5026 15500 a1300 1300	Jul 22 Mar 1 Mar 1		2551730 6991 19800 1340 1390 20000 10.84	Sep 3 Apr 1 Mar 27 Sep 3 4 Sep 3		5926 8810 4002 41400 b770 774 42200 14.1 c222	Apr Apr Sep 50 Sep 62 Jan	1977 1973 24 1995 1 1966 1 1966 24 1995 24 1995 18 1969 1 1966
ANNUAL ANNUAL ANNUAL 10 PER 50 PER	RUNOFF (RUNOFF (RUNOFF (CENT EXCE CENT EXCE	(AC-FT) (CFSM) (INCHES) EEDS EEDS		3649000 2.5 35.0 13100 2950 1400			5061000 3.58 48.65 17200 3330 1800	3		4293000 3.0 41.2 14200 3250 1200	04	1 1300

See Period of Record; partial years used in monthly statistics

Mar. 1 to Mar. 29 Apr. 1 to Apr. 4, 1996 Backwater from ice

Estimated

15266300 KENAI RIVER AT SOLDOTNA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1952-53, 1955-56, 1958, 1967-74, 1977, 1979-81, 1998- September 2001 (discontinued).

PERIOD OF DAILY RECORD -

SUSPENDED-SEDIMENT DISCHARGE: August 1979 to December 1979, August to November 1999, May to September 2001. WATER TEMPERATURE: October 1998 to September 2001.

INSTRUMENTATION:--Electronic water-temperature recorder set at 15-minute recording interval.

REMARKS:--Sediment sampler for daily sediment samples is on upstream side of bridge. Records represent water temperature at the sensor within $0.5^{\circ}C$. Temperature at the sensor was compared with the river average by cross section on October 4, February 7, and September 5. No variation was found within the cross-section, No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD: --

SEDIMENT CONCENTRATIONS: Maximum daily mean observed, 83 mg/L June 27, 29, 2001; minimum daily mean observed, 1 mg/L September 7, 9, and October 23, 1979.

SEDIMENT LOADS: Maximum daily observed, 3,940 tons (3,570 tonnes) June 29, 2001; minimum daily observed, 14 tons (13 tonnes) March 7, 2001.

WATER TEMPERATURE: Maximum 15.0°C, August 14, 2000, and August 7, 2001; minimum 0.0°C on many days during winter periods.

EXTREMES FOR CURRENT YEAR:-SEDIMENT CONCENTRATIONS: Maximum observed, 83 mg/L June 27, 29, 2001; minimum observed
2 mg/L February 7, May 14-15 2001.
SEDIMENT LOADS: Maximum daily observed, 3,940 tons (3,570 tonnes) June 29, 2001; minimum daily observed, 14 tons (13 tonnes) March 7, 2001.
WATER TEMPERATURE: Maximum 15.0°C, August 7; minimum 0.0°C on many days in winter.

EXTREMES OUTSIDE PERIOD OF DAILY RECORD: --

SEDIMENT CONCENTRATIONS: Maximum observed, 151 mg/L July 14, 1979; minimum observed

1 mg/L March 24, 1971. SEDIMENT LOADS: Maximum daily observed, 9,290 tons (8,430 tonnes) September 9, 1977; minimum daily observed, 3.1 tons (2.8 tonnes) March 24, 1971.

		SAMPLE		PH		BARO-		OXYGEN,
		LOC-	SPE-	WATER		METRIC		DIS-
		ATION,	CIFIC	WHOLE		PRES-		SOLVED
		CROSS	CON-	FIELD	TEMPER-		OXYGEN,	
		SECTION	DUCT-	(STAND-	ATURE	(MM)	DIS-	CENT
DATE	TIME	(FT FM	ANCE	ARD	WATER	OF		
		L BANK)		UNITS)				
		(00009)	(00095)	(00400)	(00010)	(00025)	(00300)	(00301)
OCT								
04	1809	40.0	70	7.7	7.0	763	12.2	100
04	1810	100	68	7.7		763	12.3	101
04	1811	160	67	7.6	7.0	763	12.1	99.5
04	1812	220	66	7.6	7.0	763	12.2	100
04	1814	280	67	7.6	7.0	763	12.2	100
FEB								
07	1135	118	69	8.2	1.0	768	13.6	94.9
07	1137	173	66	8.2	1.0	768	13.4	93.5
07	1139	228	66	8.1	1.0	768	13.3	92.8
07	1141	283	66	8.1	1.0	768	13.3	92.8
SEP								
05	1120	35.0	62	7.5	10.0	748	11.0	99.3
05	1121	104	62	7.5	10.0	748	11.0	99.3
05	1122	172	62	7.5	10.0	748	10.9	98.3
05	1123	241	62	7.5	10.0	748	10.9	98.3
05	1124	310	63	7.5	10.0	748	11.0	99.3

						DIS-					PH		
						CHARGE,				SPE-	WATER		
						INST.				CIFIC	WHOLE		
						CUBIC	SAM-		PURPOSE	CON-	FIELD	TEMPER-	TEMPER-
				STREAM	GAGE	FEET	PLING	SAMPLER	SITE	DUCT-	(STAND-	ATURE	ATURE
				WIDTH	HEIGHT	PER	METHOD,	TYPE	VISIT	ANCE	ARD	AIR	WATER
		MEDIUM	SAMPLE	(FT)	(FEET)	SECOND	CODES	(CODE)	(CODE)	(US/CM)	UNITS)	(DEG C)	(DEG C)
DATE	TIME	CODE	TYPE	(00004)	(00065)	(00061)	(82398)	(84164)	(50280)	(00095)	(00400)	(00020)	(00010)
				(,	(,	(,	(,	(,	(00-00)	(,	(,	(,	(,
OCT													
04	1800	9	9	322	7.49	5590	10	3053	1001	67	7.6		7.0
NOV													
22	1320	9	9	222	6.53	3030	10	3039	1001	67	7.6		3.0
JAN													
04	1220	9	9	221	7.02	2100	10	3053	1001	. 72	7.8		.5
FEB	1100	0	0	000	6 50	2000	1.0	2052	1001	6.77	0 1	1 0	1 0
07 MAR	1120	9	9	220	6.50	3000	10	3053	1001	67	8.1	-1.0	1.0
07	1150	9	9	208	5.77	1740	10	3053	1001	70	7.5	5.5	1.5
MAY	1130			200	3.77	1710	10	3033	1001	, , ,	,.5	3.3	1.5
10	1210	9	9	225	6.10	2490	10	3053	1001	72	8.0	. 5	5.5
10	1211	D	9						1099				
JUN													
07	1020	9	9	233	8.22	8450	10	3053	1001	63	8.1	15.5	6.5
21	1320	9	9	335	9.45	12600	10	3053	1001		7.7		11.0
28	1050	9	9	276	10.36	16900	10	3053	1001	62	7.9	22.5	9.5
JUL	1040		•	260	10 05	1.5.4.0.0	1.0	2052	1001	- 1		1	
13	1240	9	9 9	360	10.35	16400	10	3053	1001		7.6	16.0	
24 AUG	1140	9	9	350	10.67	18700	10	3053	1002	62	7.6	16.0	12.0
08	1130	9	9	365	9.94	16000	10	3053	1001	68	7.6		14.0
SEP	1100	,	,	303	J.J4	10000	10	5055	1001	. 00	,.0		14.0
05	1130	9	9	345	10.63	19400	10	3053	1001	62	7.5	-	10.0

15266300 KENAI RIVER AT SOLDOTNA--Continued

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	BARO- METRIC PRES- SURE (MMOF HG) (00025)	OXYGEN DIS- OLVED (MG/L) (00300)	OXYGEN, DIS- OLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/S AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)
OCT 04	763	12.2	100	28	9.82	.824	1.3	24	.85	29	23	6.2	.8
NOV 22	744	13.2	100			.024		26		30	25		
JAN 04	750	14.3	101	29	10.1	.991	1.4	27	.85	31	26	5.6	1.0
FEB 07	768	13.5	94	31	10.8	.923	1.4	28	.83	34	28	6.0	.9
MAR 07	758			31	10.7	1.11	1.5	28	.97	31	26	6.0	1.1
MAY 10	765	12.4	98	31	10.3	1.24	1.8	30	.85	36	30	5.0	1.1
10 JUN													
07 21	765 765	12.5 10.4	101 94	27 26	9.53 9.04	.838 .741	1.3 1.1	24 22	.75 .78	28 26	23 21	6.1 5.7	.9 1.1
28 JUL	766	12.2	106	26	9.27	.757	1.1	22	.78	25	20	6.2	. 8
13	764 768	11.6 10.4	106 96	28 28	9.87 9.99	.790 .807	1.2	24 26	.70 .70	29 30	24 25	6.1 6.4	1.1
AUG 08	777	10.5	100	29	10.2	.812	1.2	23	.66	27	22	6.3	.8
SEP 05	748	11.0	99	28	9.96	.783	1.3	22	.70	25	21	6.3	.7
			SOL- IDS,	SOL- IDS,			NITRO-	NITRO-	NITRO-				
DATE	FLOU- RIDE DIS- SOLVED (MG/L AS F) (00950)	SILCA, DIS- SOLVED (MG/L AS SIO2) (00955)	RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
OCT 04	RIDE DIS- SOLVED (MG/L AS F)	DIS- SOLVED (MG/L AS SIO2)	DUE AT 180 DEG. C DIS- SOLVED (MG/L)	CON- STITU- ENTS, DIS- SOLVED (MG/L)	GEN NITRITE DIS- SOLVED (MG/L AS N)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N)	AMMO- NIA DIS- SOLVED (MG/L AS N)	AMMO- NIA + ORGANIC TOTAL (MG/L AS N)	AMMO- NIA + ORGANIC DIS. (MG/L AS N)	PHORUS TOTAL (MG/L AS P)	PHORUS DIS- SOLVED (MG/L AS P)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	DIS- SOLVED (UG/L AS FE)
OCT 04 NOV 22	RIDE DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)
OCT 04 NOV 22 JAN 04	RIDE DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)
OCT 04 NOV 22 JAN 04 FEB 07	RIDE DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955)	DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .165	AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) E.06	PHORUS TOTAL (MG/L AS P) (00665)	PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	DIS- SOLVED (UG/L AS FE) (01046)
OCT 04 NOV 22 JAN 04 FEB 07	RIDE DIS- SOLVED (MG/L AS F) (00950)	DIS- SOLVED (MG/L AS SIO2) (00955) 3.6 4.4	DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 42 47	CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 38	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .165 .154 .205	AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .045 .017	AMMO-NIA + ORGANIC TOTAL (MG/L AS N) (00625) .17 <.08 E.05	AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) E.06 <.10	PHORUS TOTAL (MG/L AS P) (00665) .029 .013	PHORUS DIS- SOLVED (MG/L AS P) (00666) .008 E.004	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .009 E.005 <.007	DIS- SOLVED (UG/L AS FE) (01046) 20 20
OCT 04 NOV 22 JAN 04 FEB 07 MAR 07 MAY 10	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2	DIS- SOLVED (MG/L AS SIO2) (00955) 3.6 4.4 3.9 4.4 4.7	DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 42 47 41 47 53	CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 38 40 42 42 43	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 <.001 .002 .002 .001 .001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .165 .154 .205 .180 .152 .084	AMMO-NIA DIS- SOLVED (MG/L AS N) (00608) .045 .017 <.002 .004 .006 <.002	AMMO-NIA + ORGANIC TOTAL (MG/L AS N) (00625) .17 <.08 E.05 E.04 E.04	AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) E.06 <.10 E.06 <.10	PHORUS TOTAL (MG/L AS P) (00665) .029 .013 .009 .006	PHORUS DIS- SOLVED (MG/L AS P) (00666) .008 E.004 E.004 E.003 E.003	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .009 E.005 <.007 <.007	DIS- SOLVED (UG/L AS FE) (01046) 20 20 20 40 110
OCT 04 NOV 22 JAN 04 FEB 07 MAR 07	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2	DIS- SOLVED (MG/L AS SIO2) (00955) 3.6 4.4 3.9 4.4	DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 42 47 41	CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 38 40 42 42	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 <.001 .002 .002 .001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .165 .154 .205 .180 .152	AMMO-NIA DIS- SOLVED (MG/L AS N) (00608) .045 .017 <.002 .004	AMMO- NIA + ORGANIC TOTAIL (MG/L AS N) (00625) .17 <.08 E.05 E.04	AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) E.06 <.10 E.06 <.10	PHORUS TOTAL (MG/L AS P) (00665) .029 .013 .009 .006	PHORUS DIS- SOLVED (MG/L AS P) (00666) .008 E.004 E.004 E.003	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .009 E.005 <.007 <.007	DIS- SOLVED (UG/L AS FE) (01046) 20 20 20 40
OCT 04 NOV 22 JAN 04 FEB 07 MAR 07 MJUN 10 JUN 07 21 28 JUL 13 24	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2 <.2 <.2	DIS- SOLVED (MG/L AS SIO2) (00955) 3.6 4.4 3.9 4.4 4.7 3.9 3.4	DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 42 47 41 47 53 36 38	CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 38 40 42 42 42 43 38 35	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 <.001 .002 .002 .001 .001001 <.001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .165 .154 .205 .180 .152 .084207 .158	AMMO-NIA DIS- SOLVED (MG/L AS N) (00608) .045 .017 <.002 .004 .006 <.002003 .002	AMMO-NIA + ORGANIC TOTAL (MG/L AS N) (00625) .17 <.08 E.05 E.04 E.04 .12 E.08 .11	AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) E.06 <.10 E.06 <.10 <.10	PHORUS TOTAL (MG/L AS P) (00665) .029 .013 .009 .006 .009	PHORUS DIS- SOLVED (MG/L AS P) (00666) .008 E.004 E.004 E.003 C.006	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .009 E.005 <.007 <.007 <.007 	DIS- SOLVED (UG/L AS FE) (01046) 20 20 20 40 110 20 10
OCT 04 NOV 22 JAN 04 FEB 07 MAR 07 MAY 10 10 JUN 077 21 28 JUL 13	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	DIS- SOLVED (MG/L AS SIO2) (00955) 3.6 4.4 3.9 4.4 4.7 3.9 3.4 3.4	DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 42 47 41 47 53 36 38 38 42	CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 38 40 42 42 43 38 35 35 35 38	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .001 .002 .002 .001 .001001 .001 .001 .001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .165 .154 .205 .180 .152 .084207 .158 .173 .139	AMMO-NIA DIS- SOLVED (MG/L AS N) (00608) .045 .017 <.002 .004 .006 <.002003 .002 .007	AMMO-NIA + ORGANIC TOTAL (MG/L AS N) (00625) .17 <.08 E.05 E.04 E.04 .12 E.08 .11 E.08 E.06	AMMO-NIA + ORGANIC DIS. (MG/L AS N) (00623) E.06 <.10 E.06 <.10 <.10 <.10 E.09 <.10 <.10 <.10 <.10 <.10	PHORUS TOTAL (MG/L AS P) (00665) .029 .013 .009 .006 .009 .011 .030 .042 .036	PHORUS DIS- SOLVED (MG/L AS P) (00666) .008 E.004 E.004 E.003 E.003 <.006 E.003 <.006 <.006	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .009 E.005 <.007 <.007 <.007 <.007 <.007 <.007 <.007	DIS- SOLVED (UG/L AS FE) (01046) 20 20 20 40 110 20 10 M

			CAR-		CAR-								
			BON,	CAR-	BON,	NITRO-	CHLOR-A		PERIPH-				
		CAR-	INOR-	BON,	INORG +	GEN,	PERIPH-	PERIPH-	YTON			SEDI-	SED.
	MANGA-	BON,	GANIC,	ORGANIC	ORGANIC	PARTIC-	YTON	YTON	BIO-	PHEO-		MENT,	SUSP.
	NESE,	ORGANIC	PAR-	PARTIC-	PAR-	ULATE	CHROMO-	BIO-	MASS	PHYTIN	SEDI-	DIS-	SIEVE
	DIS-	DIS-	TIC.	ULATE	TIC.	WAT FLT	GRAPHIC	MASS	TOTAL	Α,	MENT,	CHARGE,	DIAM. %
	SOLVED	SOLVED	TOTAL	TOTAL	TOTAL	SUSP	FLUO-	ASH	DRY	PERI-	SUS-	SUS-	FINER
	(UG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	ROM	WEIGHT	WEIGHT	PHYTON	PENDED	PENDED	THAN
	AS MN)	AS C)	AS C)	AS C)	AS C)	AS N)	(MG/M2)	G/SQ M	G/SQ M	(MG/M2)	(MG/L)	(T/DAY)	.062 MM
DATE	(01056)	(00681)	(00688)	(00689)	(00694)	(49570)	(70957)	(00572)	(00573)	(62359)	(80154)	(80155)	(70331)
OCT													
04	4.7	.74	< .1	. 2	. 2	.025					7	106	
NOV													
22		.91	<.1	. 2	. 2	<.022					7	57	80
JAN													
04	9.7	.66	<.1	<.1	<.1	<.022					3	17	98
FEB													
07	6.5	.65	<.1	. 2	. 2	.034					2	16	100
MAR													
07	12.2	.76	< .1	.1	. 2	.030					3	14	
MAY	- 4				2	005							
10	7.4	2.0			. 3	.035							
10							48.4	299.0	336.9	48			
JUN 07	5.3	1.1			.6	.035					33	753	66
21	E2.5	1.1			.5	.055					44	1500	
28	E1.9	.82			E.6	.050					88	4020	
JUL	B1.7	.02			ь.о	.050					00	4020	
13	E1.8	1.5			.3	<.022					27	1200	
24	<3.0	.68			.3	.028					34	1720	74
AUG	.5.5				• •	.020					5.	1.20	
08	<3.0	.77			E.2	E.027					8	346	
SEP											-		
05	<3.0	.59			. 2	.040					19	995	59

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		OCTOBER			NOVEMBER		D	ECEMBER	
1	5640			3260			2910		
2	5550			3170			2880		
3	5490			3100			2660		
4	5470	7	103	2990			2700		
5	5550			2950			2890		
6	5570			2920			2740		
7	5480			2850			2780		
8	5160			2660			2710		
9	5050			2700			2660		
10	4950			3030			2620		
11	4830			2970			2590		
12	4750			2760			2510		
13	4700			2880			2440		
14	4960			2870			2390		
15	4910			2660			2290		
16	4800			2740			2270		
17	4590			2810			2300		
18	4390			2730			2330		
19 20	4290 4210			2850 2880			2400 2370		
21	4120			3020			2270		
22	4140			3100	7	59	2290		
23 24	4000 3930			3060 3100			2140 2150		
25	4030			2880			2170		
26	3840			2690			2110		
27 28	3660 3500			2640 2730			1960 2090		
29	3380			2980			2190		
30	3480			3020			2280		
31	3430						2370		
TOTAL	141850			87000			75460		
		MEAN			MEAN			MEAN	
	MEAN	MEAN CONCEN-	SEDIMENT	MEAN	MEAN CONCEN-	SEDIMENT	MEAN	MEAN CONCEN-	SEDIMENT
	DISCHARGE	CONCEN- TRATION	DISCHARGE	DISCHARGE	CONCEN- TRATION	SEDIMENT DISCHARGE	DISCHARGE	CONCEN- TRATION	DISCHARGE
DAY		CONCEN-			CONCEN-			CONCEN-	
DAY	DISCHARGE	CONCEN- TRATION	DISCHARGE	DISCHARGE	CONCEN- TRATION	DISCHARGE	DISCHARGE	CONCEN- TRATION	DISCHARGE
	DISCHARGE (CFS)	CONCEN- TRATION (MG/L) JANUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS)	CONCEN- TRATION (MG/L) FEBRUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS)	CONCEN- TRATION (MG/L)	DISCHARGE (TONS/DAY)
1	DISCHARGE (CFS)	CONCEN- TRATION (MG/L) JANUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS)	CONCEN- TRATION (MG/L) FEBRUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS)	CONCEN- TRATION (MG/L) MARCH	DISCHARGE (TONS/DAY)
1 2	DISCHARGE (CFS) 2210 2180	CONCEN- TRATION (MG/L) JANUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580	CONCENTRATION (MG/L) FEBRUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820	CONCEN- TRATION (MG/L) MARCH	DISCHARGE (TONS/DAY)
1 2 3	DISCHARGE (CFS) 2210 2180 2210	CONCENTRATION (MG/L) JANUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460	CONCENTRATION (MG/L) FEBRUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870	CONCENTRATION (MG/L) MARCH	DISCHARGE (TONS/DAY)
1 2	DISCHARGE (CFS) 2210 2180	CONCEN- TRATION (MG/L) JANUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580	CONCENTRATION (MG/L) FEBRUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820	CONCEN- TRATION (MG/L) MARCH	DISCHARGE (TONS/DAY)
1 2 3 4 5	DISCHARGE (CFS) 2210 2180 2210 2120 2110	CONCENTRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190	CONCENTRATION (MG/L) FEBRUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790	CONCENTRATION (MG/L) MARCH	DISCHARGE (TONS/DAY)
1 2 3 4 5	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160	CONCENTRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190	CONCENTRATION (MG/L) FEBRUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790	CONCENTRATION (MG/L) MARCH	DISCHARGE (TONS/DAY)
1 2 3 4 5	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430	CONCENTRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 3030	CONCENTRATION (MG/L) FEBRUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710	CONCENTRATION (MG/L) MARCH	DISCHARGE (TONS/DAY)
1 2 3 4 5	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160	CONCENTRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190	CONCENTRATION (MG/L) FEBRUARY 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790	CONCENTRATION (MG/L) MARCH 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540	CONCEN- TRATION (MG/L) JANUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3390 3190 3240 3030 2960	CONCENTRATION (MG/L) FEBRUARY 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730	CONCENTRATION (MG/L) MARCH 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550	CONCENTRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 3030 2960 2840 2810	CONCENTRATION (MG/L) FEBRUARY 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770	CONCENTRATION (MG/L) MARCH 3 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550 e2500	CONCEN- TRATION (MG/L) JANUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 3030 2960 2840	CONCENTRATION (MG/L) FEBRUARY 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770	CONCENTRATION (MG/L) MARCH 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550	CONCENTRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 3030 2960 2840 2810 2670 2580	CONCENTRATION (MG/L) FEBRUARY 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770	CONCEN- TRATION (MG/L) MARCH	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14	2210 2180 2210 2120 2110 2120 2110 2510 2550 255	CONCENTRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	3780 3580 3460 3300 3190 3240 3030 2960 2840 2810 2690 2670 2580 e2500	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1790 1690 1760	CONCEN- TRATION (MG/L) MARCH	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2150 2430 2540 2550 e2500 e2500 2550	CONCEN- TRATION (MG/L) JANUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 3030 2960 2840 2810 2670 2580	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1790 1690	CONCENTRATION (MG/L) MARCH 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14	2210 2180 2210 2120 2110 2120 2110 2510 2550 255	CONCENTRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	3780 3580 3460 3300 3190 3240 3030 2960 2840 2810 2690 2670 2580 e2500	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1790 1690 1760	CONCEN- TRATION (MG/L) MARCH	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	DISCHARGE (CFS) 2210 2180 2210 2110 2120 2110 2150 2550 e2500 e2500 e2570 3770 3020 3300 3370	CONCEN- TRATION (MG/L) JANUARY	DISCHARGE (TONS/DAY)	3780 3780 3580 3460 3300 3190 3240 2840 2840 2670 2580 e2500 2450	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740	CONCEN- TRATION (MG/L) MARCH 3 3 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2150 2550 2550 2550 2770 3020 3300 3370 3620	CONCEN- TRATION (MG/L) JANUARY 3 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2810 2670 2580 e2500 e2400 2450 2500 2250	CONCENTRATION (MG/L) FEBRUARY 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1760 1740 1700 1640 1620	CONCEN- TRATION (MG/L) MARCH 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2550 e2500 e2500 e2500 2550 3300 3370 3370 3620 4000	CONCENTRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2810 2670 2580 e2500 e2400 2450 22500 22500 22500 2300	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1750 1710 1730 1730 1770 1960 1790 1690 1760 1740 1700 1640 1620 1650	CONCEN- TRATION (MG/L) MARCH 3 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2150 2550 2550 2550 2770 3020 3300 3370 3620	CONCEN- TRATION (MG/L) JANUARY 3 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2810 2670 2580 e2500 e2400 2450 2500 2250	CONCENTRATION (MG/L) FEBRUARY 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1760 1740 1700 1640 1620	CONCEN- TRATION (MG/L) MARCH 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2550 2550 2550 2770 3020 3370 3620 4000 4160 4230	CONCENTRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2810 2670 2580 e2500 e2400 2450 2250 2300 2220	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740 1620 1650 1630	CONCEN- TRATION (MG/L) MARCH 3 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22	DISCHARGE (CFS) 2210 2180 2210 2110 2160 2430 2540 2510 2550 e2500 e2500 2550 3370 370 3620 4000 4160 4230 4340	CONCEN- TRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2690 2670 2580 e2500 e2400 2450 2250 2300 2220 2120 2030	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740 1700 1640 1620 1650 1630	CONCEN- TRATION (MG/L) MARCH 3 3 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550 2770 3020 3370 3370 33620 4000 4160 4230 4230 4240 4410	CONCEN- TRATION (MG/L) JANUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2810 2690 2670 2580 e2500 e2400 2250 2250 2300 2220 2120 2030 1970	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1760 1760 1740 1620 1650 1630 1590 1560 1530	CONCEN- TRATION (MG/L) MARCH 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2150 2550 2550 2550 2770 3020 3300 3370 3620 4000 4160 4230 4340 4410 4510	CONCEN- TRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2690 2580 e2500 e2400 2450 2500 2250 2300 2220 2120 2030 1970 e1900	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1790 1690 1760 1740 1620 1650 1630 1590 1560 1580	CONCEN- TRATION (MG/L) MARCH	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550 e2500 e2500 2550 2770 3020 3300 3370 3620 4000 4160 4230 4240 4340 4410 4510 4460	CONCEN- TRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2670 2580 e2500 e2400 2250 2250 2300 2220 2120 2030 1970 e1900 e1900	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1770 1960 1760 1740 1700 1640 1620 1650 1630 1590 1580 1570	CONCEN- TRATION (MG/L) MARCH 3 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 26 27 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2550 2550 2770 3020 3300 3370 3620 4000 4160 4230 4340 4410 4410 4460 4480	CONCENTRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2670 2580 e2500 e2400 2450 2500 2250 2300 2220 2120 2030 1970 e1900 e1900	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740 1700 1640 1620 1650 1630 1530 1570 1510	CONCEN- TRATION (MG/L) MARCH	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27 26 27 27 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	DISCHARGE (CFS) 2210 2180 2210 2110 2160 2430 2540 2550 e2500 e2500 2750 2770 3020 3370 3620 4000 4160 4230 4410 4510 4510 4460 4480 4430	CONCEN- TRATION (MG/L) JANUARY	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2690 2670 2580 e2500 2250 2300 2220 2120 2030 1970 e1900 e1900 e1800 e1800	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740 1700 1640 1620 1650 1630 1530 1580 1570 1510 1490	CONCEN- TRATION (MG/L) MARCH 3 3 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550 e2500 e2500 2770 3020 3370 3620 4000 4160 4230 4240 4410 44510 4460 4480 4480 4480 4410	CONCENTRATION (MG/L) JANUARY 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2670 2580 e2500 e2400 2450 2500 2250 2300 2220 2120 2030 1970 e1900 e1900	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1730 1770 1960 1790 1690 1760 1740 1700 1640 1620 1650 1630 1590 1580 1570 1510 1490 1440	CONCEN- TRATION (MG/L) MARCH	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	DISCHARGE (CFS) 2210 2180 2210 2110 2160 2430 2540 2550 e2500 e2500 2550 2770 3020 3300 3370 3620 4000 4160 4230 4410 4510 4510 4460 4480 4480 4410 4510 4160 43920	CONCEN- TRATION (MG/L) JANUARY 3 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2840 2810 2690 2670 2580 e2500 e2400 2250 2300 2250 2300 2250 2300 61900 e1900 e1800 e1800 1840	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740 1760 1640 1620 1650 1630 1530 1580 1570 1510 1490 1440 1350 1360	CONCEN- TRATION (MG/L) MARCH 3 3	DISCHARGE (TONS/DAY)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	DISCHARGE (CFS) 2210 2180 2210 2120 2110 2160 2430 2540 2510 2550 e2500 e2500 2770 3020 3300 3370 3620 4000 4160 4230 4340 4410 44510 4460 4480 4300 4160 4010	CONCENTRATION (MG/L) JANUARY 3 3	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 3780 3580 3460 3300 3190 3240 2810 2690 2580 e2500 e2400 2450 2500 2250 2300 2220 2120 2030 1970 e1900 e1900 e1800 e1800	CONCENTRATION (MG/L) FEBRUARY 2 2 2	DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 1840 1820 1870 1890 1790 1750 1710 1730 1770 1960 1790 1690 1760 1740 1700 1650 1630 1550 1550 1550 1550 1570 1510 1490 1440 1350	CONCEN- TRATION (MG/L) MARCH 3	DISCHARGE (TONS/DAY)

SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MEAN DISCHARGE (CFS)	CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		APRIL			MAY			JUNE	
1 2 3 4 5	1340 1350 1670 1530 1430		 	2330 2330 2300 2290 2310	 	 	5850 6370 6770 7320 7700	67 57 71 79 51	1060 980 1300 1560 1060
6 7 8 9	1450 1480 1540 1560 1810	 	 	2350 2390 2390 2460 2500	 	 	8050 8420 8660 8900 9120	47 41 31 35 28	1020 932 725 841 689
11 12 13 14 15	2220 2170 2140 2140 2170	 	 	2550 2630 2730 2800 2980	 2 2	 15 16	9340 9590 9810 9970 10200	40 48 31 32	1010 1240 821 861
16 17 18 19 20	2170 2170 2140 2140 2210	 	 	2970 3010 3070 3170 3330	10 23 7 11 9	80 187 58 94 81	10500 11100 11600 12000 12300	42 63 81 56	1190 1890 2540 1860
21 22 23 24 25	2400 2450 2500 2480 2460		 	3540 3660 3790 3940 4110	14 18 17 10 25	134 178 174 106 277	12600 13000 13600 14200 15000	56 58 39 	1910 2040 1430
26 27 28 29 30 31	2450 2490 2550 2500 2450	 	 	4290 4510 4770 4930 5280 5570	15 22 12 23 49 48	174 268 155 306 699 722	15600 16300 16900 17600 18200	74 83 82 83 77	3120 3650 3740 3940 3780
TOTAL	61560			101280			336570		
DAY	MEAN DISCHARGE (CFS)		SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)		SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
DAY	DISCHARGE	CONCEN- TRATION	SEDIMENT DISCHARGE	DISCHARGE	CONCEN- TRATION	SEDIMENT DISCHARGE	DISCHARGE (CFS)	CONCEN- TRATION	SEDIMENT DISCHARGE
DAY 1 2 3 4 5	DISCHARGE	CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE	DISCHARGE	CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE	DISCHARGE (CFS)	CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE
1 2 3 4	DISCHARGE (CFS) 18400 18300 18100 18300	CONCENTRATION (MG/L) JULY 56 43 40	SEDIMENT DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 18100 17800 17500 17300	CONCENTRATION (MG/L) AUGUST 19 22 17 24	SEDIMENT DISCHARGE (TONS/DAY) 929 1060 803 1120	DISCHARGE (CFS) S 19300 19500 19800 19600	CONCENTRATION (MG/L) EPTEMBER 44 25 35	SEDIMENT DISCHARGE (TONS/DAY) 2290 1320 1850
1 2 3 4 5 6 7 8 9	DISCHARGE (CFS) 18400 18300 18100 18300 18400 18600 18200 17800 17700	CONCEN- TRATION (MG/L) JULY 56 43 40 46 42 34 38 35	SEDIMENT DISCHARGE (TONS/DAY)	DISCHARGE (CFS) 18100 17800 17500 17300 17000 16700 16200 16000 15900	CONCENTRATION (MG/L) AUGUST 19 22 17 24 8 12 23 4 18	SEDIMENT DISCHARGE (TONS/DAY) 929 1060 803 1120 367 541 1010 173 773	DISCHARGE (CFS) S 19300 19500 19800 19600 19300 18600 17800 17000 16200	CONCENTRATION (MG/L) EPTEMBER 44 25 35 27 30 42 14 13	SEDIMENT DISCHARGE (TONS/DAY) 2290 1320 1850 1410 1510 2020 643 569
1 2 3 4 5 6 7 8 9 10 11 12 13 14	DISCHARGE (CFS) 18400 18300 18100 18300 18400 18600 17800 17700 17300 17200 17000 16800 16400	CONCEN- TRATION (MG/L) JULY 56 43 40 46 42 34 38 35 44 26 24 20 30	SEDIMENT DISCHARGE (TONS/DAY) 2770 2100 1980 2290 2110 1670 1830 1670 2060 1210 1100 907 1330	DISCHARGE (CFS) 18100 17800 17500 17300 17000 16700 16200 15900 15800 15500 15300 15000	CONCEN- TRATION (MG/L) AUGUST 19 22 17 24 8 12 23 3 4 18 19 15 9 15	SEDIMENT DISCHARGE (TONS/DAY) 929 1060 803 1120 367 541 1010 173 773 811 628 372 608 284	DISCHARGE (CFS) S 19300 19500 19800 19600 19300 18600 17000 16200 15400 14500 13800 13200 12500	CONCENTRATION (MG/L) EPTEMBER 44 25 35 27 30 42 14 13 9 11 17 6 12	SEDIMENT DISCHARGE (TONS/DAY) 2290 1320 1850 1410 1510 2020 643 569 374 431 633 214 405
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	DISCHARGE (CFS) 18400 18300 18100 18300 18400 18200 17800 17700 17300 17200 16800 16400 16200 16300 16200	CONCEN- TRATION (MG/L) JULY 56 43 40 46 42 34 38 35 44 26 24 20 30 25 21 24 11	SEDIMENT DISCHARGE (TONS/DAY) 2770 2100 1980 2290 2110 1670 1830 1670 2060 1210 1100 907 1330 1090 924 1050 472 437	DISCHARGE (CFS) 18100 17800 17500 17300 17000 16200 16000 15900 15800 15500 15300 15000 15100 15300 15300 15500	CONCENTRATION (MG/L) AUGUST 19 22 17 24 8 12 23 4 18 19 15 9 15 7 9 17 13 18 18	SEDIMENT DISCHARGE (TONS/DAY) 929 1060 803 1120 367 541 1010 173 773 811 628 372 608 284 364 693 537 753 558	DISCHARGE (CFS) S 19300 19500 19800 19600 19300 17800 17800 15400 15400 14500 13800 13200 12100 12100 12100 12200	CONCENTRATION (MG/L) EPTEMBER 44 25 35 27 30 42 14 13 9 11 17 6 12 8 8 6 6 8	SEDIMENT DISCHARGE (TONS/DAY) 2290 1320 1320 1850 1410 1510 2020 643 569 374 431 633 214 405 261 261 198 270
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	DISCHARGE (CFS) 18400 18300 18100 18300 18400 17000 17300 17300 17200 17000 16800 16200 16300 16200 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 16900 18100 18400 18400 18700	CONCEN- TRATION (MG/L) JULY 56 43 40 46 42 34 38 35 44 26 24 20 30 25 21 24 11 10 61 45 40 36	SEDIMENT DISCHARGE (TONS/DAY) 2770 2100 1980 2290 2110 1670 1830 1670 2060 1210 1100 907 1330 1090 924 1050 472 437 2900 2200 1990 1820	DISCHARGE (CFS) 18100 17800 17500 17300 17300 16200 16200 15900 15800 15500 15500 15000 15000 15000 15000 16000 16000 16000	CONCENTRATION (MG/L) AUGUST 19 22 17 24 8 12 23 4 18 19 15 9 17 13 18 13 15 26 11 15 8	SEDIMENT DISCHARGE (TONS/DAY) 929 1060 803 1120 367 541 1010 173 773 811 628 372 608 284 364 693 537 753 558 656	DISCHARGE (CFS) S 19300 19500 19800 19600 19600 17800 17800 15400 14500 13200 12500 12100 12200 12500 13000 13500 14100 13500 14100 15200 16700	CONCENTRATION (MG/L) EPTEMBER 44 25 35 27 30 42 14 13 9 11 17 6 12 8 8 6 8 10 12 8 23 33	SEDIMENT DISCHARGE (TONS/DAY) 2290 1320 1320 1410 1510 2020 6433 569 374 431 6333 214 405 261 261 198 270 351 437 305 944 1490

15266300 KENAI RIVER AT SOLDOTNA--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
1 2 3 4 5	7.0 7.0	6.0 6.0 6.5 6.5	6.5 6.5 6.5 7.0 6.5	4.0 3.0 3.0 3.0 3.5			2.0 .5 1.0 1.5 3.0				.0	
6 7 8 9 10	7.5 7.5 7.0 7.0 6.0	6.5 6.0 6.5 6.0 6.0 5.0	7.0 7.0 6.5 6.5 5.5	3.0 3.0 3.0 3.5 4.0	2.0 2.0 1.5 2.5 3.0	2.5 2.5 2.5 3.0 3.5	2.5 3.0 2.5 2.5 2.0	2.0 2.0 1.5 1.5	2.5 2.5 2.0 2.0	.5 1.0 2.0 1.5	.0 .0 1.0 1.0	.0 .5 1.5 1.5
1 2	6.5	5.0 5.5 5.0 5.5 5.0	5.5 6.0 6.0 6.0 5.5	4.0 2.5 3.5 3.0 2.5	2.5 2.0 2.5 2.5 1.5	3.5 2.5 3.0 3.0 2.0	2.5 2.5 2.0 1.5	1.5 1.5 1.0 .5	2.0 2.0 1.5 1.0	.5 .5 1.5 2.5 2.5	.0 .5 1.0	.0 .0 1.0 1.5 2.0
16 17 18 19 20	6.0 6.0 5.5 5.5	5.5 5.0 5.0 4.0 4.5	5.5 5.5 5.5 5.0 5.0	3.0 3.0 3.0 3.5 3.5	2.0 2.0 2.0 2.5 3.0	2.5 2.5 2.5 3.0 3.5	1.0 .5 2.0 2.5 2.0	.0 .0 .0 1.5	.5 .0 1.0 2.0 2.0	2.0 1.5 2.5 2.5 2.0	1.0 .5 1.5 2.0 1.5	1.0 1.0 2.0 2.0 2.0
21 22 23 24 25	5.0 4.5 5.0 5.0	3.5 3.5 4.0 4.0	4.5 4.0 4.5 4.5	3.5 3.0 3.0 2.5	3.0 2.5 2.0 1.5	3.0 3.0 2.5 2.0	2.0 .5 .5			2.0 2.5 2.0 2.0 2.0		2.0 2.0 2.0 2.0 1.5
26 27 28 29 30 31	4.5 4.0 3.5 4.0 3.5 4.0	4.0 3.0 2.5 3.0 2.5 2.5	4.5 3.5 3.0 3.5 3.0 3.5	2.0 2.0 3.0 3.5 3.0	.5 1.5 2.0 2.5 2.0	1.0 2.0 2.5 3.0 3.0	1.5 1.5 2.0 2.5 2.5	1.0 .5 1.0 1.5 1.5	1.0 1.5 2.0 2.0	2.0 2.0 1.5 1.5 1.0	1.5 1.5 .5 .5	2.0 2.0 1.0 1.0 1.0
MONTH	7.5	2.5	5.3	4.0	.5	2.7	3.0	.0	1.3	2.5	.0	1.2
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1												
2 3 4 5	1.0 1.0 1.0 1.0	.0 .0 .0 .0	1.0 .5 .5 .5	1.0 1.0 .5 1.0 2.0	.0 .0 .0 .0	.5 .5 .0 .0	3.0 3.5 3.0 3.0	.0 1.0 2.0 2.0	1.5 2.5 2.5 2.5 2.0	6.0 5.0 4.5 4.0 5.0	4.0 3.0 3.0 2.0 1.5	5.0 4.0 3.5 3.0 3.5
		.0 .0 .0 .5 .5 .5		1.0 1.0 .5 1.0 2.0 2.5 1.5 2.0 3.0			3.0 3.5 3.0 3.0 3.5 3.0 4.5 3.5			6.0 5.0 4.5 4.0 5.0 5.5 6.5 6.5 7.0		4.0 3.5 3.0 3.5
6 7 8 9 10		.5 .5 .0 .0	1.0 1.5 .0 .0	2.0 2.5 1.5 2.0 3.0	1.0 1.0 .5 .5	1.5 1.5 1.0 1.5 2.0	3.0 3.0 4.5 3.5 3.5	.5 1.0 1.5 1.5	2.0 2.0 3.0 2.5 3.0		3.5 4.0 4.0 4.5 4.5	4.0 3.5 3.0 3.5 4.5 5.0 5.0 5.5 6.0
6 7 8 9 10 11 12 13 14	1.5 2.0 1.0 .5 .5	.5 .5 .0 .0 .0 .0 .0 .0 .0	1.0 1.5 .0 .0 .0	2.0 2.5 1.5 2.0 3.0 3.0 2.5 2.5	1.0 1.0 .5 .5 1.5 2.0 2.0 .5	1.5 1.5 1.0 1.5 2.0 2.5 2.5 1.5 2.0	3.0 3.0 4.5 3.5 3.5 4.5 4.0 4.0 5.0	.5 1.0 1.5 1.5 1.5 2.0 2.0 1.5	2.0 2.0 3.0 2.5 3.0 3.0 2.5 3.0	5.5 6.5 6.5 7.0 8.0 9.0 9.5	3.5 4.0 4.5 4.5 4.5 5.0 5.5 6.0	4.0 3.5 3.0 3.5 4.5 5.0 5.5 6.0 6.0 7.5 8.0
6 7 8 9 10 11 12 13 14 15 16 17 18	1.5 2.0 1.0 .5 .5 .5 1.0 1.0 .5 .5 .5	.5 .5 .0 .0 .0 .0 .0 .0 .0	1.0 1.5 .0 .0 .0 .0 .0 .0 .0 .0	2.0 2.5 1.5 2.0 3.0 3.0 3.0 2.5 2.5 2.5 1.5	1.0 1.0 .5 .5 1.5 2.0 2.0 .5 1.0 1.0	1.5 1.5 1.0 1.5 2.0 2.5 2.5 1.5 2.0 1.5 2.0	3.0 4.5 3.5 4.5 4.0 4.0 5.0 4.5 4.5	.5 1.0 1.5 1.5 1.5 2.0 2.0 1.5 1.5 2.0 2.0 2.0	2.0 2.0 3.0 2.5 3.0 3.0 2.5 3.0 3.0 3.0 3.0 3.0	5.5 6.5 6.5 7.0 8.0 9.0 9.5 10.0 10.5 9.5 8.5	3.5 4.0 4.0 4.5 4.5 4.5 5.0 5.5 6.0 7.5 7.5 6.0 6.5 6.0	4.0 3.5 3.0 3.5 4.5 5.0 5.0 5.5 6.0 7.5 8.0 9.0 8.0 7.5 8.0 7.5
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1.5 2.0 1.0 .5 .5 .5 1.0 1.0 .5 .5 .5 2.0 2.0 2.0	.5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	1.0 1.5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	2.0 2.5 1.5 2.0 3.0 3.0 2.5 2.5 2.0 3.0 1.5 1.0 1.0	1.0 1.0 .5 .5 1.5 2.0 2.0 .5 1.0 1.0 .5 .0 .0 .0	1.5 1.5 1.0 1.5 2.0 2.5 2.5 1.5 2.0 1.5 2.0 1.5 2.0 1.5	3.0 4.5 3.5 3.5 4.0 4.0 5.0 4.5 4.5 5.0 5.0 5.0 5.0	.5 1.0 1.5 1.5 2.0 2.0 1.5 1.5 2.0 2.0 2.0 2.0 2.0 3.5 3.0 3.0 2.5	2.0 2.0 3.0 2.5 3.0 3.0 2.5 3.0 3.0 3.0 3.0 3.5 4.0	5.5 6.5 6.5 7.0 8.0 9.0 9.5 10.0 10.5 9.5 8.5 9.0 8.5 7.5 7.5	3.5 4.0 4.0 4.5 4.5 4.5 5.5 6.0 7.5 6.0 6.5 6.0 6.5 5.5 6.0 5.5	4.0 3.5 3.5 4.5 5.0 5.0 5.5 6.0 7.5 8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 8.0 8.0 7.5 8.0 8.0 8.0 7.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	lR.
1 2 3 4 5	9.0 10.0 11.5 10.5 9.5	6.5 7.0 8.0 8.0	8.0 8.5 9.5 9.0 8.5	11.5 12.5 11.5 11.0 10.5	9.0 9.0 9.0 8.5 9.0	10.5 11.0 10.0 10.0	12.5 13.0 12.5 11.5 12.5	10.5 11.0 10.5 10.0	11.5 12.0 11.0 10.5 11.0	11.5 11.5 11.5 11.5 11.0	10.0 10.5 10.5 11.0 9.5	11.0 11.0 11.0 11.0
6 7 8 9 10	9.0 8.0 9.5 10.5 10.0	7.0 6.0 6.5 7.5 8.0	8.0 7.0 8.0 8.5 9.0	11.5 12.5 13.5 13.5 13.5	10.0 11.0 11.5 12.0 12.5	11.0 12.0 12.5 13.0 13.0	13.5 15.0 14.5 14.0 14.0	11.0 12.0 13.0 12.5 13.0	12.5 13.5 14.0 13.0 13.5	9.5 10.0 10.0 10.5 10.5	8.0 9.0 9.0 8.5 9.0	8.5 9.5 9.5 9.5 10.0
11 12 13 14 15	9.5 10.0 11.0 11.5 11.0	7.0 7.5 9.0 9.0 7.5	8.0 9.0 10.0 10.0 9.5	13.0 12.5 11.5 12.0 11.5	12.0 10.5 10.0 10.0	12.5 11.0 11.0 11.0	14.0 14.0 14.5 14.5	12.5 12.5 12.5 12.0 13.5	13.5 13.5 13.5 13.5 14.0	10.5 10.5 10.0 9.5 10.0	9.5 9.5 9.0 9.0	10.0 10.0 9.5 9.5 9.5
16 17 18 19 20	12.5 12.0 12.0 12.0	8.0 8.5 9.5 10.0	10.0 10.5 11.0 11.0	11.5 12.5 12.0 14.0 13.0	10.0 10.5 10.5 11.5 11.0	11.0 11.5 11.5 13.0 11.5	13.5 13.5 13.0 12.5 12.5	12.0 12.0 12.0 11.5 11.0	12.5 12.5 12.5 12.0 11.5	10.5 10.0 10.0 9.5 10.0	9.0 9.0 9.0 9.0	9.5 9.5 9.5 9.5
21 22 23 24 25	13.0 13.5 13.0 13.0 13.5	11.0 9.5 11.0 9.5 8.5	12.0 12.0 12.5 11.5 11.0	12.0 12.0 12.0 12.0 12.0	10.0 10.0 11.5 11.0 11.0	11.0 10.5 12.0 11.5 11.5	11.5 12.5 12.0 12.5 12.5	10.5 10.5 10.5 11.0 11.5	11.0 11.5 11.5 12.0 12.0	9.5 9.0 9.0 8.5 9.0	9.0 8.0 8.5 8.0	9.5 8.5 8.5 8.5
26 27 28 29 30 31	13.5 13.0 13.0 14.0 12.5	10.0 10.0 9.0 9.5 9.5	12.0 12.0 11.0 12.0 10.5	13.0 13.5 13.0 12.5 12.5	10.5 11.5 11.5 10.5 12.0 11.5	12.0 12.5 12.5 12.0 12.5 12.0	13.0 12.5 12.0 11.5 11.5	11.5 12.0 11.0 10.5 10.5	12.5 12.0 11.5 11.0 11.0	9.0 8.5 8.5 8.5 8.5	8.0 8.0 8.0 7.5 7.5	8.5 8.5 8.0 8.0
MONTH	14.0	6.0	10.0	14.0	8.5	11.5	15.0	10.0	12.2	11.5	7.5	9.4
YEAR	15.0	.0	5.5									

15271000 SIXMILE CREEK NEAR HOPE

LOCATION.--Lat $60^{\circ}49'15''$, long $149^{\circ}25'31''$, in $SW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 34, T. 8 N., R. 1 W. (Seward D-7 quad), Kenai Peninsula Borough, Hydrologic Unit 19020302, Chugach National Forest, on left bank, 6.0 mi upstream from mouth at Turnagain Arm, and 10.6 mi southeast of Hope.

DRAINAGE AREA.-- 234 mi²

Date

PERIOD OF RECORD.--June 1979 to September 1990, August 1997 to current year.

Discharge

(ft³/s)

Time

GAGE.--Water-stage recorder. Elevation of gage is 250 ft above sea level, from topographic map. Prior to November 26, 1979, recording gage at site 0.8 mi downstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. Rain gage at station. GOES satellite telemetry at station.

Date Time

Discharge Gage Height

(ft³/s)

EXTREMES FOR CURRENT PERIOD.--Peak discharges greater than base discharge of 3,500 ${\rm ft}^3/{\rm s}$ and maximum (*)

Gage Height

(ft)

			(IL./	S)	(IL)				(IL')	s)	(IL)	
	Jun 28	01:45	6370		12.73		Aug 29	02:30	*6930		*12.94	
	Jul 20	10:15	4050		11.72		_					
	041 20	10-15	1030		11.72							
		DISCHAR	GE. CUBIC	TEET :	PER SECOND,	WATER	YEAR OCTOBE	R 2000	TO SEPTEMB	ER 2001		
			,				VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	635	409	296	482	282	174	129	488	2690	4150	2170	2510
2	608	394	294	399	258	167	131	449	2990	4170	2190	2030
3	582	368	399	375	260	161	134	424	3140	4180	2230	1970
4	564	361	352	340	272	178	132	384	2990	3890	2160	1910
5	596	377	347	298	269	166	128	348	2890	4150	2030	1940
6	604	363	341	316	252	163	126	329	2900	3990	1890	1580
7	738	359	318	389	237	160	126	328	2670	3790	1780	1420
8	1110	346	294	388	226	156	127	355	2560	3710	1720	1230
9	811	347	264	345	222	161	126	399	2710	3460	1640	1100
10	728	376	332	314	217	158	129	426	3000	3340	1550	1010
11	706	405	291	301	234	159	145	480	3140	3160	1470	937
12	681	328	277	304	225	158	149	533	3040	3070	1590	1230
13	653	355	262	288	194	154	147	598	3000	2890	1680	1430
14	1000	359	305	324	190	154	144	702	3140	2740	1780	1110
15	866	320	352	506	222	160	143	870	3550	2800	1700	1010
16	957	346	291	460	214	156	149	1040	3900	2760	1640	959
17	994	338	265	512	194	150	154	1110	4370	2860	1520	1010
18	843	338	276	777	185	142	163	1130	4540	2910	1570	1070
19	747	350	281	1230	204	137	179	1170	4430	3100	1410	1130
20	682	409	276	811	187	141	199	1410	4240	3780	2200	996
21	628	624	284	660	182	142	216	1530	4470	3500	1900	1100
22	638	579	255	587	177	141	232	1530	4750	3400	1610	1090
23	601	489	302	516	e175	156	258	1460	5260	3060	1330	1350
24	557	472	274	446	e180	146	263	1480	5600	2750	1210	3110
25	554	429	308	398	199	148	292	1480	5290	2690	1110	2280
26	515	362	288	369	186	148	330	1420	5570	2670	1020	1730
27	459	321	276	350	194	147	374	1400	5850	2640	1010	1430
28	403	398	282	306	186	138	460	1640	5890	2520	2870	1350
29	424	369	396	322		135	472	1960	5480	2300	4710	1220
30	466	339	595	309		135	487	2290	4670	2190	3550	1060
31	446		619	295		132		2560		2230	3360	
TOTAL	20796	11630	9992	13717	6023	4723	6244	31723	118720	98850	59600	43302
MEAN	671 1110	388	322	442 1230	215	152	208	1023 2560	3957 5890	3189 4180	1923	1443
MAX MIN	403	624 320	619 255	288	282 175	178 132	487 126	328	2560	2190	4710 1010	3110 937
AC-FT	41250		19820	27210	11950	9370	12380	62920		196100	118200	85890
CFSM	2.87	1.66	1.38	1.89	.92	.65	.89	4.37	16.9	13.6	8.22	6.17
IN.	3.31	1.85	1.59	2.18	.96	.75	.99	5.04	18.87	15.71	9.47	6.88
		CMA MT CMT CC	OF MONTH	MI	AN DAMA HOD	MADED	VENDO 1070	2001	DV WAMED I	TEAD (MI	.) 4	
		STATISTICS	OF MONT	нга МЕ	AN DATA FOR	WATER	TEARS 19/9	- 2001,	BI WATER Y	EAR (WY) 	
MEAN	888	420	267	231	175	155	250	1237	2729	2289	1331	1046
MAX	1777	654	353	528	306	240	397	1811	3957	3986	2699	1556
(WY)	1981	1980	2000	1981	1981	1984	1990	1981	2001	1980	1981	1999
MIN	500	221	198	133	113	106	119	748	1736	1166	760	607
(WY)	1998	1986	1999	1999	1999	1999	1985	1985	1989	1990	1990	1983

[#] See Period of Record; partial years used in monthly statistics

15271000 SIXMILE CREEK NEAR HOPE--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1979 - 2001#
ANNUAL TOTAL	337082	425320	
ANNUAL MEAN	921	1165	930
HIGHEST ANNUAL MEAN			1335 1980
LOWEST ANNUAL MEAN			675 1986
HIGHEST DAILY MEAN	4520 Jun 8	5890 Jun 28	7570 Jul 12 1980
LOWEST DAILY MEAN	a137 Apr 1	b126 Apr 6	80 cApr 1 1986
ANNUAL SEVEN-DAY MINIMUM	140 Mar 22	128 Apr 4	80 Apr 1 1986
MAXIMUM PEAK FLOW		6930 Aug 29	d8070 Jul 2 1980
MAXIMUM PEAK STAGE		12.94 Aug 29	13.22 Jul 2 1980
INSTANTANEOUS LOW FLOW			f29.0 Nov 26 1979
ANNUAL RUNOFF (AC-FT)	668600	843600	674100
ANNUAL RUNOFF (CFSM)	3.94	4.98	3.98
ANNUAL RUNOFF (INCHES)	53.59	67.61	54.03
10 PERCENT EXCEEDS	2670	3120	2450
50 PERCENT EXCEEDS	526	487	554
90 PERCENT EXCEEDS	150	157	140

[#] See Period of Record; partial years used in monthly statistics
a Apr. 1 and Apr. 2
b Apr. 6, Apr. 7 and Apr. 9
Apr. 1 to Apr. 9, 1986
d Peak discharge was probably greater sometime during the period, Nov. 26, 1979 to Jan. 9, 1980, during release from storage behind snow-avalanche dam upstream from former gage site
f Sometime between Nov. 26, 1979 and Jan. 9, 1980, during release from storage behind snow-avalanche dam upstream from former gage site, site and datum then in use

15272280 PORTAGE CREEK AT PORTAGE LAKE OUTLET NEAR WHITTIER

LOCATION.--Lat $60^{\circ}47'07''$, long $148^{\circ}50'20''$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec. 13, T. 8 N., R. 3 E. (Seward D-5 SW quad), Municipality of Anchorage, Hydrologic Unit 19020302, on left bank at lake outlet, 5.0 mi west of Whittier, 5.8 mi southeast of Portage, and 6.5 mi upstream from mouth.

DRAINAGE AREA. -- 40.5 mi².

PERIOD OF RECORD. -- March 1989 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 95 ft above sea level, from topographic map.

REMARKS.--No estimated daily discharges. Records good except for March 1-4, which are fair.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, 12,500 ft³/s, August 19, 1984 (elevation about 97.05 ft above sea level from USFS levels) by contracted-opening measurement of peak flow.

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge of 4,600 ${\rm ft}^3/{\rm s}$ and maximum (*).

	Date	Time	Discharge (ft ³ /s		Height		Date	Time	Discha (ft ³ /	rge s)	Gage Height (ft)	:
	Aug 20	1415	4690	7	7.18		Sep 24	0515	4620)	7.14	
	Aug 29	0100	*9200	*	9.23							
		DISCHA	RGE, CUBIC	FEET PER		WATER YE Y MEAN VA	AR OCTOBER LUES	2000 TO	SEPTEMBE	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	423 360 315 287 351	195 185 169 159	231 194 185 219 289	560 392 289 232 191	222 187 159 143 144	179 159 123 128 192	103 101 148 141 119	238 224 217 207 193	584 665 779 814 795	1770 1750 1810 1770 2020	1630 1730 1830 1820 1770	3280 2010 1490 1880 2880
6 7 8 9 10	706 1370 1530 990 725	150 155 153 160 287	296 283 237 199 193	184 401 485 415 286	152 138 121 108 100	248 248 219 254 241	104 94 89 87 98	206 193 171 162 164	788 743 691 694 738	2150 1830 1580 1480 1480	1700 1630 1540 1440 1350	1890 1420 1100 867 720
11 12 13 14 15	625 543 527 1280 1150	408 346 328 392 319	201 175 151 133 127	239 252 233 478 843	98 101 97 91 84	245 224 205 192 226	155 184 178 154 136	157 147 143 142 155	817 860 841 853 944	1520 1780 1770 1570 1520	1310 1420 1630 1850 1870	640 1660 2830 2510 2030
16 17 18 19 20	1350 1430 915 627 468	329 377 484 621 1060	118 136 169 176 189	572 652 1150 1530 800	81 75 71 71 74	240 196 161 138 122	121 111 104 100 98	183 207 226 253 303	1080 1190 1220 1240 1200	1470 1470 1550 1680 2560	1780 1640 1970 2110 4130	1440 1650 1600 1330 1100
21 22 23 24 25	378 362 350 307 404	1440 1200 740 610 530	219 194 172 207 314	628 689 613 441 369	71 69 67 65 69	107 95 96 89 93	101 104 109 110 144	420 594 514 445 433	1210 1280 1490 1740 1750	3080 3760 3660 2730 2160	3690 2710 2020 1730 1600	1290 1460 2660 4170 2580
26 27 28 29 30 31	377 312 262 227 226 215	398 318 329 348 289	402 452 454 717 854 807	312 276 215 179 162 180	93 192 209 	112 134 122 113 120 116	187 204 323 327 274	422 393 386 412 455 516	1870 2060 2210 2220 1980	1890 1780 1660 1490 1420 1530	1510 1720 4710 7970 6530 5580	1750 1240 1270 1130 846
TOTAL MEAN MAX MIN AC-FI CFSM IN.	626 1530 215	12630 421 1440 150 25050 10.4 11.60	8693 280 854 118 17240 6.92 7.98	14248 460 1530 162 28260 11.3 13.09	3152 113 222 65 6250 2.78 2.90	5137 166 254 89 10190 4.09 4.72	4308 144 327 87 8540 3.55 3.96	8881 286 594 142 17620 7.07 8.16	35346 1178 2220 584 70110 29.1 32.47	59690 1925 3760 1420 118400 47.5 54.83	75920 2449 7970 1310 150600 60.5 69.73	52723 1757 4170 640 104600 43.4 48.43
		STATISTIC	CS OF MONTH	LY MEAN I	DATA FOR	WATER YEA	ARS 1989 -	2001, BY	WATER YE	AR (WY)	#	
MEAN MAX (WY) MIN (WY)	532 1014 1994 136 1997	235 553 1998 90.5 1991	124 280 2001 26.3 1991	126 460 2001 26.0 1991	118 277 1997 26.0 1991	87.9 189 1998 26.0 1991	244 393 1995 111 1999	610 1158 1995 286 2001	1433 1728 1990 1178 2001	2116 2518 1990 1714 1999	2047 3164 1989 1409 1998	1870 3583 1995 649 1992

15272280 PORTAGE CREEK AT PORTAGE LAKE OUTLET NEAR WHITTIER--Continued

SUMMARY STATISTICS	FOR 2000 CALEND	AR YEAR	FOR 2001 W	ATER YE	AR	WATER YEARS	1989 - 2001#
ANNUAL TOTAL	248821		300120				
ANNUAL MEAN	680		822			786	
HIGHEST ANNUAL MEAN						972	1995
LOWEST ANNUAL MEAN						656	2000
HIGHEST DAILY MEAN	4110	Jul 22	7970	Aug	29	10700	Sep 20 1995
LOWEST DAILY MEAN	a55	Jan 18	65	Feb	24	b26	Dec 5 1990
ANNUAL SEVEN-DAY MINIMUM	56	Jan 16	69	Feb	19	26	Dec 5 1990
MAXIMUM PEAK FLOW			9200	Aug	29	13000	Sep 20 1995
MAXIMUM PEAK STAGE			9.2	23 Aug	29	10.66	Sep 20 1995
INSTANTANEOUS LOW FLOW			59	Feb	25	26	Dec 5 1990
ANNUAL RUNOFF (AC-FT)	493500		595300			569500	
ANNUAL RUNOFF (CFSM)	16.8		20.3	3		19.4	
ANNUAL RUNOFF (INCHES)	228.55		275.6	57		263.73	
10 PERCENT EXCEEDS	1690		1860			2040	
50 PERCENT EXCEEDS	345		386			329	
90 PERCENT EXCEEDS	91		110			55	

[#] See Period of Record: partial years used in monthly statistics
a Jan. 18 to Jan. 22
b From Dec. 5, 1990 to Mar. 31, 1991

15272380 TWENTYMILE RIVER BELOW GLACIER RIVER NEAR PORTAGE

LOCATION.--Lat $60^{\circ}53'35''$, long $148^{\circ}55'38''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 4, T. 9 N., R. 3 E. (Seward D-6 quad), hydrologic unit 19020401, on right bank, 0.1 miles below Glacier River, 4.0 miles upstream from the Seward Highway, and 6.0 miles northeast of Portage.

DRAINAGE AREA. -- 141 mi².

PERIOD OF RECORD. -- April to September 2001.

GAGE.--Water-stage recorder. Elevation of gage is 50 ft above sea level, from topographic map.

REMARKS.--Record is good except for June 16 to July 25, August 2 to 4, 19, 20, September 13 to 15, and estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES FOR CURRENT PERIOD.-- Maximum discharge, $9,990~{\rm ft}^3/{\rm s}$, August 29, gage height 25.47 ft.; minimum discharge not determined, occurs during winter.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAILI MEAN VALUES												
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							e195	547	1760	3490	e2900	4400
2							e195	520	1940	3470	3010	3240
3							258	533	2090	3360	3170	2820
4							271	468	2020	3170	3170	3150
5							226	416	2020	3300	3060	4330
3							220	110	2020	3300	3000	4330
6							197	483	2070	3290	3000	3250
7							183	490	1920	3010	2890	2730
8							180	439	1750	2810	2710	2330
9							178	438	1870	2650	2600	2020
10							191	433	2070	2660	2440	1810
11							344	421	2220	2630	2370	1650
12							438	412	2220	2800	2590	2160
13	‡ 758						345	432	2090	2790	2900	3090
14							294	505	2160	2720	3190	2840
15							263	603	2380	2760	3250	2530
16		‡ 552					264	681	2700	2650	3140	2200
17							254	730	3040	2770	2970	2440
18							243	788	3150	2880	3070	2580
19							243	866	2960	3030	3100	2380
20							247	1010	2850	4350	5770	2110
20							21,	1010	2000	1330	3	2110
21							267	1090	3010	4700	5360	2130
22							282	1170	3230	4990	4070	2070
23							300	1130	3700	4770	3150	2640
24							295	1130	3990	3980	2910	4030
25							394	1100	3800	3360	2760	3070
26							437	1060	3960	e3200	2580	2510
27							464	1060	4390	e3100	2520	2080
28							733	1190	4530	e2900	5130	1940
29							626	1390	4320	e2800	9230	1860
30							559	1460	3840	e2700	8090	1600
31								1630		e2800	6610	
TOTAL							9366	24625	84050	99890	113710	77990
MEAN							312	794	2802	3222	3668	2600
MAX							733	1630	4530	4990	9230	4400
MIN							178	412	1750	2630	2370	1600
AC-FT							18580	48840	166700	198100	225500	154700
CFSM							2.21	5.63	19.9	22.9	26.0	18.4
IN.							2.47	6.50	22.17	26.35	30.00	20.58

Result of discharge measurement Estimated

Discharge Gage Height

15274000 SOUTH FORK CAMPBELL CREEK NEAR ANCHORAGE

LOCATION.--Lat $61^{\circ}10'02''$, long $149^{\circ}46'14''$, in NW_{4}^{V} sec. 2, T. 12 N., R. 3 W. (Anchorage A-8 quad), Municipality of Anchorage, 0.2 mi downstream from bridge on dog-mushing trail leading to Campbell Airstrip, 2.0 mi upstream from North Fork Campbell Creek, and 5.5 mi southeast of Anchorage.

DRAINAGE AREA. -- 29.2 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1947 to September 1971, October 1998 to September 2001, (discontinued)

REVISED RECORD. -- WRD AK-00-1: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Altitude of gage is 260 ft, from topographic map. Prior to August 20, 1952, water-stage recorder at site 0.2 mi upstream at different datum. August 20, 1952 to July 15, 1958, water-stage recorder at site 70 ft downstream from previous site at different datum; July 16, 1958 to September 30, 1971, water-stage recorder at same site but different datum. October 1, 1971 to September 30, 1972, crest-stage gage at same site but different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of $150~{\rm ft}^3/{\rm s}$ and maximums (*).

Discharge Gage Height

	Date	Time	(ft ³		(ft)	i C	Date	Time	(ft ³		(ft)	L
	June 15	1400	162		6.20		July 06	unknown	*243		*a6.52	
	June 25	0130	157		6.18		July 20	unknown	unknov	wn	unknown	
		DISCHA	RGE, CUBI	C FEET I		, WATER LY MEAN	YEAR OCTOE	BER 2000 T	O SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	60 57 54 51 53	e28 e28 e28 e27 e27	e21 e20 e20 e20 e21	e13 e13 e12 e12 e11	e10 e10 e10 e10 e9.5	e11 e11 e11 e11	e8.0 7.6 5.1 5.1 6.8	12 9.8 10 10 9.0	69 77 107 120 111	e100 e90 e85 e90 e120	e48 e46 55 64 56	38 37 54 62 96
6 7 8 9 10	53 48 45 41 40	e27 e27 e27 e27 e27	e21 e21 e21 e20 e20	e11 e12 e12 e11 e11	e9.0 e9.0 e9.0 e8.5 e8.5	e12 12 12 11 12	8.1 6.4 6.8 6.6 6.3	8.5 8.7 9.5 10	117 124 96 96 94	e160 109 124 110 96	50 47 46 45 43	78 67 61 52 48
11 12 13 14 15	40 39 38 39 37	39 29 30 27 e26	e20 e19 e19 e19 e19	e11 e12 e12 e12 e12	e8.5 e8.5 e8.5 e8.5 e8.5	9.0 8.2 9.8 9.7 9.7	6.6 6.2 6.2 6.3 6.6	12 13 16 21 26	96 100 100 95 135	106 95 87 e80 78	41 40 39 39 42	45 44 44 43 40
16 17 18 19 20	36 35 34 34 33	e26 e26 25 27 27	e18 e17 e17 e17 e18	e12 e12 e12 e12 e12	e8.5 e9.0 e9.0 e9.0 e9.0	9.1 9.6 e9.5 e9.5	6.5 6.4 6.6 7.0 7.8	29 31 31 31 37	121 115 106 112 116	e70 e65 e65 e75 e150	43 42 45 42 46	39 39 40 41 39
21 22 23 24 25	e33 e33 33 33	26 24 25 e24 e24	e17 e17 e16 e15 e15	e11 e11 e11 e11	e9.0 e9.5 e9.5 e10 e11	e9.0 e9.0 e9.0 e9.0	8.3 8.2 8.8 8.5 9.6	35 32 33 33 34	118 121 126 133 138	e130 e110 e95 e75 e65	41 39 37 38 37	38 37 36 36 35
26 27 28 29 30 31	33 e31 e31 e29 e29 e31	e24 e24 e24 e23 e22	e14 e14 e13 e13 e13 e14	e11 e11 e10 e10 e10	e12 e12 e11 	e9.5 e10 e9.5 e9.0 8.3 8.4	10 11 11 10 12	34 36 41 51 60 65	e140 e140 e130 e120 e110	60 54 51 48 e46 e50	35 33 40 58 45 41	33 33 32 32 31
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1216 39.2 60 29 2410 1.34 1.55	795 26.5 39 22 1580 .91 1.01	549 17.7 21 13 1090 .61	355 11.5 13 10 704 .39 .45	264.5 9.45 12 8.5 525 .32 .34	307.3 9.91 12 8.2 610 .34 .39	230.4 7.68 12 5.1 457 .26	798.5 25.8 65 8.5 1580 .88 1.02	3383 113 140 69 6710 3.87 4.31	2739 88.4 160 46 5430 3.03 3.49		1350 45.0 96 31 2680 1.54 1.72
		STATISTIC	S OF MON	THLY MEA	N DATA FOR	WATER	YEARS 1947	- 2001, E	BY WATER	YEAR (W	Y)#	
MEAN MAX (WY) MIN (WY)	44.4 83.7 1962 19.3 1951	26.5 56.2 1953 11.5 1951	17.1 31.1 1961 10.6 1969	12.7 33.3 1961 5.99 1965	9.12 17.1 1961 4.02 1969	7.46 12.0 1961 3.44 1970	8.42 20.3 1964 3.70 1971	34.3 62.8 1960 10.5 1971	96.6 166 1962 49.2 1954	77.1 151 1963 37.8 1954		60.9 122 1960 21.1 1969

See Period of Record; partial years used in monthly statistics From crest-stage gage Estimated

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1947 - 2001#
ANNUAL TOTAL	14980.6	13350.7	
ANNUAL MEAN	40.9	36.6	38.2
HIGHEST ANNUAL MEAN			50.9 1949
LOWEST ANNUAL MEAN			20.5 1969
HIGHEST DAILY MEAN	182 Jul 18	160 Jul 6	572 Jun 21 1949
LOWEST DAILY MEAN	6.3 Apr 11	b5.1 Apr 3	c2.0 Mar 28 1964
ANNUAL SEVEN-DAY MINIMUM	6.7 Apr 7	6.4 Apr 10	2.6 Mar 24 1964
MAXIMUM PEAK FLOW		243 Jul 6	891 Jun 21 1949
MAXIMUM PEAK STAGE		a6.52 Jul 6	df6.40 Nov 10 1965
INSTANTANEOUS LOW FLOW		4.0 Apr 3	.00 Oct 12 1958
ANNUAL RUNOFF (AC-FT)	29710	26480	27650
ANNUAL RUNOFF (CFSM)	1.40	1.25	1.31
ANNUAL RUNOFF (INCHES)	19.10	17.03	17.78
10 PERCENT EXCEEDS	111	96	88
50 PERCENT EXCEEDS	27	27	25
90 PERCENT EXCEEDS	8.4	8.8	7.0

[#] See Period of Record; partial years used in monthly statistics
a From crest-stage gage
b Apr. 3-4
c Mar. 28 to Mar. 30, 1964
d Backwater from ice
f Site and datum then in use

15274000 SOUTH FORK CAMPBELL CREEK NEAR ANCHORAGE--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1948-49, 1951, 1958-61, 1965-70, 1998 to September 2001 (discontinued).

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: October 1998 to September 2001.

INSTRUMENTATION.--Electronic water temperature recorder since October 1998, set for 15-minute recording interval.

REMARKS.--No record from January 18-22, May 3-15, and June 27 to July 5 due to missing record and damaged equipment. Partial day of record on January 23, May 2, and 16, June 26, and July 6. Records represent water temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross sections on December 7, and August 2. No variation was found within the cross section. No variation was found between the mean stream temperature and temperature at the sensor.

EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Maximum, 14.5°C July 4, 1999; minimum, 0.0°C on many days during the winter periods.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum recorded, 13.5°C August 13, may have been higher during period of missing record; minimum, 0.0°C on many days during winter.

		SAMPLE LOCA- TION, CROSS SECTION (FT FM L BANK)	SPECIFIC CONDUC- TANCE (US/CM)	PH WATER WHOLE FIELD (STAN- DARD UNITS)	TEMPERA- TURE WATER (DEG C)	BAROMET- RIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PERCENT SATURA- TION)
DATE	TIME	(00009)	(00095)	(00400)	(00010)	(00025)	(00300)	(00301)
DEC								
07	1245	4.00	89	7.5	0	765	14.6	99.5
07	1246	7.00	90	7.5	0	765	14.6	99.5
07	1247	10.0	90	7.5	0	765	14.6	99.5
07	1248	13.0	90	7.5	0	765	14.6	99.5
07	1249	16.0	90	7.5	0	765	14.6	99.5
AUG								
02	1120	7.00	78	7.7	9.5	756	11.6	102
02	1121	12.0	78	7.7	9.5	756	11.6	102
02	1122	17.0	78	7.7	9.5	756	11.6	102
02	1123	22.0	78	7.7	9.5	756	11.6	102
02	1124	27.0	78	7.7	9.5	756	11.6	102

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT (CODE) (50280)	QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPERA TURE AIR (DEG C) (00020)
OCT 05	1520	9	9	29.5		53	10	3045	1001		79	7.8	4.5
NOV 03	1240	9	9			E28	10	3045	1001		93	7.8	-1.0
DEC 07	1300	9	7	14.8		21	10	3045	1001	30	90	7.5	
JAN 18	1410	9	9	28.0	5.28	12	10	3045	1001		98	8.2	
FEB 09	1340	9	9	10.0		8.6	10	3045	1001		96	7.5	-6.5
MAR 02	1050	9	9	30.0		11	10	3045	1001	10	108	7.7	-1.0
MAY 02 31	1320 1640	9 9	9 9	23.5 31.0	5.01 5.65	9.9 67	10 10	3045 3045	1001 1099		110 69	8.2 7.7	.00 19.0
JUN 04 14	1410 1410	9 9	9 9	30.0 30.0	5.94 5.84	115 93	10 10	3045 3045	1099 1001		56 62	7.6 7.6	19.0 18.0
JUL 19	1320	9	9	29.5	5.76	70	10	3045	1001		69	7.6	16.0
AUG 02	1140	9	9	25.3	5.68	53	10	3045	1001		78	7.7	18.0
SEP 09 11	1320 1200	D 9	9 9	 24.9	 5.64	 48	 10	 3045	1099 1001		76 80	7.9 7.7	9.0 15.5

15274000 SOUTH FORK CAMPBELL CREEK NEAR ANCHORAGE--Continued

DATE	TEMP- ERATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MMOF HG) (00025)	OXYGEN DIS- OLVED (MG/L) (00300)	OXYGEN, DIS- OLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	DIS- SOLVED (MG/L AS NA)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT													
05 NOV	3.0	746	12.9	98	40		E1	39	12.6	1.72	1.0	25	.24
03 DEC	.00	752	14.5	101	E12	E11	<1	43	14.0	2.07	1.4	29	.19
07 JAN	.00	765	14.6	99	E10	E7	<1	41	13.1	1.99	1.2	29	.20
18 FEB	.5	738	13.3	95	E6	E7	<1	43	13.6	2.15	1.3	31	.22
09 MAR	.00	763	15.0	102	E2	E1	<1	36	11.4	1.81	1.1	34	E.18
02 MAY	.5				E4	<1	<1	45	14.2	2.40	1.4	34	.21
02 31	2.0 7.7	742 753	12.9 11.3	96 96				50 31	16.0 9.93	2.56	1.5 1.0	39 22	.24
JUN 04 14	6.5 7.5	753 761	12.3 11.7	101 98				25 29	8.15 9.31	1.09 1.28	.3	18 20	.23
JUL 19	11.0	758	10.8	98				31	10.3	1.34	.9	22	.09
AUG 02	9.5	756	11.6	102				34	11.1	1.49	.9	24	.15
SEP 09	6.0	766	12.4	99						1 60			
11	5.0	765	11.7	91				39	12.9	1.69	1.1	25	.13
DATE	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SUL- FATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLOU- RIDE DIS- SOLVED (MG/L AS F) (00950)	SIL- ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOL- IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOL- IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)
OCT 05	BONATE WATER DIS IT FIELD MG/L AS HCO3	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	FATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE DIS- SOLVED (MG/L AS F)	ICA, DIS- SOLVED (MG/L AS SIO2)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L)	GEN NITRITE DIS- SOLVED (MG/L AS N)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N)	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N)
05 NOV 03	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	FATE DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)
OCT 05 NOV 03 DEC 07	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	FATE DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)
OCT 05 NOV 03 DEC 07 JAN 18	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 28 34	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	FATE DIS- SOLVED (MG/L AS SO4) (00945) 13.6	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.06	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)
OCT 05 NOV 03 DEC 07 JAN 18 FEB 09	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 28 34	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 23 28 27	FATE DIS- SOLVED (MG/L AS SO4) (00945) 13.6 13.5	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 6.1 7.6	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 57 55	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 50 57	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .183 .271	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005 <.002	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.06 .10	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10
OCT 05 NOV 03 DEC 07 JAN 18 FEB 09 MAR 02	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 28 34 32 36	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 23 28 27 30	FATE DIS- SOLVED (MG/L AS SO4) (00945) 13.6 13.5 12.4	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .5 .5 .5	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 6.1 7.6 7.2	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 57 55 57	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 50 57 54	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001 <.001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .183 .271 .302	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005 <.002 <.002	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.06 .10 E.07 <.08	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10
OCT 05 NOV 03 DEC 07 JAN 18 FEB 09 MAR 02 MAY 02	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 28 34 32 36 41 40 45	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 23 28 27 30 34 33 38	FATE DIS- SOLVED (MG/L AS SO4) (00945) 13.6 13.5 12.4 12.6 12.8 10.9	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .5 .5 .5 .5	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 6.1 7.6 7.2 7.5 6.3 7.6	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 57 55 57 63 62 58	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 50 57 54 57 60	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001 <.001 <.001 <.001 .001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .183 .271 .302 .340 .366 .368	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005 <.002 <.002 .002 .003 .009	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.06 .10 E.07 <.08 E.05 <.08	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1
OCT 05 NOV 03 DEC 07 JAN 18 FEB 09 MAR 02	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 28 34 32 36 41 40	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 23 28 27 30 34 33	FATE DIS- SOLVED (MG/L AS SO4) (00945) 13.6 13.5 12.4 12.4 12.6 12.8	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .5 .5 .5 .5	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 6.1 7.6 7.2 7.5 6.3 7.6	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 57 55 57 63 62 58	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 50 57 54 57 60	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001 <.001 <.001 <.001 <.001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .183 .271 .302 .340 .366 .368	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005 <.002 <.002 .002 .003 .009	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.06 .10 E.07 <.08 E.05 <.08	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10
OCT 05 NOV 03 DEC 07 JAN 18 FEB 09 MAR 02 MAY 02 JUN 04 14 JUL 19	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 28 34 32 36 41 40 45 25	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 23 28 27 30 34 33 38 21	FATE DIS- SOLVED (MG/L AS SO4) (00945) 13.6 13.5 12.4 12.6 12.8 10.9 7.9 6.5	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .5 .5 .5 .5 .5	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 6.1 7.6 7.2 7.5 6.3 7.6 7.8 6.0	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 57 55 57 63 62 58 75 69	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 50 57 54 57 60 66 41	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .183 .271 .302 .340 .366 .368 .867 .337	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005 <.002 .002 .002 .003 .009 .005 .002	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.06 .10 E.07 <.08 E.05 <.08 .14	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1
OCT 05 NOV 03 DEC 07 JAN 18 FEB 09 MAY 02 MAY 02 MAY 04 JUN 14	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 28 34 32 36 41 40 45 25	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 23 28 27 30 34 33 38 21 17 18	FATE DIS- SOLVED (MG/L AS SO4) (00945) 13.6 13.5 12.4 12.6 12.8 10.9 7.9 6.5 8.6	RIDE, DIS- SOLVED (MG/L AS CL) (00940) .5 .5 .5 .5 .5 .4	RIDE DIS- SOLVED (MG/L AS F) (00950) <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2 <.2	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 6.1 7.6 7.5 6.3 7.6 7.8 6.0 5.0	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 57 55 57 63 62 58 75 69 47 40	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301) 50 57 54 57 60 66 41 33 37	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001 <.001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .183 .271 .302 .340 .366 .368 .867 .337 .224 .144	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .005 <.002 <.002 .003 .009 .005 .002	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) E.06 .10 E.07 <.08 E.05 <.08 .14	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) <.10 <.10 <.10 <.10 <.10 <.10 <.10 <.1

							CAR-		CAR-				
							BON,	CAR-	BON,	NITRO-	CHLOR-A		PERIPH-
			PHOS-			CAR-	INOR-	BON,	INORG +	GEN,	PERIPH-	PERIPH-	YTON
		PHOS-	PHORUS		MANGA-	BON,	GANIC,	ORGANIC	ORGANIC		YTON	YTON	BIO-
	PHOS-	PHORUS	ORTHO,	IRON,	NESE,	ORGANIC	PAR-	PARTIC-	PAR-	ULATE	CHROMO-	BIO-	MASS
	PHORUS	DIS-	DIS-	DIS-	DIS-	DIS-	TIC.	ULATE	TIC.	WAT FLT	GRAPHIC	MASS	TOTAL
	TOTAL	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL	TOTAL	TOTAL	SUSP	FLUO-	ASH	DRY
	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	ROM	WEIGHT	WEIGHT
	AS P)	AS P)	AS P)	AS FE)	AS MN)	AS C)	AS C)	AS C)	AS C)	AS N)	(MG/M2)	G/SQ M	G/SQ M
DATE	(00665)	(00666)	(00671)	(01046)	(01056)	(00681)	(00688)	(00689)	(00694)	(49570)	(70957)	(00572)	(00573)
OCT													
05	E.002	<.006	.002	<10	<2.2	.79	<.1	.1	.1	<.022			
NOV													
03	< .004	<.006	<.007	M	E2.5	.61	< . 1	<.1	<.1	<.022			
DEC													
07	E.003	<.006	<.007	<10	<3.2	.63	< .1	<.1	<.1	.057			
JAN	- 000	- 004	0.05		2 0		-			000			
18	E.003	E.004	<.007	M	<3.2	.50	<.1	. 2	. 2	<.022			
FEB	E 003	. 000	E 004	-10	-2 2	.54	. 1	. 1	. 1	. 000			
09 MAR	E.003	<.006	E.004	<10	<3.2	.54	<.1	<.1	<.1	<.022			
02	E.002	E.003	<.007	<10	<3.2	.46	<.1	.1	.1	<.022			
MAY	D.002	1.005	1.007	110	13.2	. 10		• -	• -	1.022			
02	.004	<.006	< .007	<10	<3.2	1.2			E.1	<.022			
31	.016	E.004	< .007	<10	<3.0	1.7			1.5	.110			
JUN													
04	.022	<.006	< .007	<10	<3.0	1.4			5.9	.404			
14	.006	< .006	< .007	<10	<3.0	.97			. 4	<.022			
JUL													
19	.006	<.006	<.007	<10	<3.0	.76			. 4	.049			
AUG													
02	E.002	<.006	<.007	<10	<3.0	.61			.6	.079			
SEP											2 0	20.0	40.0
09	 										3.0	38.2	40.2
11	E.002	<.006	<.007	M	<3.0	.78			. 2	<.022			

DATE	PHEOPHY- TIN A, PERIPHY- TON (MG/ M2) (62359)	(MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	FINER THAN .062 MM
OCT 05 NOV		2	. 29	
03		1		
07				
JAN 18		2	.06	47
FEB 09 MAR		1	.02	
02		1	.03	
MAY 02		1	.03	
31 JUN		8	1.5	43
04		14	4.3	20
14 JUL		5	1.3	
19		3	.56	
AUG 02 SEP		3	.43	
09 11	1.6	 .0	 .00	

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER		:	DECEMBER			JANUARY	
1 2 3 4 5	1.0 2.0 3.0 3.0 4.0	.0 .0 1.5 2.0 2.0	.5 1.0 2.5 2.5 3.0	. 0 . 0 . 0 . 0	.0	.0.0.0.0	.0	.0.0	.0 .0 .0 .0	. 0 . 0 . 0	.0	.0.0.0.0
6 7 8 9 10	4.5 4.5 4.0 2.5 1.5	3.0 3.0 2.0 .5	4.0 3.5 3.0 1.0	.0	. 0	.0 .0 .0 .0	.0 .0 .0 .0	.0	.0 .0 .0 .0	. 0 . 0 . 0 . 0	.0	.0.0.0.0
11 12 13 14 15	2.5 3.5	.5 1.5 2.0 2.5 1.5	1.5 2.0 2.5 3.0 2.5	2.0 1.0 1.5 1.5	.5 .0 .0 .0	1.0 .5 .5 1.0	.0 .0 .0 .0	. 0 . 0 . 0	.0 .0 .0 .0	.0 .0 .0 .0	. 0	.0 .0 .0 .0
16 17 18 19 20	3.5 3.0 2.5 2.5 2.0	2.0 2.0 1.5 1.0	2.5 2.5 2.0 2.0	.0 1.5 1.5 1.5	.0 .0 .5	.0 .5 1.0 1.5	.0.0.0.0	.0	.0 .0 .0 .0	.5 1.0 	.0 .0 	.5 .5
21 22 23 24 25	1.0	.0 .0 .0 .0	.0 1.0 .5 1.0 2.0	2.0 1.5 .5 .0	1.0 .0 .0 .0	1.5 1.0 .5 .0	.0 .0 .0 .0	. 0 . 0 . 0	.0 .0 .0 .0	 .5 .5	.0 .0	 .0 .5
26 27 28 29 30 31	1.5 .0 .0 .0	.0	.5 .0 .0 .0	.0 .0 .0 .0	.0	.0.0.0.0.0	.0 .0 .0 .0	.0	.0	.5 .5 .0 .0	.0	.5 .5 .0 .0
MONTH	4.5	.0	1.5	2.5	.0	. 4	.0	.0	.0			
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY		FEBRUARY	MEAN		MARCH			APRIL		MAX	MIN MAY	MEAN
DAY 1 2 3 4 5		FEBRUARY	. 0	.0 1.0 .0	MARCH .0 .0	.0.0	.0 1.5 2.5 2.0 1.5	.0 .0 .5 .5	.0 .5 1.0 1.0	3.5 		MEAN 2.5
1 2 3 4	.0.0	.0 .0 .0 .0	. 0	.0 1.0 .0 .0 .0	MARCH .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .5 .5	.0 1.5 2.5 2.0 1.5 1.0 2.0 3.0 2.5 2.0	APRIL .0 .0 .5 .5 .5 .0 .0 .1 .0	.0 .5 1.0 1.0 .5 .5 1.0 1.5	3.5 	MAY 1.5 .5 	2.5
1 2 3 4 5 6 7 8	.0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 1.0 .0 .0 .0	MARCH .0 .0 .0 .0 .0 .0 .0 .0 .5 .0 .5 .5 .5	.0 .0 .0 .0 .0 .5 .5	.0 1.5 2.5 2.0 1.5	APRIL .0 .0 .5 .5 .5 .0 .0 .1 .0	.0 .5 1.0 1.0 .5 .5 1.0 1.5	3.5	MAY 1.5 .5	2.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.0 1.0 .0 .0 .0 1.0 1.0 1.0 1.5 1.5	MARCH .0 .0 .0 .0 .0 .0 .0 .0 .5 .5 .5 .5	.0 .0 .0 .0 .0 .5 .5 1.0 1.0	.0 1.5 2.5 2.0 1.5 1.0 2.0 3.0 2.5 2.0	APRIL .0 .0 .0 .5 .5 .0 .0 .5 .1 .0 .1 .0 .5 .0 .0 .0 .0 .0 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .5 1.0 1.0 .5 .5 1.0 1.5 1.5 1.5 1.5	3.5	MAY 1.5 .5	2.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	.00 1.00 .00 .00 1.00 1.00 1.55 1.55 1.00 1.00	MARCH .0 .0 .0 .0 .0 .0 .0 .5 .5 .5 .5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .5 .5 1.0 1.0 1.0 .5 .5 1.0	.0 1.5 2.5 2.0 1.5 1.0 2.0 2.5 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0	APRIL .0 .0 .0 .5 .5 .0 .0 .5 .5 .0 1.0 1	.0 .5 1.0 1.0 .5 .5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2.0	3.5 5.0 7.0 5.5 8.0	MAY 1.5 .5 .5	2.5 3.5 4.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .	FEBRUARY .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0		0 1.0 .0 .0 .0 1.0 1.0 1.5 1.5 1.5 1.5 1.0 1.0 1.0	MARCH .0 .0 .0 .0 .0 .0 .0 .5 .5 .5 .5 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 .0 .0 .0 .0 .5 .5 1.0 1.0 1.0 .5 .5 1.0	.0 1.5 2.5 2.0 1.5 1.0 2.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 4.0 5.0	APRIL .0 .0 .0 .5 .5 .0 .0 .5 .5 .0 1.0 1	.0 .5 1.0 1.0 .5 .5 1.5 1.5 1.5 1.5 1.5 1.5 2.0 2.0 2.0 2.0 2.5	3.5 5.0 7.0 7.0 6.5 5.5 6.0	MAY 1.5 .5 .5	2.5 3.5 4.0 4.0 3.5 4.0 4.0

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		i	AUGUST		S	EPTEMBER	2
1 2 3 4 5	8.0 8.5 8.0 6.5 7.0	3.0 3.0 4.0 3.0 4.0	5.0 5.5 5.5 5.0	 	 	 	11.5 12.5 11.5 11.0 11.0	9.0 9.0 9.5 9.0 8.0	10.0 10.5 10.0 10.0 9.5	8.5 9.0 10.0 9.5 7.5	6.5 7.5 8.0 7.0 6.5	7.5 8.0 9.0 8.0 7.0
6 7 8 9 10	5.5 7.0 7.5 10.0 9.5	4.5 3.5 3.5 4.0 4.5	5.0 5.0 5.5 6.5 7.0	9.5 10.5 9.5 11.0 10.0	7.5 8.0 7.5 7.5	9.0 8.5 9.0 8.5	12.5 12.0 11.5 11.5	8.0 9.5 10.0 9.5 9.5	10.0 11.0 10.5 10.5	8.0 7.5 8.0 8.0 7.5	5.5 6.0 5.0 4.5 4.5	6.5 7.0 6.5 6.0
11 12 13 14 15	7.5 7.0 7.0 10.0	5.5 5.0 5.0 5.0	6.0 6.0 6.0 7.0 8.0	9.0 8.5 9.0 10.0 9.5	7.5 7.0 7.0 7.5 8.0	8.0 8.0 8.0 8.5 8.5	12.0 12.5 13.5 13.0 12.0	9.5 9.5 9.5 11.0 10.5	10.5 11.0 11.5 11.5	7.5 7.0 7.0 7.0 7.5	4.5 5.5 5.5 5.5 5.5	5.5 6.5 6.5 6.5
16 17 18 19 20	11.0 11.0 9.5 10.0 11.0	5.5 6.0 6.5 6.0 7.0	8.0 8.5 8.0 8.0	9.5 11.0 12.0 11.5 11.5	8.0 8.0 8.0 10.0 10.0	8.5 9.5 10.0 11.0 10.5	11.5 11.5 11.5 11.0 11.0	10.5 10.0 9.5 9.5 8.5	11.0 11.0 10.5 10.0 9.5	7.5 8.5 8.0 8.0	5.0 6.5 7.5 7.0 6.5	6.5 7.5 7.5 7.5 7.0
21 22 23 24 25	10.0 11.5 12.5 11.0 11.5	7.5 6.5 7.5 8.5 7.0	8.5 9.0 10.0 9.0 9.0	10.5 10.5 10.0 10.0	9.0 9.0 9.0 8.5 8.5	10.0 10.0 9.5 9.0 9.5	12.0 11.5 11.0 10.0 10.5	8.5 8.5 8.5 9.0 8.0	10.0 10.0 9.5 9.5 9.5	7.0 6.5 6.0 6.0	4.5 4.0 5.0 4.5 4.0	5.5 5.0 5.5 5.5
26 27 28 29 30 31	 	8.5 	 	11.5 12.0 11.5 12.0 11.0	9.0 9.5 8.5 9.0 9.5 8.5	10.0 10.5 10.5 10.5 10.0 9.5	10.5 10.0 10.0 8.5 9.0 8.5	8.0 7.5 8.5 7.5 7.5 6.5	9.5 9.0 9.0 8.0 8.0 7.5	5.5 5.0 5.5 5.0 5.0	4.0 2.5 4.0 3.5 2.5	5.0 4.0 5.0 4.5 4.0
MONTH							13.5	6.5	10.0	10.0	2.5	6.3

15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE

LOCATION.--Lat 61°12′19", long 149°53′43", on line between sec. 19, R. 3 W., and sec. 24, R. 4 W., T. 13 N. (Anchorage A-8 quad), Hydrologic Unit 19020401, on left bank 50 ft downstream from bridge on Arctic Boulevard in Anchorage and 0.8 mi upstream from mouth.

DRAINAGE AREA. -- 27.4 mi².

WATER-DISCHARGE RECORD

PERIOD OF RECORD.--June 1966 to April 1986, July 1987 to September 1993, and October 1998 to current year.

REVISED RECORDS.--WRD Alaska 1972, WRD AK-00-1: Drainage area. WDR AK-82-1: 1979(M), 1981(M).

GAGE.--Water-stage-recorder. Auxiliary crest-stage gage since April 2000. Datum of gage is 16.02 ft above sea level (from USGS&CG, datum of 1968). Prior to May 25, 1988, at site 100 ft upstream at same datum.

REMARKS.--Records good, except for estimated daily discharges, which are poor.

KEPIAKKO.	RCCOLG	5 900a, c	ACCPC IOI	CSCIMACCC	a daliy c	irscharg	CS, WILLCII a	ic poor.				
		DISCHA	RGE, CUBI	C FEET PER		WATER ' Y MEAN Y	YEAR OCTOBEI VALUES	R 2000 TO	SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	28 27 27	23 22 22	e17 e16 e16	e16 e16 e16	13 e13 e13	12 12 e12	18 15 37	19 21 28	21 22 21	19 19 19	22 22 31	19 24 32
4 5	27 27 29	21 21	e16 e16	16 e15	e12 e12	e12 e12	49 28	24 20	22 22	32 70	32 24	29 32
6 7	31 28	22 22	e17 21	e15 e16	e12 12	12 14	23 25	20 20	25 22	51 31	22 22	23 22
8 9 10	27 25 24	21 e21 e22	19 18 18	e16 e16 16	e13 e13 e12	13 16 22	39 37 30	22 23 21	22 22 22	36 29 27	22 22 21	23 21 20
11 12	25 24	e30 26	18 18	e16 e15	12 13	21 37	33 28	20 20	23 25	28 24	21 20	20 20
13 14 15	23 24 24	23 22 21	17 e17 e16	15 15 22	e12 e12 e12	28 18 16	23 23 23	20 19 19	22 21 21	25 26 24	20 21 20	20 21 20
16 17	23 24	20 20	e17 e17	17 15	e12 e12	17 18	23 21	24 21	20 21	24 25	21 22	20 21
18 19 20	23 24 26	21 20 20	e17 17 18	21 e25 17	e12 e12 e12	17 e16 e15	21 21 21	20 20 19	21 20 21	23 25 35	29 22 23	21 22 21
21 22	25 26	20 20	20 e16	15 14	12 12	e15 e14	21 21	20 19	21 20	27 35	21 21	20 19
23 24 25	28 24 25	19 19 18	e16 e16 18	15 14 14	e12 e11 e12	e14 e15 e15	21 20 20	19 19 19	20 20 22	25 24 25	20 21 21	19 19 19
26 27	24 22	e18 17	16 16	13 14	e12 16	15 25	20 20	18 18	21 20	24 23	20 20	19 18
28 29 30	20 21 21	17 22 19	16 16 17	13 e13 e13	14 	29 22 16	20 20 19	18 20 21	19 20 19	22 21 24	20 20 20	18 18 17
31 TOTAL	23 772	629	16 529	13 487	347	16 536	740	20 631	638	23 865	20 683	637
MEAN MAX	24.9 31	21.0 30 17	17.1 21	15.7 25	12.4 16	17.3 37	24.7 49	20.4 28	21.3 25	27.9 70	22.0 32	21.2 32
MIN AC-FT CFSM	20 1530 .91	1250 .77	16 1050 .62	13 966 .57	11 688 .45	12 1060 .63	15 1470 .90	18 1250 .74	19 1270 .78	19 1720 1.02	20 1350 .81	17 1260 .78
IN.	1.05	.86	.72	.66	.47	.73	1.01 EARS 1966 -	.86	.87	1.18	.93	.87
MEAN	25.8	18.4	14.7	12.7	11.5	13.5	25.1	2001, B	21.8	22.2	25.2	28.2
MAX (WY)	52.5 1990	45.5 1990	33.1 1990	26.5 1990	20.1	25.2 1990	58.4 1990	55.9 1992	44.9 1990	34.7 2000	61.4 1989	59.7 1989
MIN (WY)	10.7 1971	8.27 1993	3.84 1993	3.27 1971	2.99 1971	4.18 1971	10.6 1970	11.0 1970	10.1 1970	10.1 1976	9.59 1976	12.5 1970
SUMMARY	STATISTI	cs	FOR 2	000 CALEND	AR YEAR	1	FOR 2001 WAT	ER YEAR		WATER YEA	ARS 1966	- 2001#
	MEAN ANNUAL M			9192 25.1			7494 20.5			20.2 38.4		1990
HIGHEST	ANNUAL ME DAILY ME	AN		80	Sep 26		70	Jul 5		11.5 345		1970 26 1989
ANNUAL	DAILY MEA	MINIMUM		a13 13	Jan 1 Jan 1		11 12	Feb 24 Feb 18		b1.6 1.9	Feb	.2 1975 9 1975
MAXIMUM	PEAK FLO PEAK STA RUNOFF (A	GE		18230			116 2.97 14860	Jul 5 Jul 5		421 5.56 14660		26 1989 26 1989
ANNUAL	RUNOFF (C RUNOFF (I	FSM)		.92 12.50			.75			.74		
10 PERC	ENT EXCEE	DS		35 25			27 20			33		
	ENT EXCEE			16			13			9.5		

See Period of Record; partial years used in monthly statistics

Jan. 1 to 14 Feb. 12 to Feb. 14, 1975 Estimated

15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1967-73, 1975-1977, 1980 to 1986, and 1998 to September 2001 (discontinued).

PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1981 to March 1986, June 2000 to September 2001.
WATER TEMPERATURE: October 1981 to March 1986, October 1998 to September 2001.

INSTRUMENTATION.--Electronic water-temperature and specific conductance recorder set for 15-minute recording interval.

REMARKS.-

WATER TEMPERATURE: Partial record December 5,6, and January 8. Record represents water temperature at the

sensor within 0.5°C. Temperature at the sensor was compared with stream average by cross sections on November 2, March 1, and July 5. No variation was found within the cross sections. No variation was found between mean stream temperature and sensor temperature.

SPECIFIC CONDUCTANCE: Partial record December 5,6, and January 8. Records represent specific conductance at the sensor within 5%. Record for Feruary 18 to March 1, March 7 to Arpil 10, May 1 to May 17, and July 3 to August 1 are during periods of probe fouling. During the periods of probe fouling the record represents specific conductance at the sensor within 10 to 20%. conductance at the sensor within 10 to 20%.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum, 19.5°C, July 6, 1985; minimum, 0.0°C, on many days during winter periods. SPECIFIC CONDUCTANCE: Maximum, 1390 μ S/cm, February 8, 1986; minimum, 48 μ S/cm August 14, 1983.

EXTREMES FOR CURRENT PERIOD . --

Whiter Temperature: Maximum, 16.5°C, June 26-29; minimum, 0.0°C on many days during winter. Specific Conductance: Maximum, 1240 μ S/cm, January 18; minimum, 63 μ S/cm, July 5.

		SAMPLE		PH		BARO-		OXYGEN,
		LOC-	SPE-	WATER		METRIC		DIS-
		ATION,	CIFIC	WHOLE		PRES-		SOLVED
		CROSS	CON-	FIELD	TEMPER-	SURE	OXYGEN,	(PER-
		SECTION	DUCT-	(STAND-	ATURE	MM)	DIS-	CENT
DATE	TIME	(FT FM	ANCE	ARD	WATER	OF	SOLVED	SATUR-
		L BANK)	(US/CM)	UNITS)	(DEG C)	HG)	(MG/L)	ATION)
		(00009)	(00095)	(00400)	(00010)	(00025)	(00300)	(00301)
NOV								
02	1450	2.00	254	8.1	2.5	752	14.3	106
02	1451	6.00	255	8.1	2.5	752	14.2	106
02	1452	10.0	255	8.1	2.5	752	14.2	106
02	1453	14.0	255	8.1	2.5	752	14.1	105
02	1454	18.0	255	8.1	2.5	752	14.1	105
MAR								
01	1100	5.00	272	8.0	0	752	14.4	99.9
01	1101	9.00	272	8.0	0	752	14.5	101
01	1102	14.0	273	8.0	0	752	14.5	101
01	1103	19.0	273	8.1	0	752	14.5	101
JUL								
05	1035	19.0	120	7.1	13.0	756	9.2	88.0
05	1036	13.0	120	7.1	13.0	756	9.2	88.0
05	1037	7.00	119	7.1	13.0	756	9.2	88.0
05	1038	1.00	118	7.1	13.0	756	9.2	88.0

15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued

						DIS-				QUALITY		PH	
						CHARGE,				ASSUR-	SPE-	WATER	
						INST.	~			ANCE	CIFIC	WHOLE	
				~	~-~-	CUBIC	SAM-	~	PURPOSE	DATA	CON-	FIELD	TEMPERA
				STREAM	GAGE	FEET	PLING	SAMPLER	SITE	INDICA-	DUCT-	(STAND-	TURE
				WIDTH	HEIGHT	PER	METHOD,	TYPE	VISIT	TOR	ANCE	ARD	AIR
		MEDIUM	SAMPLE	(FT)	(FEET)	SECOND	CODES	(CODE)	(CODE)	CODE	(US/CM)	UNITS)	(DEG C)
DATE	TIME	CODE	TYPE	(00004)	(00065)	(00061)	(82398)	(84164)	(50280)	(99111)	(00095)	(00400)	(00020)
OCT													
05	1210	9	9	18.2	1.84	26	10	3045	1001		245	7.8	6.0
NOV	1.4.4.0	•	•	10.0	1 50	0.0	1.0	2045	1001		0.5.5	0 1	1 0
02 16	1440	9	9 9	18.0 15.0	1.72 1.67	22 19	10	3045 8010	1001 1099		255 267	8.1	-1.0
16	1300 1700	9 9	9	15.0	1.67	19	70 70	8010	1099		267	7.8 7.8	.00
17	1130	9	9	15.0	1.68	19	70	8010	1099		266	7.7	-1.0
17	1440	9	9	15.0	1.71	20	70	8010	1099		264	7.9	-1.5
DEC		-	-	13.0		20	, 0	0010	1000		201		1.5
05	1340	9	9	18.0	1.61	16	10	3045	1001	10	267	7.5	1.0
JAN													
16	1240	9	9	19.0	1.62	17	10	3045	1001		305	7.8	
FEB	1.400	•	•	10.0	1 00		1.0	2045	1001		0.7.5		0 5
08 MAR	1400	9	9	18.0	1.98	14	10	3045	1001		275	7.8	-2.5
01	1000	9	9	17.7	1.59	13	10	3045	1001		272	8.0	-1.0
APR	1000	,	,	17.7	1.32	13	10	3043	1001		2/2	0.0	1.0
14	2100	9	9	17.0	1.79	25	10	3045	1001		288	7.9	10.5
MAY													
01	1520	9	9	18.0	1.70	20	10	3045	1001		289	8.2	7.5
04	1930	9	9	18.5	1.76	23	10	3045	1001		268	7.9	1.5
JUN	1150	•	•	10 5		0.5	1.0	2045	1001		0.40		15.0
12 JUL	1150	9	9	18.5	1.79	25	10	3045	1001		242	7.8	15.0
03	1330	9	9	18.0	1.69	17	10	3045	1001		257	8.0	17.0
05	1050	9	9	22.0	2.58	83	10	3045	1001		119	7.1	18.5
AUG	1030	,	,	22.0	2.50	03	10	3013	1001		117	, . ±	10.5
01	1200	9	9	18.7	1.70	24	10	3045	1001		259	7.8	17.5
SEP													
06	1010	D	9		1.69	21	8010	8010	1099		239	7.9	22.0
10	1200	9	9	17.8	1.65	18	10	3045	1001		257	7.8	12.5

15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued

DATE	TEMP- ERATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MMOF HG) (00025)	OXYGEN DIS- OLVED (MG/L) (00300)	OXYGEN, DIS- OLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31649)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 05	5.0	754	11.8	93	390	240	360	110	32.7	7.27	6.3	77	1.13
NOV	3.0	751	11.0	,,,	370	210	300	110	32.7	7.27	0.5	, ,	1.15
02	2.5	752	14.2	106	1100	E1500	130	110	32.7	7.29	7.1	81	.88
16	2.5	751	13.4	100	3500	1700	1300						
16	2.5	751	12.9	96	84	80	560						
17	2.1	751	13.0	96	88	78	850						
17	2.5	751	12.9	96	3900	2700	220						
DEC													
05	2.0	747	13.5	100	77	83	E45	120	35.4	7.92	8.4	85	.88
JAN													
16	.5	766	13.7	95	87	80	110	110	31.6	7.93	14.0	83	2.83
FEB													
08	.00	767	14.6	99	27	25	180	120	34.6	7.84	8.2	85	1.18
MAR	.00	752	14.5	101	120	86	48	110	30.6	7.76	9.3	82	1.29
01 APR	.00	752	14.5	101	120	86	48	110	30.6	7.76	9.3	82	1.29
14	5.5	769	12.3	97				100	30.0	7.28	10.7	73	3.40
MAY	5.5	769	12.3	91				100	30.0	7.20	10.7	/3	3.40
01	6.5	757	12.3	101				120	34.2	8.06	9.1	78	1.32
04	5.0	755	12.2	96				100	29.1	7.20	9.9	73	1.86
JUN	3.0	733	12.2	50				100	27.1	7.20	5.5	, 5	1.00
12	11.5	766	11.1	101				110	30.5	7.23	7.3	71	1.18
JUL													
03	13.5	768	10.4	99				110	32.8	7.95	7.3	83	.91
05	13.0	756	9.2	88				48	14.0	3.07	4.3	37	1.31
AUG													
01	13.0	765	10.7	101				110	31.6	7.63	6.9	83	.92
SEP													
06	9.5	760	11.3	99									
10	9.0	767	12.3	106				110	32.9	7.59	7.6	74	1.03

15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued

DATE	BICARBO NATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/S AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLOU- RIDE DIS- SOLVED (MG/L AS F) (00950)	SIL- ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOL- IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOL- IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)
OCT 05 NOV	91	76	22.5	13.0	<.2	11.8	155	143	.007	.686	.037	.28	.17
02	98	80	22.8	14.6	E.1	11.9	160	149	.003	.759	.010	.16	E.07
16													
16													
17 17													
DEC													
05	104	85	22.8	13.9	E.1	13.1	167	158	.007	.853	.045	.23	.11
JAN													
16	98	82	22.0	29.9	E.1	12.0	179	172	.011	.832	.062	<.08	.18
FEB	104	85	02.0	17.0	p 1	12.3	1.61	1.50	.003	.872	020	1.0	T 00
08 MAR	104	85	23.0	17.2	E.1	12.3	161	159	.003	.8/2	.030	.19	E.08
01	99	82	21.7	19.4	E.1	11.1	160	153	.004	.776	.023	.11	E.09
APR													
14	88	72	19.9	25.9	<.2	8.8	182	152	.010	.550	.094	.68	.36
MAY	0.1		00.4	01 5			1.60	154	004	405	000	2.0	1.0
01 04	91 88		23.4 19.8	21.5 23.9	E.1	9.2 8.0	167 166	154 146	.004	.495 .497	.009	.32	.17
JUN	88	12	19.8	23.9	<.2	8.0	100	146	.009	.49/	.030	.40	.20
12	85	71	19.3	14.5	E.1	10.6	148	135	.006	.455	.009	.34	.21
JUL													
03	98		17.8	13.7	E.1	11.7	168	142	.005	.430	.010	.27	.14
05	43	36	8.7	7.0	<.2	5.4	83	66	.007	.163	.003	.83	.23
AUG 01	100	82	18.7	14.2	<.2	10.6	159	142	.005	. 477	<.002	.17	.13
SEP	100	02	10.7	17.2	\. ∠	10.6	139	172	.005	. 1//	<.00∠	.1/	.13
06													
10	91	76	19.9	14.7	E.1	10.9	143	142	.007	.608	.004	.20	.13

15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued

							CAR-		CAR-				
							BON,	CAR-	BON,	NITRO-	CHLOR-A		PERIPH-
			PHOS-			CAR-	INOR-	BON,	INORG +	GEN,	PERIPH-	PERIPH-	YTON
		PHOS-	PHORUS		MANGA-	BON,	GANIC,	ORGANIC	ORGANIC		YTON	YTON	BIO-
	PHOS-	PHORUS	ORTHO,	IRON,	NESE,	ORGANIC	PAR-	PARTIC-	PAR-	ULATE	CHROMO-	BIO-	MASS
	PHORUS	DIS-	DIS-	DIS-	DIS-	DIS-	TIC.	ULATE	TIC.	WAT FLT	GRAPHIC	MASS	TOTAL
	TOTAL	SOLVED	SOLVED	SOLVED	SOLVED	SOLVED	TOTAL	TOTAL	TOTAL	SUSP	FLUO-	ASH	DRY
	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	ROM	WEIGHT	WEIGHT
	AS P)	(MG/L AS P)			AS MN)								G/SO M
D.3. MID			AS P)	AS FE)		AS C)	AS C)	AS C)	AS C)	AS N)	(MG/M2)	G/SQ M	
DATE	(00665)	(00666)	(00671)	(01046)	(01056)	(00681)	(00688)	(00689)	(00694)	(49570)	(70957)	(00572)	(00573)
OCT													
05	.026	E.003	.002	90	81.0	3.6	<.1	. 7	.7	.068			
NOV	016	006	- 004	100	00 0	1.0	-	•		0.55			
02 16	.016	<.006	E.004	120	80.3	1.9	<.1	. 9	.9	.067			
16													
17													
17													
DEC													
05	.019	.007	<.007	100	103	1.6	<.1	1.1	1.1	.085			
JAN													
16	.025	E.005	< .007	100	100	1.7	<.1	.5	.5	.034			
FEB													
08	.031	E.003	<.007	80	70.7	1.5	< .1	1.0	1.0	.077			
MAR													
01	.017	<.006	<.007	80	87.4	1.6	<.1	1.2	1.2	.061			
APR	100	0.07	012	050	015	4 0			1 -	202			
14 MAY	.106	.027	.013	250	215	4.0			1.5	.203			
MAY 01	<.060	<.060	<.007	230	111	3.1			. 7	.077			
04	.054	.006	<.007	210	134	3.4			E2.4	.147			
JUN	.031	.000	1.007	210	131	3.1			D2.1	,			
12	.031	.007	< .007	130	62.1	4.4			1.3	.125			
JUL													
03	.025	.010	E.004	100	44.0	2.4			E1.2	.080			
05	.131	.015	< .007	70	52.5	4.3			E5.1	.338			
AUG													
01	.014	E.005	< .007	100	40.2	2.1			. 6	.061			
SEP													
06											35.1	53.5	62.1
10	.021	E.004	< .007	110	59.0	2.4			.6	.053			

DATE	PHEO- PHYTIN A, PERI- PHYTON (MG/M2) (62359)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT 05		7	.49	94
NOV 02		9	.53	92
16				
16				
17				
17				
DEC				
05		10	.43	
JAN 16		10	.46	93
TO		10	.40	93
08		12	.44	84
MAR		12	• • • •	01
01		10	.36	89
APR				
14		12	.81	89
MAY				
01		7	.37	96
04		22	1.4	96
JUN		11	7.4	0.6
12		11	.74	96
JUL 03		. 0	.00	
05		.0	.00	
AUG		. 0	.00	
01		2	.13	
SEP				
06	10			
10		4	.19	

15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued

OCTOBER NOVEMBER DECEMBER 1 6.0 4.0 5.0 3.0 1.5 2.0 1.0 .0 .0 1. 2 5.5 4.0 5.0 2.5 1.5 2.0 .0 .0 .0	AX MIN MEAN
1 6.0 4.0 5.0 3.0 1.5 2.0 1.0 .0 .0 1. 2 5.5 4.0 5.0 2.5 1.5 2.0 0 0 0	JANUARY
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.5 .0 .5 0 .0 .0 0 .0 .5 0 .0 .5 0 .0 .5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 .0 .0 0 .0 1.0 1.0 5 1.0 1.5 0 .0 .5
11 5.0 3.5 4.5 3.5 1.5 2.0 2.0 1.0 2.0 . 12 5.0 4.0 4.5 3.0 2.0 2.5 2.0 1.0 1.5 1. 13 5.5 4.5 5.0 3.0 2.5 2.5 1.0 .0 .5 1. 14 5.5 4.5 5.0 3.0 2.0 3.0 .0 .0 .0 .0 15 5.5 4.0 5.0 2.0 1.0 1.5 .0 .0 .0 .0	0 .0 .0 5 .0 1.0 5 1.0 1.5 0 1.5 2.0 5 1.5 2.0
16 5.5 4.0 5.0 2.5 2.0 2.0 .0 .0 .0 .0 1. 17 5.5 4.5 5.0 3.0 1.5 2.5 .0 .0 .0 1. 18 5.0 4.0 4.5 3.0 2.0 2.5 1.0 .0 .0 2. 19 5.0 4.0 4.5 3.0 3.0 3.0 1.5 1.0 1.0 1. 20 4.0 2.5 3.5 3.0 2.5 3.0 2.0 .0 1.0 2.	5 .5 1.0 5 1.0 1.5 5 1.0 2.0 5 1.0 1.5 0 1.5 2.0
21 4.0 2.0 3.0 2.0 2.5 2.0 .0 1.0 2. 22 4.5 3.5 4.0 2.5 2.0 2.5 .0 .0 .0 .0 2. 23 4.0 3.0 3.5 2.0 1.5 2.0 .0 .0 .0 .0 2. 24 4.5 3.0 3.5 2.0 1.5 2.0 .5 .0 .0 1. 25 4.5 4.0 4.0 2.0 .5 1.0 1.0 .5 .5 1.	0 1.0 1.5 5 1.5 2.0 5 1.5 2.0 5 1.5 1.5 5 1.5 1.5
26	0 1.5 2.0 5 1.0 2.0 0 .5 .5 5 .0 .0 5 .0 .5 5 .5 1.0
MONTH 6.5 1.0 4.2 3.5 .0 2.0	
DAY MAX MIN MEAN MAX MIN MEAN MAX MIN MEAN MAX FEBRUARY MARCH APRIL	AX MIN MEAN MAY
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 4.5 5.5 0 3.5 4.5 5 2.5 3.5 0 3.0 4.0 0 3.0 4.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.0 5.0 8.0 .0 5.5 8.5 .5 6.5 9.5
16 .5 .0 .0 3.5 1.5 2.5 5.5 2.5 4.0 10.	6.5 9.0 0 8.0 9.5 0 7.5 9.5
17 .5 .0 .0 3.5 .5 1.5 6.5 2.5 4.0 11. 18 .0 .0 .0 1.5 .0 .5 6.5 3.0 4.5 11. 19 .0 .0 .0 .0 .0 7.5 2.5 4.5 13. 20 2.0 .0 1.5 .0 .0 .0 7.5 2.5 5.0 12.	
18	5 8.0 9.0 0 7.5 9.0 5 8.0 9.5 5 7.5 8.5
18 .0 .0 .0 .0 .5 6.5 3.0 4.5 11. 19 .0 .0 .0 .0 .0 .7.5 2.5 4.5 13. 20 2.0 .0 1.5 .0 .0 .0 7.5 2.5 5.0 12. 21 2.5 1.5 2.0 .0 .0 .0 7.0 3.0 5.0 10. 22 2.0 .0 1.5 .0 .0 .0 8.0 4.0 5.5 11. 23 .0 .0 .0 .0 .0 7.0 3.0 5.0 11. 24 .0 .0 .0 .0 .0 8.0 3.0 5.5 9.	5 8.0 9.0 0 7.5 9.0 5 8.0 9.5 5 7.5 8.5 0 7.5 8.5 5 7.5 9.5 5 7.0 10.0 0 8.5 11.0 0 9.5 11.5 5 10.0 11.5

15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBE	R
1 2 3 4 5	15.0 14.5 14.0 13.5 13.0	10.0 10.5 11.0 10.5 11.0	12.0 12.5 12.5 12.0 12.0	15.0 15.5 14.0 14.5 14.0	12.0 11.5 12.5 13.0 13.0	13.0 13.5 13.0 13.5 13.5	14.5 15.0 15.0 13.5 14.5	12.0 12.0 12.0 12.5 11.5	13.0 13.5 13.0 13.0 12.5	12.0 12.5 12.5 12.0 11.5	9.5 10.5 11.5 11.0 10.0	10.5 11.5 12.0 11.5 11.0
6 7 8 9 10	12.0 13.0 13.5 14.5	10.5 10.0 9.0 9.5 10.0	11.0 11.5 11.5 11.5 12.0	14.0 13.5 15.0 14.0 14.0	12.5 12.0 12.0 12.0 11.5	13.0 12.5 13.0 13.0	14.5 14.5 13.5 13.5 13.5	11.0 12.0 12.5 12.5 12.0	13.0 13.0 13.0 13.0	11.5 11.5 11.5 11.5	9.5 9.5 8.5 8.0 7.5	10.0 10.5 10.0 9.5 9.5
11 12 13 14 15	12.5 12.0 13.5 14.5 15.5	11.0 11.0 10.5 10.0	11.5 11.5 11.5 12.0 13.0	12.5 12.5 13.0 14.5 13.0	11.5 11.0 11.0 11.0	12.0 11.5 12.0 12.5 12.5	15.0 15.0 15.5 14.0 13.5	12.0 12.0 11.5 13.0 12.0	13.0 13.5 13.5 13.5 13.0	10.5 10.0 10.0 10.5	7.5 9.0 8.5 9.0 8.0	9.0 9.5 9.5 9.5 9.5
16 17 18 19 20	16.0 15.0 14.0 15.0 15.5	11.0 11.5 11.5 11.0 12.0	13.5 13.0 12.5 13.0 13.5	13.5 14.0 15.0 14.0	11.0 11.5 11.5 12.5 13.0	12.5 12.5 13.0 13.0	13.5 14.0 14.0 13.0 13.5	12.0 12.0 13.0 12.0 11.5	12.5 13.0 13.5 12.5 12.5	10.0 11.0 10.5 11.0	7.5 9.0 9.5 10.0 9.0	9.0 10.0 10.0 10.5 10.0
21 22 23 24 25	15.5 16.0 16.0 14.5 16.0	12.0 11.5 11.5 12.5 12.0	13.5 13.5 14.0 13.5 14.0	13.5 14.5 13.0 13.5 14.5	12.0 13.0 12.0 12.0 12.0	13.0 13.5 12.5 12.5 13.0	14.5 14.0 13.0 12.5 13.5	11.0 10.5 10.5 11.5 10.5	12.5 12.5 12.0 12.0 12.0	10.5 10.0 9.5 9.5 9.0	7.5 7.0 8.0 7.5 7.0	8.5 8.5 9.0 8.5 8.0
26 27 28 29 30 31	16.5 16.5 16.5 16.5 14.5	13.0 12.5 13.0 13.0 12.5	14.5 14.5 15.0 14.5 13.5	14.5 15.0 15.0 15.5 13.5	12.5 12.0 11.5 12.5 12.5 12.0	13.0 13.5 13.0 13.5 13.0	13.5 13.5 12.5 11.5 12.0	11.0 10.5 11.0 10.5 10.5	12.0 12.0 11.5 11.0 11.0	9.0 8.5 8.5 8.0	6.5 5.5 7.0 6.0 5.5	8.0 7.0 7.5 7.0 7.0
MONTH	16.5	9.0	12.8	15.5	11.0	12.9	15.5	10.0	12.6	12.5	5.5	9.4

15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC			DE				JANUARY	
	237 238 241 244 248		231 235 238 241 239	325 261 263 263 260	256 256 259 260 256	268 258 260 261 259	269 271 272 273 273	260 264 269 265	264 268 270 268	236 248 248 233 243	228 236 233 229 231	230 242 242 230 238
6 7 8 9 10	240 243 243 246 247					256 256 258 344 373	596 412 238 244	233 233 237 234 236	333 273 235 238	240 422 408 276 276	229 226 263 270 271	234 296 273 272
11 12 13 14 15	247 252 250 249 249			244 251 254 252 263						280 273 266 332 1090		
16 17 18 19 20	250 250 252 253 251	247 246 246 248 249	249 249 249 250 250	265 262 471 279 260	252 255 257 258 257	258 259 279 263 258	245 242 240 233 508	235 235 229 231 230	238 239 232 232 275	575 337 1240 776 340	281 277 294 332 302	339 291 430 448 311
	256 265 392 269 264			314 295 257 262 263						307 319 383 349 299		
26 27 28 29 30 31	256 258 262 262 262 385	248 251 257 259 260 258	250 254 259 261 261 304	268 266 274 422 291	263 264 263 261 259	266 265 266 336 267	244 241 236 315 327 230	231 233 231 230 230 227	235 235 233 242 263 228	284 292 279 265 265 266	270 263 263 261 260 260	278 273 269 263 262 263
										1240		
DAY	MAX	MIN	MEAN	MAX		MEAN	MAX		MEAN	MAX	MIN	MEAN
	1	FEBRUARY			MARCH			APRIL			MAY	
	1		260 261 261 261 259	325 409 358 302 760	MARCH 279 280 287 282 271	289 309 315 292 406	336 322 310 328 328	300 302 256 245 258	309 309 294 274 307	MAX 282 314 268 285 287	MAY	
1 2 3 4 5	1	256 258 259 256 255	260 261 261 261 259	325 409 358 302 760	MARCH 279 280 287 282 271	289 309 315 292 406		300 302 256 245 258	309 309 294 274 307		MAY 271 268 201 216 259	275 287 233 251 275
1 2 3 4 5	264 264 265 265 266	256 258 259 256 255	260 261 261 261 259	325 409 358 302 760	MARCH 279 280 287 282 271	289 309 315 292 406	336 322 310 328 328	300 302 256 245 258	309 309 294 274 307	282 314 268 285 287	MAY 271 268 201 216 259	275 287 233 251 275
1 2 3 4 5 6 7 8 9 10 11 12 13 14	264 265 265 265 266 264 275 266 268 270 264 272 281	FEBRUARY 256 258 259 256 255 258 261 264 260 262 261 258 261 258 266	260 261 261 261 259 261 262 268 263 266 264 260 264 274	325 409 358 302 760 463 951 523 711 645 575 541 475 414	MARCH 279 280 287 282 271 283 284 302 316 387 383 430 367 368	289 309 315 292 406 313 476 368 483 527 479 483 412 390	336 322 310 328 328 328 310 291 280 292 282 275 280 280 273	APRIL 300 302 256 245 258 258 247 220 221 269 219 227 267 264	309 309 294 274 307 280 276 255 262 268 251 262 276 269	282 314 268 285 287 286 284 283 305 336 311 358 358	MAY 271 268 201 216 259 269 270 244 243 283 301 300 309 328	275 287 233 251 275 280 277 273 268 290 313 303 327 347
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	264 265 265 265 266 264 275 266 268 270 264 272 281 270 271 261 275 257	FEBRUARY 256 258 259 256 255 258 261 264 260 262 261 258 253 266 265 253 256 253	260 261 261 261 259 261 262 268 263 266 264 260 264 274 268 257 268	325 409 358 302 760 463 951 523 711 645 575 541 475 414 428 432 395 357 367	MARCH 279 280 287 282 271 283 284 302 316 387 383 430 367 368 380 370 350 344 334	289 309 315 292 406 313 476 368 483 527 479 483 412 390 403 400 365 347 351	336 322 310 328 328 328 310 291 280 292 282 275 280 273 278 276 276 273 273	300 302 256 245 258 247 220 221 269 219 227 267 264 261 260 269 270 268	309 309 294 274 307 280 276 255 262 268 251 262 276 269 269 269 268 272 271	282 314 268 285 287 286 284 283 305 336 311 358 358 361 290 290 293 290	MAY 271 268 201 216 259 269 270 244 243 283 301 300 309 328 284 253 273 284 283	275 287 233 251 275 280 277 273 268 290 313 303 327 347 319 272 284 287 288
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	264 265 265 265 266 264 264 275 266 268 270 264 272 281 270 271 265 257 269 419 417 277	FEBRUARY 256 258 259 256 255 258 261 264 260 262 261 258 253 266 265 253 256 255 253 256 250 251 259 268 263	260 261 261 261 259 261 262 268 263 266 264 264 274 268 265 257 265 257 265 254 255	325 409 358 302 760 463 951 523 711 645 575 541 475 414 428 432 395 357 367 353 342 342 342 320 317	MARCH 279 280 287 282 271 283 284 302 316 387 383 430 367 368 380 370 350 344 337 320 318 306 303	289 309 315 292 406 313 476 348 483 527 479 483 412 390 403 403 400 365 347 351 344 333 331 316 309	336 322 310 328 328 310 291 280 292 282 275 280 273 278 276 276 273 273 273 273 273 273 273 275 275 277 277 277 277 277 277 277 277	APRIL 300 302 256 245 258 258 247 220 221 269 219 227 267 264 261 260 269 270 268 267 269 270 268 267	309 309 294 274 307 280 276 255 262 268 251 262 276 269 269 269 272 271 275 272 272 272 272 274	282 314 268 285 287 286 284 283 305 336 311 358 361 290 290 293 290 306 304 316 313 305	MAY 271 268 201 216 259 269 270 244 243 283 301 300 309 328 284 253 273 284 283 288 297 301 300 297	275 287 233 251 275 280 277 273 268 290 313 303 327 347 319 272 284 288 298 300 311 300 302

15275100 CHESTER CREEK AT ARCTIC BOULEVARD AT ANCHORAGE--Continued

SPECIFIC CONDUCTANCE (MICROSIEMENS/CM AT 25 DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		P	AUGUST		S	SEPTEMBE	R
1	299	286	294	256	245	252	259	251	253	261	249	255
2	290	264	272	249	244	247	260	250	254	261	152	234
3	289	265	278	275	230	254	264	127	214	240	135	191
4	269	255	261	230	81	171	240	163	205	247	118	212
5	265	250	256	217	63	137	250	240	247	237	126	196
6	270	247	258	220	99	172	278	249	253	251	236	243
7	262	248	257	228	212	221	260	249	253	254	201	241
8	268	260	263	235	113	186	259	250	253	243	195	229
9	266	251	258	229	182	210	260	252	255	262	236	244
10	257	249	253	237	208	228	262	252	256	256	242	248
11	258	229	251	244	198	221	261	251	255	256	244	248
12	251	229	241	253	244	249	260	254	257	252	248	250
13	251	243	246	258	242	251	264	252	257	257	248	253
14	255	249	251	253	226	241	260	251	255	256	238	246
15	260	252	255	254	247	250	263	254	258	256	249	252
16	261	257	259	253	245	250	263	231	257	262	251	255
17	257	251	255	252	245	249	268	208	254	258	250	253
18	264	255	260	254	250	252	242	173	211	260	242	252
19	266	260	264	257	223	251	270	230	252	255	229	244
20	261	248	255	235	173	207	254	216	240	259	252	255
21	258	249	252	241	224	235	260	250	253	262	256	258
22	276	258	267	234	150	198	259	250	253	265	257	261
23	287	273	280	257	234	243	262	250	255	263	255	260
24	277	263	266	254	242	246	260	242	252	271	257	261
25	270	261	264	253	238	244	259	250	253	278	268	274
26 27 28 29 30 31	264 254 261 265 260	246 244 248 253 251	254 248 255 260 256	251 255 257 260 261 253	244 249 250 251 234 237	247 251 254 255 249 249	260 259 261 258 261 262	249 248 250 250 250 250	256 254 257 254 255 256	276 272 271 270 270	261 262 264 260 264	267 267 268 265 266
MONTH	299	229	260	275	63	231	278	127	250	278	118	248

15276000 SHIP CREEK NEAR ANCHORAGE

LOCATION.--Lat $61^{\circ}13'32''$, long $149^{\circ}38'06''$, in $SW^{1}_{/4}$ SE $^{1}_{/4}$ sec. 9, T. 13 N., R. 2 W. (Anchorage A-8 quad), Municipality of Anchorage, Hydrologic Unit 19020401, in Fort Richardson Military Reservation, on left bank, 800 ft downstream from diversion dam, 3.3 mi upstream from North Fork Ship Creek, and 7.8 mi east of intersection of Seward and Glenn Highways in Anchorage.

DRAINAGE AREA. -- 90.5 mi².

PERIOD OF RECORD. -- October 1946 to current year.

REVISED RECORDS.--WSP 1936: Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 490 ft above sea level, from topographic map. Prior to August 22, 1985, water-stage recorder at dam 800 ft upstream. See WSP 1936 for history of changes prior to October 1, 1954.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Discharge data represent the net flow remaining after diversion for water supply to Fort Richardson, Elmendorf Air Force Base, and Municipality of Anchorage. Average diversion for water year 2001 was 8.34 ft³/s. Diversion began in 1944. Magnitude of discharges downstream of dam may be affected by periodic spillway adjustment.

COOPERATION. -- Gage inspected and records of diversion provided by Office of Post Engineers, Fort Richardson.

REVISIONS.--Revised figures of discharge for water years 1987 through 1997 are given below. These figures supercede those published in reports for 1987-97.

		DISCHARGE,	, CUBIC	FEET P		WATER LY MEAN	YEAR OCTOBER VALUES	1986	TO SEPTEMBE	R 1987		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	206 206 221 246 220	164 147 141	e85 e85 e80 e80 e80	e30 e30 e30 e30 e30	e29 e29 e29 e28 e28	e19 e20 e21 e21 e19	e12 e12 e14 e15 e13	27 31 34 40 45	306 326 323 304 340	463 417 386 360 360	245 219 198 189 196	97 92 104 196 163
6 7 8 9 10	207 198 194 187 291	109 124 115	e85 e85 87 131 129	e30 e30 e30 e30 e28	e27 e26 e25 e23 e22	e17 e16 e15 e14 e13	e12 e14 e12 e14 e17	48 53 58 66 66	391 382 390 364 330	356 329 296 274 261	199 189 175 163 157	177 264 381 324 290
11 12 13 14 15	796 721 626 577 484	113 107 101 113 111	116 89 76 70 68	e28 e28 e28 e28 e30	e21 e20 e19 e19 e18	e12 e11 e11 e10 e10	e17 e15 e14 e14 e13	71 84 92 108 127	318 318 307 343 356	261 271 280 266 242	155 156 177 192 194	251 228 201 185 174
16 17 18 19 20	435 379 346 326 309	92 87 e90 e90	67 62 61 60 56	e30 e30 e30 e30 e30	e18 e18 e17 e17 e17	e10 e11 e12 e11 e11	e12 e12 e10 e11 e12	149 193 181 162 166	354 334 303 283 300	252 262 280 281 289	186 175 165 156 148	167 166 155 153 148
21 22 23 24 25	295 264 241 224 206	e90 e90 e85	e55 e50 e45 e40 e38	e30 e32 e32 e34 e34	e17 e17 e17 e17 e18	e12 e12 e13 e13	e14 e15 17 20 24	190 190 169 182 178	375 456 422 379 339	303 301 296 264 256	137 130 125 116 112	140 135 267 279 234
26 27 28 29 30 31	190 176 162 142 139 159	e85 e85 e85 e85	e36 e34 e32 e30 e30 e30	e32 e32 e32 e32 e30 e30	e19 e20 e20 	e14 e14 e15 e15 e13 e12	21 20 19 20 25	170 194 212 234 254 281	314 326 318 448 546	256 252 249 256 269 274	110 107 107 108 103 96	211 195 180 168 159
TOTAL MEAN MAX MIN AC-FT	9373 302 796 139 18590	107 6 172 85	072 6.8 131 30 110	940 30.3 34 28 1860	595 21.2 29 17 1180	429 13.8 21 10 851	460 15.3 25 10 912	4055 131 281 27 8040	10595 353 546 283 21020	9162 296 463 242 18170	4885 158 245 96 9690	5884 196 381 92 11670
					ADJUSTED '	TO INCL	UDE DIVERSION	I				
MEAN CFSM IN AC-FT	329 3.64 4.19 20250	1.47 1 1.64 1	4.0 .04 .20 780	57.1 0.63 0.73 3510	48.3 0.53 0.56 2680	40.0 0.44 0.51 2460	41.2 0.46 0.51 2450	158 1.75 2.02 9740	383 4.23 4.72 22800	328 3.62 4.18 20180	191 2.11 2.44 11760	203 2.24 2.50 12060
	STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1947 - 1987, BY WATER YEAR (WY)#											
MEAN MAX (WY) MIN (WY)	154 302 1987 48.7 1969	177 1953 1 24.3 1	7.8 107 948 3.9 969	30.8 79.3 1961 7.13 1956	21.2 54.6 1961 5.36 1983	15.8 42.1 1947 3.61 1956	21.7 49.4 1964 4.77 1954	148 341 1960 39.9 1971	440 798 1977 224 1954	321 645 1980 128 1954	225 510 1981 94.6 1969	213 471 1967 55.8 1969

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted

e Estimated

15276000 SHIP CREEK NEAR ANCHORAGE--Continued

REVISIONS. -- Continued.

SUMMARY STATISTICS	FOR 1986 CALENDA	R YEAR	FOR 1987 WAT	TER YEAR	WATER YEARS	1947 - 1987#
ANNUAL TOTAL	45992.0		51655			
ANNUAL MEAN	126		142		144	
ANNUAL MEAN	*151		*167		*161	
HIGHEST ANNUAL MEAN					223	1980
LOWEST ANNUAL MEAN					67.3	1969
HIGHEST DAILY MEAN	796	Oct 11	796	Oct 11	1420	Aug 9 1971
LOWEST DAILY MEAN	6.5	Apr 22	a10	Mar 14	b.00	Jan 2 1956
ANNUAL SEVEN-DAY MINIMUM	7.9	Apr 19	11	Mar 11	.43	Jan 9 1956
MAXIMUM PEAK FLOW			921	Oct 11	1860	Jun 21 1949
MAXIMUM PEAK STAGE			6.08	Oct 11	c3.44	Jun 21 1949
MAXIMUM PEAK STAGE					d6.08	Oct 11 1986
INSTANTANEOUS LOW FLOW			f6.4	Apr 7		
ANNUAL RUNOFF (AC-FT)	91230		102500		104000	
ANNUAL RUNOFF (AC-FT)	*110000		*121600		*117400	
ANNUAL RUNOFF (CFSM)	*1.67		*1.85		*1.79	
ANNUAL RUNOFF (IN)	*22.80		*25.19		*24.31	
10 PERCENT EXCEEDS	262		325		366	
50 PERCENT EXCEEDS	97		107		77	
90 PERCENT EXCEEDS	12		14		14	

See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted Adjusted to account for diversion, see Remarks From Mar, 14 to 16 and Apr. 18

No flow during one or more days in water years 1956, 1960, 1969, and 1971 Site and datum then in use Current site and datum
Minimum observed, from current-meter measurement, but may have been less during periods of ice effect in Mar. and Apr.

REVISIONS. -- Continued.

ICE V I DI OND	· conc	DISCHAF	RGE, CUBIC	FEET		WATER Y MEAN	YEAR OCTOBE	R 1987	TO SEPTEME	BER 1988		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	150 168 176 153 144	e100 102 100 100 89	e50 e50 e48 e48 e48	e34 e34 e34 e34 e30	e16 e16 e15 e15 e14	e8.0 e7.0 e7.0 e6.0 e6.0	e3.0 e4.0 e3.0 e3.0 e2.0	e32 e32 e28 36 e36	402 432 486 559 625	548 598 651 633 591	216 238 223 208 201	213 189 180 191 177
6 7 8 9 10	135 131 127 128 140	89 85 85 e80 e80	e48 e50 e50 e50 e50	e28 e28 e26 e26 e22	e14 e14 e13 e13 e13	e6.0 e6.0 e5.0 e4.0 e4.0	e2.0 e2.0 e4.0 e4.0 e4.0	48 59 e75 e85 104	772 807 804 882 913	540 500 458 439 477	202 196 183 165 162	162 153 140 135 134
11 12 13 14 15	131 123 118 119 125	e80 80 77 66 e62	e50 e50 e50 e50 e50	e22 e22 e22 e22 e22	e13 e12 e13 e13 e13	e6.0 e6.0 e5.0 e4.0 e4.0	e4.0 e4.0 e4.0 e4.0 e4.0	122 136 143 150 145	881 822 800 812 820	509 480 468 453 433	230 249 226 196 173	127 122 129 122 115
16 17 18 19 20	116 116 119 144 130	e62 e62 e62 63 63	e48 e48 e48 e46 e46	e22 e22 e20 e20 e18	e13 e13 e13 e13 e12	e4.0 e4.0 e4.0 e5.0	e6.0 e6.0 e8.0 e9.0 e9.0	150 171 177 222 227	762 731 737 702 655	460 437 401 379 376	161 159 159 152 144	112 106 104 101 153
21 22 23 24 25	126 156 148 139 128	61 e55 54 55 e50	e44 e44 e42 e39 e38	e18 e18 e18 e18 e18	e13 e13 e13 e12 e11	e4.0 e4.0 e4.0 e4.0	e12 e10 e12 e15 e10	238 277 306 306 321	601 606 592 562 551	373 334 303 282 256	149 184 176 150 144	195 186 177 164 149
26 27 28 29 30 31	119 105 106 92 104 e100	e50 e50 e50 e50 e50	e36 e35 e35 e36 e36 e34	e16 e16 e16 e16 e16	e9.0 e8.0 e8.0 e8.0	e4.0 e4.0 e4.0 e4.0 e4.0	e11 e26 e34 e37 e34	354 406 427 444 443 428	589 605 565 553 553	240 235 235 220 208 197	224 236 216 206 242 223	138 136 131 123 120
TOTAL MEAN MAX MIN AC-FT	4016 130 176 92 7970	2112 70.4 102 50 4190	1397 45.1 50 34 2770	694 22.4 34 16 1380	366.0 12.6 16 8.0 726	149.0 4.81 8.0 4.0 296	290.0 9.67 37 2.0 575	6128 198 444 28 12150	20181 673 913 402 40030	12714 410 651 197 25220	5993 193 249 144 11890	4384 146 213 101 8700
					ADJUSTED T	O INCL	JDE DIVERSIC	N				
MEAN CFSM IN AC-FT	161 1.78 2.05 9910	99.0 1.09 1.22 5890	73.7 0.81 0.94 4530	52.6 0.58 0.67 3240	43.5 0.48 0.52 2500	35.5 0.39 0.45 2180	36.6 0.40 0.45 2180	224 2.48 2.86 13790	707 7.82 8.72 42090	447 4.93 5.69 27460	223 2.46 2.84 13720	177 1.96 2.18 10540
		STATISTIC	S OF MONT	HLY MEA	AN DATA FOR	WATER	YEARS 1947 -	1988,	BY WATER	YEAR (WY)#		
MEAN MAX (WY) MIN (WY)	153 302 1987 48.7 1969	80.6 177 1953 24.3 1969	47.8 107 1948 13.9 1969	30.6 79.3 1961 7.13 1956	20.9 54.6 1961 5.36 1983	15.5 42.1 1947 3.61 1956	21.4 49.4 1964 4.77 1954	149 341 1960 39.9 1971	445 798 1977 224 1954	323 645 1980 128 1954	224 510 1981 94.6 1969	211 471 1967 55.8 1969
SUMMARY	STATIST	ICS	FOR 1	987 CAL	ENDAR YEAR		FOR 1988 WAT	TER YEA	R	WATER YE	ARS 1947	- 1988#
MAXIMUM MAXIMUM MAXIMUM	EAN EAN ANNUAL M NNUAL M AILY ME AILY ME EVEN-DA PEAK FL PEAK ST PEAK ST	EAN EAN AN Y MINIMUM OW AGE AGE			Jun 30 Mar 14 Mar 11				5 1 9 9	144 *162 223 67.3 1420 c.00 .43 1860 d3.44 f6.08		1980 1969 9 1971 9 1956 9 1956 21 1949 21 1949
INSTANTA ANNUAL R ANNUAL R ANNUAL R ANNUAL R 10 PERCE 50 PERCE 90 PERCE	NEOUS LOUNOFF (AUNOFF	OW FLOW AC-FT) AC-FT) CFSM) IN) EDS EDS EDS	*:	88330 108000 *1. *22. 303 80 14	64 37		g1.4 115900 *138000 *2.10 *28.60 482 85 5.0	-		104200 *117400 *1.79 *24.31 369 77 13		

See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted Adjusted to account for diversion, see Remarks
From Mar. 14 to 16 and Apr. 7
Apr. 5 to 7
No flow during one or more days in water years 1956, 1960, 1969, and 1971
Site and datum then in use
Estimated
Current site and datum
Minimum observed, from current-meter measurement, but may have been less during periods of ice effect in Mar. and Apr.

a b c d

REVISIONS. -- Continued.

		DISCHAF	RGE, CUBI	C FEET PE			YEAR OCTOBE	R 1988 TO) SEPTEMBI	ER 1989		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	110 112 112 156 226	86 81 e75 e75 e75	e50 e50 e50 e50 e50	e40 e40 e40 e40 e40	e8.0 e8.0 e8.0 e8.0 e8.0	e7.0 e6.5 e6.0 e6.5 e6.5	e15 e15 e15 e14 e14	80 98 114 121 109	317 282 311 383 396	362 383 364 348 348	244 276 250 221 201	569 575 537 459 535
6 7 8 9 10	297 286 275 244 215	e75 e70 e70 e70 e70	e50 e60 e70 e65 e65	e35 e35 e35 e30 e30	e8.0 e8.0 e8.0 e8.0 e9.0	e6.5 e6.5 e6.5 e6.5	e13 e13 e13 e12 e12	97 100 114 125 127	383 389 411 411 374	309 294 254 249 233	196 245 208 202 193	531 529 504 469 451
11 12 13 14 15	222 204 190 166 153	e70 e65 e65 e65 e65	e65 e65 e60 e45 e35	e30 e30 e28 e28 e28	e9.0 e9.0 e9.0 e9.0	e7.0 e7.5 e8.0 e8.5 e9.0	e11 e10 e12 e13	134 123 117 115 111	368 367 353 382 400	226 225 217 221 202	189 177 175 168 156	403 384 353 332 298
16 17 18 19 20	148 142 147 143 140	e60 e60 e55 e55 e55	e30 e25 e25 e25 e25	e28 e26 e22 e15 e12	e9.0 e9.0 e9.0 e9.0	e9.5 e11 e11 e11 e12	e14 e16 19 22 27	117 132 124 123 138	363 335 357 369 383	185 171 160 158 199	148 142 143 151 148	273 282 287 264 249
21 22 23 24 25	126 120 110 111 105	e55 e55 e55 e55 e55	e25 e25 e25 e25 e25	e10 e9.0 e8.0 e7.5 e7.0	e8.5 e8.5 e8.0 e8.0 e7.5	e12 e12 e12 e13 e13	30 35 38 35 48	183 196 195 194 189	373 365 370 432 381	199 186 198 242 232	144 139 129 131 215	253 242 234 243 305
26 27 28 29 30 31	102 102 104 107 97	e55 e55 e55 e50 e50	e30 e30 e30 e35 e35 e40	e7.0 e7.0 e7.0 e8.0 e8.0 e8.0	e7.5 e7.0 e7.0 	e14 e15 e15 e15 e16 e16	56 65 80 71 74 	206 233 253 306 378 368	364 362 370 369 370	204 180 173 181 202 195	982 1130 1010 898 754 623	356 340 301 241 234
TOTAL MEAN MAX MIN AC-FT	4862 157 297 90 9640	1902 63.4 86 50 3770	1285 41.5 70 25 2550	698.5 22.5 40 7.0 1390	233.0 8.32 9.0 7.0 462	312.5 10.1 16 6.0 620	823 27.4 80 10 1630	5020 162 378 80 9960	11090 370 432 282 22000	7300 235 383 158 14480	9988 322 1130 129 19810	11033 368 575 234 21880
				i	ADJUSTED 1	O INCL	UDE DIVERSI	ON				
MEAN CFSM IN AC-FT	186 2.05 2.37 11430	93.3 1.03 1.15 5550	69.8 0.77 0.89 4290	50.8 0.56 0.65 3120	37.8 0.42 0.43 2100	37.9 0.42 0.48 2330	52.1 0.58 0.64 3100	189 2.08 2.40 11600	401 4.43 4.94 23870	267 2.95 3.40 16400	346 3.83 4.41 21300	405 4.47 4.99 24100
		STATISTIC	S OF MON	THLY MEAN	DATA FOR	WATER	YEARS 1947	- 1989, в	Y WATER Y	EAR (WY)	‡	
MEAN MAX (WY) MIN (WY)	153 302 1987 48.7 1969	80.2 177 1953 24.3 1969	47.6 107 1948 13.9 1969	30.5 79.3 1961 7.13 1956	20.7 54.6 1961 5.36 1983	15.4 42.1 1947 3.61 1956	21.5 49.4 1964 4.77 1954	149 341 1960 39.9 1971	444 798 1977 224 1954	321 645 1980 128 1954	226 510 1981 94.6 1969	215 471 1967 55.8 1969
							FOR 1989 WA			WATER YE	ARS 1947	- 1989#
HIGHEST LOWEST LOWEST ANNUAL MAXIMUN MAXIMUN	F ANNUAL ME ANNUAL ME F DAILY ME DAILY ME SEVEN-DAY F PEAK FLO F PEAK STA	MEAN CAN LAN LAN MY MINIMUM W GGE LGE LC-FT) LC-FT) LFSM) LN) LDS LDS LDS		913 a2.0 2.7	Jun 10 Apr 5 Apr 1		54547.0 149 *178 1130 6.0 6.4 1260 6.38 108200 *129200 *1,97 *26.77 369 90 8.0		*	144 *163 223 67.3 1420 b.00 .43 1860 c3.44 d6.38 104300 118100 *1.80	Aug Jan Jan Jun Jun Aug	1980 1969 9 1971 2 1956 9 1956 21 1949 27 1989
50 PERO 90 PERO	CENT EXCEE	DS DS		72 5.0			90			77 13		

See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted Adjusted to account for diversion, see Remarks Apr. 5 to 7
No flow during one or more days in water years 1956, 1960, 1969, and 1971
Site and datum then in use
Current site and datum
Estimated

a b c d e

15276000 SHIP CREEK NEAR ANCHORAGE--Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1989 TO SEPTEMBER 1990
DAILY MEAN VALUES

					DAI	LY MEAN V	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	275 264 238 241 239	145 150 165 150 143	e60 e60 e60 e60	e34 e34 e34 e34 e34	e28 e28 e28 e28 e28	e22 e20 e20 e20 e20	e14 e14 e15 e14 e13	259 215 194 181 187	719 700 691 726 766	313 297 282 270 e260	98 91 87 94 94	81 78 82 115 98
6	250	127	e55	e32	e28	e19	e13	212	789	e240	84	99
7	243	e120	e55	e32	e28	e18	e13	217	825	e220	79	97
8	237	e110	e55	e32	e28	e17	e13	229	777	e200	77	117
9	222	e100	e55	e32	e28	e16	e13	273	683	e190	82	302
10	213	e90	e55	e32	e28	e15	e13	354	626	185	81	391
11	193	e80	e55	e30	e28	e15	e14	375	585	172	88	372
12	182	e80	e55	e30	e28	e15	e16	418	509	165	83	374
13	e180	e80	e50	e30	e28	e14	e19	464	514	151	79	418
14	e180	e80	e50	e30	e28	e9.0	e24	458	544	150	77	450
15	e190	e80	e50	e30	e28	e4.5	e28	461	498	145	76	409
16	e190	e75	e50	e30	e28	e2.5	e36	520	492	141	78	347
17	200	e75	e50	e30	e26	e2.0	e38	566	480	136	76	302
18	215	e75	e50	e30	e26	e2.0	e50	636	397	130	78	268
19	215	e75	e48	e30	e26	e2.0	e65	636	362	131	81	252
20	205	e75	e48	e30	e26	e2.0	e80	682	335	135	85	245
21	184	e70	e46	e30	e24	e2.0	e90	688	326	136	83	228
22	181	e70	e46	e30	e24	e3.0	e110	559	e320	131	98	245
23	207	e70	e44	e30	e24	e4.0	e120	460	e300	125	89	238
24	184	e70	e42	e30	e22	e6.0	131	442	e320	122	84	226
25	166	e70	e40	e30	e22	e9.0	141	490	e320	118	79	207
26 27 28 29 30 31	181 238 172 153 143	e65 e65 e65 e65	e38 e36 e36 e36 e36	e30 e30 e30 e30 e30	e22 e22 e22 	e12 e13 e13 e14 e15 e14	149 163 198 241 242	572 610 611 710 721 737	329 321 316 317 317	112 108 108 120 114 112	95 91 91 e95 e90 e80	196 193 193 183 200
TOTAL	6322	2750	1517	960	734	360.0	2090	14137	15204	5219	2643	7006
MEAN	204	91.7	48.9	31.0	26.2	11.6	69.7	456	507	168	85.3	234
MAX	275	165	60	34	28	22	242	737	825	313	98	450
MIN	141	65	36	30	22	2.0	13	181	300	108	76	78
AC-FT	12540	5450	3010	1900	1460	714	4150	28040	30160	10350	5240	13900
					ADJUSTED	TO INCLU	DE DIVERSI	ION				
MEAN	225	119	82.4	56.4	49.4	36.4	94.1	482	533	200	115	250
CFSM	2.49	1.31	0.91	0.62	0.54	0.40	1.04	5.32	5.89	2.21	1.27	2.76
IN	2.87	1.47	1.05	0.72	0.57	0.46	1.16	6.13	6.57	2.55	1.47	3.08
AC-FT	13840	7080	5060	3470	2740	2240	5600	29610	31730	12300	7080	14860
		STATISTI	CS OF MON	THLY MEAN	DATA FOR	R WATER Y	EARS 1947	- 1990,	BY WATER	YEAR (WY)	#	
MEAN	154	80.4	47.6	30.5	20.8	15.3	22.6	156	445	317	223	215
MAX	302	177	107	79.3	54.6	42.1	69.7	456	798	645	510	471
(WY)	1987	1953	1948	1961	1961	1947	1990	1990	1977	1980	1981	1967
MIN	48.7	24.3	13.9	7.13	5.36	3.61	4.77	39.9	224	128	85.3	55.8
(WY)	1969	1969	1969	1956	1983	1956	1954	1971	1954	1954	1990	1969

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted
e Estimated

SUMMARY STATISTICS	FOR 1989 CALENDAR YEAR	FOR 1990 WATER YEAR	WATER YEARS 1947 - 1990#
ANNUAL TOTAL	57087.0	58942.0	
ANNUAL MEAN	156	161	144
ANNUAL MEAN	*184	*187	*163
HIGHEST ANNUAL MEAN			223 1980
LOWEST ANNUAL MEAN			67.3 1969
HIGHEST DAILY MEAN	1130 Aug 27	825 Jun 7	1420 Aug 9 1971
LOWEST DAILY MEAN	6.0 Mar 3	a2.0 Mar 17	b.00 Jan 2 1956
ANNUAL SEVEN-DAY MINIMUM	6.4 Mar 2	2.2 Mar 16	.43 Jan 9 1956
MAXIMUM PEAK FLOW		862 Jun 7	1860 Jun 21 1949
MAXIMUM PEAK STAGE		6.02 Jun 7	c3.44 Jun 21 1949
MAXIMUM PEAK STAGE			d6.38 Aug 27 1989
ANNUAL RUNOFF (AC-FT)	113200	116900	104600
ANNUAL RUNOFF (AC-FT)	*133900	*135600	*118100
ANNUAL RUNOFF (CFSM)	*2.04	*2.06	*1.80
ANNUAL RUNOFF (IN)	*27.74	*28.10	*24.46
10 PERCENT EXCEEDS	369	445	369
50 PERCENT EXCEEDS	115	87	78
90 PERCENT EXCEEDS	8.0	18	13

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted

* Adjusted to account for diversion, see Remarks
a Mar. 17 to 21
b No flow during one or more days in water years 1956, 1960, 1969, and 1971
c Site and datum then in use
d Current site and datum

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1990 TO SEPTEMBER 1991

	DAILY MEAN VALUES											
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	175	e66	e25	e15	e14	e14	e11	e30	260	409	199	119
2	151	e66	e25	e15	e14	e14	e11	e38	267	368	204	118
3	146	e66	e24	e15	e14	e14	e11	44	285	346	199	121
4	137	e66	e24	e15	e14	e14	e11	50	326	343	193	130
5	145	e66	e23	e15	e14	e14	e11	50	301	350	188	134
6	142	e64	e23	e15	e14	e14	e11	57	305	297	177	137
7	140	e62	e22	e15 e15	e14	e14	e11	62 59	295 294	276	169 160	136 140
8 9	136 120	e60 e58	e22 e21	e15	e14 e14	e14 e14	e11 e11	59 56	294	266 306	157	140
10	116	e56	e21	e15	e14	e14	e11	54	294	292	150	158
11	119	e52	e21	e15	e14	e13	e11	54	330	428	150	173
12	116	e50	e20	e15	e14	e13	e11	53	380	452	148	161
13	106	e47	e20	e15	e14	e13	e11	56	407	397	143	158
14	103	e45	e19	e15	e14	e13	e11	55	454	361	138	156
15	e80	e43	e19	e15	e14	e13	e11	57	491	319	137	153
16	e80	e41	e19	e15	e14	e13	e11	64	476	316	131	173
17	e75	e40	e18	e15	e14	e13	e11	74	470	321	188	201
18	e75	e38	e18	e15	e14	e13	e11	81	442	291	201	190
19	e70	e36	e18	e15	e14	e13	e11	78	441	280	148	176
20	e70	e35	e17	e15	e14	e13	e11	94	508	274	118	178
21	e70	e34	e17	e15	e14	e12	e11	129	568	254	96	164
22	e70	e33	e17	e15	e14	e12	e11	156	598	245	92	154
23	e70	e32	e16	e15	e14	e12	e12	194	585	247	87	157
24	e70	e31	e16	e15	e14	e12	e13	242	529	236	86	145
25	e70	e30	e16	e15	e14	e12	e14	312	493	220	106	138
26	e68	e29	e15	e15	e14	e12	e15	335	438	205	111	164
27	e68	e28	e15	e15	e14	e12	e17	297	418	192	105	184
28	e68	e27	e15	e15	e14	e12	e19	276	405	186	110	169
29	e68	e26	e15	e15		e12	e21	328	393	200	115	165
30	e68	e26	e15	e15		e12	e25	308	415	196	117	155
31	e68		e15	e15		e12		277		192	118	
TOTAL	3060	1353	591	465	392	402	378	4020	12164	9065	4441	4652
MEAN	98.7	45.1	19.1	15.0	14.0	13.0	12.6	130	405	292	143	155
MAX	175 68	66 26	25 15	15 15	14 14	14 12	25 11	335 30	598 260	452	204 86	201
MIN AC-FT	6070	2680	1170	922	778	797	750	7970	24130	186 17980	8810	118 9230
AC-F1	0070	2000	11/0						24130	1/900	0010	9230
					ADJUSTED	TO INCLUI	E DIVERSI	ON				
MEAN	129	78.7	51.3	46.4	39.8	32.7	33.7	156	428	317	168	177
CFSM	1.43	0.87	0.57	0.51	0.44	0.36	0.37	1.72	4.73	3.50	1.86	1.96
IN	1.65	0.97	0.65	0.59	0.46	0.42	0.42	1.99	5.28	4.03	2.14	2.18
AC-FT	7958	4681	3151	2851	2213	2013	2008	9595	25462	19465	10351	10551
		STATISTIC	CS OF MON	THLY MEAN	DATA FOR	WATER YE	CARS 1947	- 1991,	BY WATER	YEAR (WY)#	
MEAN	153	79.6	47.0	30.1	20.6	15.3	22.4	156	444	317	221	214
MAX	302	177	107	79.3	54.6	42.1	69.7	456	798	645	510	471
(WY)	1987	1953	1948	1961	1961	1947	1990	1990	1977	1980	1981	1967
MIN	48.7	24.3	13.9	7.13	5.36	3.61	4.77	39.9	224	128	85.3	55.8
(WY)	1969	1969	1969	1956	1983	1956	1954	1971	1954	1954	1990	1969

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted
e Estimated

SUMMARY STATISTICS	FOR 1990 CALENDAR YEAR	FOR 1991 WATER YEAR	WATER YEARS 1947 - 1991#
ANNUAL TOTAL	53357.0	40983	
ANNUAL MEAN	146	112	144
ANNUAL MEAN	*173	*138	*163
HIGHEST ANNUAL MEAN			223 1980
LOWEST ANNUAL MEAN			67.3 1969
HIGHEST DAILY MEAN	825 Jun 7	598 Jun 22	1420 Aug 9 1971
LOWEST DAILY MEAN	a2.0 Mar 17	b11 Apr 1	c.00 Jan 2 1956
ANNUAL SEVEN-DAY MINIMUM	2.2 Mar 16	11 Apr 1	.43 Jan 9 1956
MAXIMUM PEAK FLOW		917 Jun 23	1860 Jun 21 1949
MAXIMUM PEAK STAGE		5.82 Jun 23	d3.44 Jun 21 1949
MAXIMUM PEAK STAGE			f6.38 Aug 27 1989
ANNUAL RUNOFF (AC-FT)	105800	81290	104100
ANNUAL RUNOFF (AC-FT)	*125400	*100300	*118100
ANNUAL RUNOFF (CFSM)	*1.91	*1.53	*1.80
ANNUAL RUNOFF (IN)	*25.98	*20.78	*24.46
10 PERCENT EXCEEDS	445	310	368
50 PERCENT EXCEEDS	70	56	77
90 PERCENT EXCEEDS	15	13	13

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted

* Adjusted to account for diversion, see Remarks

AMAR. 17 to 22

b Apr. 1 to 22

c No flow during one or more days in water years 1956, 1960, 1969, and 1971

d Site and datum then in use

f Current site and datum

15276000 SHIP CREEK NEAR ANCHORAGE--Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1991 TO SEPTEMBER 1992

		Dibein	nton, con	C I DDI II	DAII	LY MEAN		DR 1991	TO DELTER	IDBN 1992		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	153	69	e35	e20	e20	e16	e12	42	608	455	171	156
2	146	71	e35	e20	e20	e16	e12	40	611	464	160	207
3	147	68	e35	e20	e20	e16	e12	40	596	473	157	194
4	144	70	e35	e20	e20	e16	e12	39	561	468	166	183
5	131	74	e35	e20	e20	e16	e12	38	541	447	194	184
6	127	73	e35	e18	e22	e14	e14	37	546	412	183	213
7	121	67	e35	e18	e22	e14	e14	38	576	383	170	206
8	116	63	e35	e18	e22	e14	e16	45	620	346	154	183
9 10	110 110	63 58	e30 e30	e18 e18	e22 e22	e14 e14	e16 e18	51 54	631 659	327 334	141 131	174 164
11	107	54	e30	e16	e24	e12	e18	55	697	392	135	155
12	100	e50	e30	e16	e24	e12	e20	59	674	370	128	149
13	106	e50 e50	e30	e16	e24	e12	e22	70	646	353	124	143 136
14 15	105 93	e50	e30 e30	e16 e16	e24 e24	e12 e12	e24 27	84 93	629 617	338 316	117 112	130
16	100	e50	e30	e14	e22	e10	29	86	568	297	115	122
17	99	e45	e25	e14	e22	e10	29	85	516	293	123	122
18	92	e45	e25	e14	e22	e10	30	98	478	284	113	153
19	108	e45	e25	e14	e22	e10	29	118	472	276	113	138
20	101	e45	e25	e14	e22	e10	29	154	474	293	116	120
21	82	e45	e25	e16	e20	e10	31	190	472	283	105	113
22	92	e45	e25	e16	e20	e10	32	239	475	271	103	110
23	76	e45	e25	e16	e20	e10	32	274	451	253	103	98
24	79	e45	e25	e16	e20	e10	35	319	421	240	102	97
25	72	e40	e25	e16	e20	e10	38	386	409	235	113	94
26	81	e40	e24	e18	e18	e10	41	464	392	231	134	91
27	100	e40	e24	e18	e18	e10	45	499	413	214	120	93
28	77	e40	e24	e18	e18	e10	47	518	424	205	114	e100
29	80	e40	e22	e18	e18	e10	47	530	474	199	111	e95
30	71	e40	e22	e18		e10	46	554	488	188	118	e90
31	70		e22	e18		e10		595		179	167	
TOTAL	3196	1580	883	528	612	370	789	5894	16139	9819	4113	4213
MEAN	103	52.7	28.5	17.0	21.1	11.9	26.3	190	538	317	133	140 213
MAX	153	74	35	20	24	16	47	595	697	473	194	213
MIN	70	40	22	14	18	10	12	37	392	179	102	90
AC-FT	6340	3130	1750	1050	1210	734	1560	11690	32010	19480	8160	8360
					ADJUSTED	TO INCLU	DE DIVERSI	ION				
MEAN	126	77.4	52.1	42.5	45.1	35.8	40.2	210	562	344	159	169
CFSM	1.39	0.86	0.58	0.47	0.50	0.40	0.44	2.32	6.21	3.80	1.76	1.87
IN	1.60	0.95	0.66	0.54	0.54	0.46	0.50	2.68	6.93	4.38	2.02	2.09
AC-FT	7730	4600	3200	2610	2590	2200	2390	12930	33450	21140	9770	10070
		STATISTI	CS OF MON	THLY MEAN	DATA FOR	WATER Y	EARS 1947	- 1992,	BY WATER	YEAR (WY)	#	
MEAN	152	79.1	46.6	29.8	20.6	15.2	22.5	156	446	317	219	212
MAX	302	177	107	79.3	20.6 54.6	42.1	69.7	456	798	645	510	471
(WY)	1987	1953	1948	1961	1961	1947	1990	1990	1977	1980	1981	1967
MIN	48.7	24.3	13.9	7.13	5.36	3.61	4.77	39.9	224	128	85.3	55.8
(WY)	1969	1969	1969	1956	1983	1956	1954	1971	1954	1954	1990	1969
(= /		2000			1,00	1,00			1001	1771	100	1,00

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted
e Estimated

SUMMARY STATISTICS	FOR 1991 CALENDAR YEAR	FOR 1992 WATER YEAR	WATER YEARS 1947 - 1992#
ANNUAL TOTAL	41638	48136	
ANNUAL MEAN	114	132	143
ANNUAL MEAN	*138	*155	*162
HIGHEST ANNUAL MEAN			223 1980
LOWEST ANNUAL MEAN			67.3 1969
HIGHEST DAILY MEAN	598 Jun 22	697 Jun 11	1420 Aug 9 1971
LOWEST DAILY MEAN	all Apr 1	b10 Mar 16	c.00 Jan 2 1956
ANNUAL SEVEN-DAY MINIMUM	11 Apr 1	10 Mar 16	.43 Jan 9 1956
MAXIMUM PEAK FLOW		750 Jun 11	1860 Jun 21 1949
MAXIMUM PEAK STAGE		5.90 Jun 11	d3.44 Jun 21 1949
MAXIMUM PEAK STAGE			f6.38 Aug 27 1989
ANNUAL RUNOFF (AC-FT)	82590	95480	103900
ANNUAL RUNOFF (AC-FT)	*100000	*112700	*117400
ANNUAL RUNOFF (CFSM)	*1.52	*1.72	*1.79
ANNUAL RUNOFF (IN)	*20.73	*23.35	*24.30
10 PERCENT EXCEEDS	310	431	369
50 PERCENT EXCEEDS	57	56	76
90 PERCENT EXCEEDS	13	14	13

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted

* Adjusted to account for diversion, see Remarks

Apr. 1 to 22

b Mar. 16 to 31

c No flow during one or more days in water years 1956, 1960, 1969, and 1971

d Site and datum then in use

f Current site and datum

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1992 TO SEPTEMBER 1993

15276000 SHIP CREEK NEAR ANCHORAGE--Continued

DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e90 e19 850 196 e85 e13 2 90 e46 e30 e19 e13 e13 e15 89 e800 193 e85 335 84 e46 e30 e19 e13 e13 e16 96 e750 183 e90 264 e46 e14 5 79 e46 e28 e18 e14 e13 e16 113 e650 168 e95 332 6 117 e44 e28 e18 e14 e13 e16 117 e600 158 e95 333 117 e44 e28 e18 e14 e13 e16 124 e550 149 92 362 8 125 e500 141 89 302 92 e42 e28 e18 e15 e13 e16 e42 e26 e13 128 486 93 10 77 e42 e26 e17 e15 e13 e18 131 436 147 88 255 11 69 e42 e26 e17 e15 e13 e20 125 438 155 89 218 12 13 70 76 e17 e17 223 211 e40 e26 e15 e13 e22 123 440 158 91 148 90 160 e26 420 e40 e15 e13 e24 14 70 e40 e24 e16 e15 e13 27 178 413 165 159 203 15 64 e38 e24 e16 e15 e13 29 218 405 158 234 194 16 62 e38 e24 e16 e14 e14 33 276 395 158 220 410 17 e60e38 e24 e16 e14 e14 e14 37 345 357 149 172 462 e15 401 147 154 383 18 e60 e36 e24 e14 40 333 1 0 e60 e36 e24 e15 e14 e14 37 464 304 125 131 378 2.0 e60e36 e22 e15 e14 e14 37 528 307 121 145 415 21 e55 e36 e22 e14 e14 ₽14 37 590 322 113 155 567 2.2 e55 e34 e22 e14 e14 e14 39 626 325 108 164 456 23 e34 e13 e14 609 137 397 e55 e22 e14 43 311 102 24 e55 e34 e22 e13 e14 e14 48 637 281 97 128 358 25 e55 e22 262 102 340 e34 e13 e14 e14 58 621 123 26 e55 67 570 235 119 e32 e20 e13 e13 e15 95 319 2.7 e50 e20 76 530 234 82 129 322 e32 e13 e13 e15 e32 e20 e13 e13 220 113 29 e50 e30 e20 e13 e15 72 610 210 e80 127 360 30 e50 e30 e20 e13 --e15 77 684 205 e80 176 557 781 10716 TOTAL 2147 1160 756 487 394 425 1063 12739 4174 3987 10227 MEAN 38.7 24.4 14.1 13.7 35.4 78 425 135 129 341 117 50 19 15 MAX 30 15 781 850 196 234 567 20 MIN 50 30 13 13 13 15 84 205 80 85 194 4260 2300 1500 781 843 2110 21260 25270 8280 7910 20290 ADJUSTED TO INCLUDE DIVERSION

C.T.	יאידפידפים ה	E MONTUIV	MENN	עידעם	FOD	משידות	VENDO	1047	1002	DV WATED	VEND	(MV) #

39.1

 $\begin{smallmatrix}0.43\\0.45\end{smallmatrix}$

2170

MEAN	150	78.2	46.1	29.5	20.5	15.2	22.8	160	446	313	217	215
MAX	302	177	107	79.3	54.6	42.1	69.7	456	798	645	510	471
(WY)	1987	1953	1948	1961	1961	1947	1990	1990	1977	1980	1981	1967
MIN	48.7	24.3	13.9	7.13	5.36	3.61	4.77	39.9	224	128	85.3	55.8
(WY)	1969	1969	1969	1956	1983	1956	1954	1971	1954	1954	1990	

29.7

0.33

1830

48.6

0.54

2890

367

4.06 4.68

22590

452

4.99 5.57

26880

161

1.78

9890

158

1.75

9720

368

4.06

21870

41.9

 $0.46 \\ 0.53$

2580

MEAN

CESM IN AC-FT 96.2

1.06 1.23

5920

63.8

0.70 0.79

3800

50.4

0.56

3100

See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted Estimated

SUMMARY STATISTICS	FOR 1992 CALEND	AR YEAR	FOR 1993 WATE	ER YEAR	WATER YEARS	1947 - 1993#
ANNUAL TOTAL	46540		48275			
ANNUAL MEAN	127		132		143	
ANNUAL MEAN	*152		*156		*162	
HIGHEST ANNUAL MEAN					223	1980
LOWEST ANNUAL MEAN					67.3	1969
HIGHEST DAILY MEAN	697	Jun 11	850	Jun 1	1420	Aug 9 1971
LOWEST DAILY MEAN	a10	Mar 16	b13	Jan 23	c.00	Jan 2 1956
ANNUAL SEVEN-DAY MINIMUM	10	Mar 16	13	Jan 23	.43	Jan 9 1956
MAXIMUM PEAK FLOW			d942	Jun 1	1860	Jun 21 1949
MAXIMUM PEAK STAGE			6.10	Jun 1	f3.44	Jun 21 1949
MAXIMUM PEAK STAGE					q6.38	Aug 27 1989
ANNUAL RUNOFF (AC-FT)	92310		95750		103700	2
ANNUAL RUNOFF (AC-FT)	*110000		*113200		*117400	
ANNUAL RUNOFF (CFSM)	*1.67		*1.73		*1.79	
ANNUAL RUNOFF (IN)	*22.78		*23.46		*24.30	
10 PERCENT EXCEEDS	431		396		369	
50 PERCENT EXCEEDS	46		55		76	
90 PERCENT EXCEEDS	14		14		13	

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted

* Adjusted to account for diversion, see Remarks
a Mar. 16 to Mar. 31
b From Jan. 23 to Feb. 3, and Feb. 26 to Mar. 15
c No flow during one or more days in water years 1956, 1960, 1969, and 1971
Site and datum then in use
g Current site and datum

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1993 TO SEPTEMBER 1994
DAILY MEAN VALUES

					DAII	LY MEAN V	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	638	e130	e95	e65	e32	e24	27	83	432	e400	e110	104
2	584	e120	e95	e70	e34	e24	28	96	430	479	e110	99
3	495	e130	e95	e75	e36	e24	29	103	458	458	e110	93
4	453	e150	e90	e75	e40	e24	28	90	497	419	e110	88
5	510	e140	e90	e70	e46	e24	30	84	615	392	e110	83
6	434	e130	e90	e70	e48	e24	30	91	698	356	e110	78
7	312	e120	e90	e65	e46	e24	31	92	682	319	e110	77
8	321	e140	e85	e65	e42	e24	29	88	649	322	e100	78
9	393	e160	e85	e60	e40	e24	27	87	625	339	e100	81
10	397	e140	e85	e60	e38	e24	27	102	624	314	e100	93
11	333	e120	e85	e50	e34	e24	29	119	597	290	e110	134
12	395	e120	e80	e55	e32	e24	28	143	605	277	e100	113
13	387	e120	e80	e55	e30	e24	26	e140	615	272	112	107
14	378	e110	e80	e55	e28	e24	27	e160	709	260	107	116
15	363	e100	e80	e50	e30	e24	25	e180	880	262	104	124
16	341	e100	e80	e48	e26	e24	30	e220	993	265	97	116
17	341	e100	e75	e46	e26	e22	28	e260	833	242	92	110
18	300	e110	e75	e44	e26	e22	24	e220	714	246	92	129
19	275	e110	e75	e42	e26	e22	28	e240	645	232	89	115
20	250	e120	e70	e38	e26	e22	32	e220	540	187	92	119
21	232	e120	e70	e34	e26	e22	42	e220	570	209	98	116
22	217	e130	e70	e30	e24	e22	49	e200	641	215	92	115
23	187	e140	e65	e26	e24	e22	55	e220	538	187	82	122
24	190	e120	e65	e26	e24	e22	58	e240	537	166	79	116
25	198	e110	e65	e26	e24	e22	70	e220	545	133	106	110
26	e180	e100	e60	e26	e24	e22	75	e220	e550	e120	99	116
27	e160	e100	e60	e26	e24	e22	89	e220	e450	e120	126	108
28	e130	e100	e60	e28	e24	e22	85	e280	e400	e120	143	101
29	e150	e95	e60	e28		e22	84	e360	e400	e110	124	97
30	e170	e95	e60	e30		e24	85	385	e380	e120	115	93
31	e150		e60	e30		e26		389		e120	109	
TOTAL	9864	3580	2375	1468	880	720	1255	5772	17852	7951	3238	3151
MEAN	318	119	76.6	47.4	31.4	23.2	41.8	186	595	256	104	105
MAX	638	160	95	75	48	26	89	389	993	479	143	134
MIN	130	95	60	26	24	22	24	83	380	110	79	77
AC-FT	19570	7100	4710	2910	1750	1430	2490	11450	35410	15770	6420	6250
					ADJUSTED	TO INCLUD	E DIVERS	ION				
MEAN	345	143	91.1	65.2	46.2	40.4	60.6	204	617	286	133	127
CFSM	3.82	1.58	1.01	0.72	0.51	0.45	0.67	2.25	6.81	3.16	1.47	1.41
IN	4.40	1.76	1.16	0.83	0.53	0.51	0.75	2.60	7.60	3.64	1.70	1.57
AC-FT	21240	8510	5600	4010	2570	2480	3610	12530	36700	17590	8190	7580
AC-FI	21240											7560
		STATISTI	CS OF MON	THLY MEAN	DATA FOR	WATER YE	ARS 1947	- 1994,	BY WATER	YEAR (WY)	#	
MEAN	154	79.0	46.8	29.9	20.7	15.3	23.2	161	449	312	215	213
MAX	318	177	107	79.3	54.6	42.1	69.7	456	798	645	510	471
(WY)	1994	1953	1948	1961	1961	1947	1990	1990	1977	1980	1981	1967
MIN	48.7	24.3	13.9	7.13	5.36	3.61	4.77	39.9	224	128	85.3	55.8
(WY)	1969	1969	1969	1956	1983	1956	1954	1971	1954	1954	1990	1969
· · · ± /											-220	_, ,

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted
e Estimated

SUMMARY STATISTICS	FOR 1993 CALENDAR YEAR	FOR 1994 WATER YEAR	WATER YEARS 1947 - 1994#
ANNUAL TOTAL	60031	58106	
ANNUAL MEAN	164	159	144
ANNUAL MEAN	*187	*180	*163
HIGHEST ANNUAL MEAN			223 1980
LOWEST ANNUAL MEAN			67.3 1969
HIGHEST DAILY MEAN	850 Jun 1	993 Jun 16	1420 Aug 9 1971
LOWEST DAILY MEAN	a13 Jan 23	b22 Mar 17	c.00 Jan 2 1956
ANNUAL SEVEN-DAY MINIMUM	13 Jan 23	22 Mar 17	.43 Jan 9 1956
MAXIMUM PEAK FLOW		1100 Jun 16	1860 Jun 21 1949
MAXIMUM PEAK STAGE		6.25 Jun 16	d3.44 Jun 21 1949
MAXIMUM PEAK STAGE			f6.38 Aug 27 1989
ANNUAL RUNOFF (AC-FT)	119100	115300	104000
ANNUAL RUNOFF (AC-FT)	*135800	*130600	*118100
ANNUAL RUNOFF (CFSM)	*2.07	*1.99	*1.80
ANNUAL RUNOFF (IN)	*28.13	*27.06	*24.46
10 PERCENT EXCEEDS	417	408	370
50 PERCENT EXCEEDS	100	100	78
90 PERCENT EXCEEDS	14	24	13

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted

* Adjusted to account for diversion, see Remarks
a From Jan. 23 to Feb. 3, and Feb. 26 to Mar. 15
b Mar. 17 to 29
c No flow during one or more days in water years 1956, 1960, 1969, and 1971
d Site and datum then in use
f Current site and datum

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1994 TO SEPTEMBER 1995
DAILY MEAN VALUES

					DAII	LY MEAN V	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	90	e55	e55	e48	e28	e24	29	112	366	440	201	144
2	89	e60	e55	e46	e34	e24	29	130	350	416	192	147
3	90	e60	e55	e38	e34	e22	30	159	346	439	194	139
4	96	e60	e55	e36	e34	e22	32	164	362	411	199	133
5	90	e60	e55	e36	e34	e22	31	168	373	415	199	144
6	93	e55	e50	e36	e34	e22	30	146	379	421	193	144
7	91	e55	e50	e34	e32	e22	31	140	372	442	183	141
8	87	e55	e50	e36	e32	e22	30	168	392	405	163	158
9	89	e55	e50	e42	e30	e22	32	226	437	343	159	169
10	97	e55	e50	e42	e30	e22	31	312	558	315	159	168
11	101	e55	e50	e42	e28	e22	31	347	749	313	149	159
12	105	e55	e50	e42	e28	e22	33	383	874	299	155	168
13	99	e55	e50	e42	e28	e24	34	428	903	287	157	171
14	91	e55	e50	e42	e28	e24	35	397	860	279	145	161
15	74	e55	e50	e42	e28	e24	35	403	731	254	139	152
16	81	e55	e50	e42	e28	e24	34	382	618	234	132	151
17	77	e55	e50	e42	e28	e24	35	353	531	220	127	139
18	68	e55	e50	e40	e28	e24	36	341	516	215	123	137
19	64	e55	e50	e40	e26	e24	34	334	556	209	122	138
20	61	e55	e50	e42	e26	e24	36	337	553	200	120	641
21 22 23 24 25	55 e55 e55 e60 e65	e55 e55 e55 e55	e50 e50 e50 e50 e50	e42 e40 e40 e36 e38	e26 e26 e26 e26 e26	e26 e26 e26 e26 e26	38 41 55 69 76	367 379 427 509 611	490 470 529 478 422	203 243 223 238 284	114 114 109 111 110	1220 926 675 532 448
26 27 28 29 30 31	e60 e60 e60 e60 e55	e55 e55 e55 e55 	e50 e48 e48 e48 e48 e48	e38 e38 e36 e36 e36 e34	e24 e24 e24 	e26 e26 e26 e26 e28 29	78 80 82 88 96	621 539 487 462 418 389	379 353 358 383 415	279 247 228 220 246 217	106 105 108 95 107 108	363 320 287 259 275
TOTAL	2373	1670	1565	1224	800	751	1351	10639	15103	9185	4398	8809
MEAN	76.5	55.7	50.5	39.5	28.6	24.2	45.0	343	503	296	142	294
MAX	105	60	55	48	34	29	96	621	903	442	201	1220
MIN	55	55	48	34	24	22	29	112	346	200	95	133
AC-FT	4710	3310	3100	2430	1590	1490	2680	21100	29960	18220	8720	17470
					ADJUSTED	TO INCLUI	E DIVERS	ION				
MEAN	101	73.1	65.3	54.4	41.2	34.3	49.6	351	532	326	169	311
CFSM	1.11	0.81	0.72	0.60	0.46	0.38	0.55	3.88	5.88	3.60	1.87	3.44
IN	1.28	0.90	0.83	0.69	0.47	0.44	0.61	4.48	6.56	4.15	2.16	3.84
AC-FT	6180	4350	4010	3340	2290	2110	2950	21600	31660	20030	10410	18530
		STATISTI	CS OF MON	THLY MEAN	DATA FOR	WATER YE	ARS 1947	- 1995,	BY WATER	YEAR (WY)#	
MEAN	152	78.6	46.8	30.1	20.9	15.5	23.6	165	450	311	213	214
MAX	318	177	107	79.3	54.6	42.1	69.7	456	798	645	510	471
(WY)	1994	1953	1948	1961	1961	1947	1990	1990	1977	1980	1981	1967
MIN	48.7	24.3	13.9	7.13	5.36	3.61	4.77	39.9	224	128	85.3	55.8
(WY)	1969	1969	1969	1956	1983	1956	1954	1971	1954	1954	1990	1969

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted
e Estimated

SUMMARY STATISTICS	FOR 1994 CALEN	DAR YEAR	FOR 1995 WATE	ER YEAR	WATER YEARS 1	947 - 1995#
ANNUAL TOTAL	47895		57868			
ANNUAL MEAN	131		159		144	
ANNUAL MEAN	*152		*176		*163	
HIGHEST ANNUAL MEAN					223	1980
LOWEST ANNUAL MEAN					67.3	1969
HIGHEST DAILY MEAN	993	Jun 16	1220	Sep 21	1420	Aug 9 1971
LOWEST DAILY MEAN	a22	Mar 17	b22	Mar 3	c.00	Jan 2 1956
ANNUAL SEVEN-DAY MINIMUM	22	Mar 17	22	Mar 3	.43	Jan 9 1956
MAXIMUM PEAK FLOW			1440	Sep 21	1860	Jun 21 1949
MAXIMUM PEAK STAGE			6.52	Sep 21	d3.44	Jun 21 1949
MAXIMUM PEAK STAGE					f6.52	Sep 21 1995
ANNUAL RUNOFF (AC-FT)	95000		114800		104200	
ANNUAL RUNOFF (AC-FT)	*109800		*127500		*118100	
ANNUAL RUNOFF (CFSM)	*1.67		*1.94		*1.80	
ANNUAL RUNOFF (IN)	*22.75		*26.41		*24.46	
10 PERCENT EXCEEDS	382		417		372	
50 PERCENT EXCEEDS	65		60		77	
90 PERCENT EXCEEDS	24		26		14	

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted

* Adjusted to account for diversion, see Remarks

Amar. 17 to 29

b Mar. 3 to 12

c No flow during one or more days in water years 1956, 1960, 1969, and 1971

d Site and datum then in use

f Current site and datum

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1995 TO SEPTEMBER 1996
DAILY MEAN VALUES

					DAII	LY MEAN V	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	236 221 210 195 175	e85 e85 e80 e80	e55 e55 e55 e55	e44 e44 e44 e44	e34 e34 e34 e34	e26 e26 e26 e26 e26	e20 e20 e20 e20 e20	51 51 51 60 83	194 221 227 236 215	90 85 88 86 84	86 89 80 74 82	70 63 62 59 56
6 7 8 9 10	162 148 147 175 182	e80 e75 e75 e75	e55 e55 e55 e50	e42 e42 e42 e42 e42	e34 e32 e32 e32 e32	e26 e26 e26 e24 e24	e20 e20 e20 e22 e24	98 108 118 123 113	184 165 164 146 132	85 80 72 74 69	86 82 76 73 91	53 51 54 49 50
11 12 13 14 15	170 174 150 136 139	e70 e70 e70 e70	e50 e50 e50 e50 e50	e42 e40 e40 e40 e40	e32 e32 e32 e30 e30	e24 e24 e24 e24 e24	e26 e28 32 31 32	125 139 164 188 e160	133 114 109 107 104	68 67 71 83 72	87 82 77 72 70	48 52 54 53 60
16 17 18 19 20	130 122 e110 e110 e110	e65 e65 e65 e65	e50 e50 e50 e50 e50	e40 e40 e38 e38 e38	e30 e30 e30 e30 e30	e24 e22 e22 e22 e22	33 34 36 38 40	e150 e140 e130 e130 e120	102 104 104 102 99	71 65 67 67 68	72 76 70 67 68	65 80 145 133 120
21 22 23 24 25	e110 e100 e100 e100 e100	e60 e60 e60 e60	e48 e48 e48 e48 e48	e38 e38 e38 e36 e36	e28 e28 e28 e28 e28	e22 e22 e22 e22 e22	41 40 40 42 44	e110 e100 130 121 127	98 98 99 110 105	66 64 62 61 63	65 63 61 60 61	134 117 103 97 116
26 27 28 29 30 31	e90 e90 e90 e90 e90 e85	e60 e60 e55 e55 e55	e46 e46 e46 e46 e46	e36 e36 e36 e34 e34	e28 e28 e26 e26	e22 e22 e22 e22 e22 e22	48 48 44 43 44	125 134 135 130 152 168	102 98 91 90 92	55 61 59 60 92 78	76 64 60 62 65 67	112 107 105 100 90
TOTAL MEAN MAX MIN AC-FT	4247 137 236 85 8420	2050 68.3 85 55 4070	1554 50.1 55 44 3080	1224 39.5 44 34 2430	886 30.6 34 26 1760	730 23.5 26 22 1450	970 32.3 48 20 1920	3734 120 188 51 7410	3945 132 236 90 7820	2233 72.0 92 55 4430	2264 73.0 91 60 4490	2458 81.9 145 48 4880
					ADJUSTED	TO INCLUI	E DIVERSI	ON				
MEAN CFSM IN AC-FT	152 1.68 1.94 9370	92.9 1.03 1.14 5530	67.3 0.74 0.86 4140	47.3 0.52 0.60 2900	36.7 0.41 0.44 2110	31.1 0.34 0.40 1910	39.0 0.43 0.48 2320	128 1.42 1.63 7880	154 1.70 1.90 9160	100 1.10 1.27 6150	102 1.12 1.29 6240	110 1.21 1.36 6540
		STATISTIC	CS OF MON	THLY MEAN	DATA FOR	WATER YE	ARS 1947	- 1996, E	BY WATER	YEAR (WY)	#	
MEAN MAX (WY) MIN (WY)	152 318 1994 48.7 1969	78.4 177 1953 24.3 1969	46.9 107 1948 13.9 1969	30.3 79.3 1961 7.13 1956	21.1 54.6 1961 5.36 1983	15.7 42.1 1947 3.61 1956	23.8 69.7 1990 4.77 1954	164 456 1990 39.9 1971	444 798 1977 132 1996	307 645 1980 72.0 1996	211 510 1981 73.0 1996	212 471 1967 55.8 1969

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted
e Estimated

SUMMARY STATISTICS	FOR 1995 CALENI	DAR YEAR	FOR 1996 WAT	ER YEAR	WATER YEAR	S 1947 - 1996#
ANNUAL TOTAL	60111		26295			
ANNUAL MEAN	165		71.8		142	
ANNUAL MEAN	*182		*88.3		*161	
HIGHEST ANNUAL MEAN					223	1980
LOWEST ANNUAL MEAN					67.3	1969
HIGHEST DAILY MEAN	1220	Sep 21	236	Oct 1	1420	Aug 9 1971
LOWEST DAILY MEAN	a22	Mar 3	b20	Apr 1	c.00	Jan 2 1956
ANNUAL SEVEN-DAY MINIMUM	22	Mar 3	20	Apr 1	.43	Jan 9 1956
MAXIMUM PEAK FLOW			375	Sep 20	1860	Jun 21 1949
MAXIMUM PEAK STAGE			d5.54	Jun 25	f3.44	Jun 21 1949
MAXIMUM PEAK STAGE					g6.52	Sep 21 1995
ANNUAL RUNOFF (AC-FT)	119200		52160		103200	
ANNUAL RUNOFF (AC-FT)	*132000		*64300		*116600	
ANNUAL RUNOFF (CFSM)	*2.01		*0.98		*1.78	
ANNUAL RUNOFF (IN)	*27.34		*13.31		*24.16	
10 PERCENT EXCEEDS	417		133		369	
50 PERCENT EXCEEDS	90		60		76	
90 PERCENT EXCEEDS	26		26		14	

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted
* Adjusted to account for diversion, see Remarks
a Mar. 3 to 12
b Apr. 1 to 8
c No flow during one or more days in water years 1956, 1960, 1969, and 1971
d Jun. 25 and Sep. 20
f Site and datum then in use
g Current site and datum

21

2.2

23

24

25

26

2.7

29

30

TOTAL

MEAN

MAX

MIN

MEAN

CFSM IN AC-FT

MEAN

MAX

MTN

(WY)

(WY)

Estimated

e55

e55

e55

e55

e48

e48

e50

e50

e55

e55

1914

61.7

3800

79.1

0.87

4870

150

318

1994

48.7

1969

81

48

e44

e44

e42

e42

e42

e40

e40

e40

638

e38

1425

47.5

2830

59.1

0.65 0.73

3520

77 8

177

1953

24.3

1969

55

38

e34

e34

e34

e34

e34

e34

e32

e32

e32

e30

1086

35.0

2150

46.3 0.51 0.59

2850

46 7

107

1948

13.9

1969

38

30

e28

e28

e28

e24

e24

e24

e24

e26

e26

e26

890

32

24

28.7

1770

40.2

0.44

2470

30.3

79.3

1961

7.13

1956

e18

e18

e18

e18

e18

e18

e17

e15

604

26

15

21.6

1200

33.4

0.37 0.38

1860

21 1

54.6

1961

5.36

1983

SOUTH-CENTRAL ALASKA

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1996 TO SEPTEMBER 1997 DAILY MEAN VALUES

15276000 SHIP CREEK NEAR ANCHORAGE--Continued

DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 301 110 512 81 e55 e38 e30 e26 e24 70 476 73 75 2 e55 e38 e30 e26 e13 e24 79 448 277 109 417 3 e55 e38 e28 e26 ₽14 e24 85 445 259 102 353 e26 e25 489 5 69 e55 e36 e28 e26 e14 e25 109 561 235 92 287 6 66 e55 e28 e26 e25 126 584 227 99 258 209 200 65 e55 e36 e32 e26 e14 e25 158 555 96 240 e32 e24 157 515 103 228 8 64 e50 e36 e14 e25 e24 e25 108 236 10 69 e50 e36 e32 e24 e14 e26 171 440 177 131 237 11 66 e50 e36 e32 e24 e15 e26 177 410 200 147 218 12 13 e32 e32 e22 e22 e15 e15 204 207 e75 e50 e36 e26 410 199 190 203 e70 192 254 189 e50 e36 e26 403 14 e50 e36 e22 e15 e26 202 390 180 234 183 15 e65 e48 e36 e32 e22 e15 e26 188 364 181 202 173 16 e60 e48 e36 e32 e20 e15 e26 176 341 179 191 167 17 e60e48 e36 e30 e20 e16 e27 204 200 322 167 167 175 159 212 18 e55 e46 e36 e28 e20 e16 e27 324 147 19 e55 e46 e36 e28 e19 e17 e27 195 330 151 131 204 2.0 e55 e44 e34 e28 e19 e17 e28 215 337 147 124 186

e18

e18

e19

e19

e20

e20

e22

e22

e22

e22

e22

518

16.7

1030

26.6

0.29 0.34

1630

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1947 - 1997, BY WATER YEAR (WY)#

15.7

42.1

1947

3.61

1956

13

ADJUSTED TO INCLUDE DIVERSION

e28

e28

e30

e32

e34

e38

e44

e50

e60

917

60

24

30.6

1820

40.0

0.44

2380

23.9

69.7

1990

4.77

1954

60

273

330

361

408

424

467

479

494

512

523

531

7986

258

531

15840

70

272

3.01

16730

166

456

1990

39.9

1971

305

323

363

390

385

384

370

356

329

12191

406

584

305

24180

416

4.59 5.12

24730

443

798

1977

1996

132

146

141

136

124

140

137

131

114

114

115

5476

177

301

114

10860

189

2.08

11600

304

645

1980

72.0

1996

142

191

146

144

186

184

160

161

4868

157

398

9660

170

1.88

10470

210

510

1981

73.0

1996

92

178

225

281

316

332

294

270

221

212

7572

252

512

167

259

2.86

15430

212

471

1967

55 8

1969

15020

#	See Period of	Record an	d Remarks.	Values	shown	on	this	page	are	unadjusted	for	diversion,
	unless others	wise noted										

SUMMARY STATISTICS	FOR 1996 CALENI	DAR YE	AR	FOR 1997 WA	TER YE	AR	WATER YEA	RS 194	7 –	1997#
ANNUAL TOTAL	22869			45447						
ANNUAL MEAN	62.5			125			142			
ANNUAL MEAN	*77.7			*136			*161			
HIGHEST ANNUAL MEAN							223			1980
LOWEST ANNUAL MEAN							67.3			1969
HIGHEST DAILY MEAN	236	Jun	4	584	Jun	6	1420	Aug	9	1971
LOWEST DAILY MEAN	a20	Apr	1	b13	Mar	1	c.00	Jan	2	1956
ANNUAL SEVEN-DAY MINIMUM	20	Apr	1	14	Mar	1	.43	Jan	9	1956
MAXIMUM PEAK FLOW				665	Jun	5	1860	Jun	21	1949
MAXIMUM PEAK STAGE				5.80	Jun	5	d3.44	Jun	21	1949
MAXIMUM PEAK STAGE							f6.52	Sep	21	1995
ANNUAL RUNOFF (AC-FT)	45360			90140			102900			
ANNUAL RUNOFF (AC-FT)	*56500			*98500			*116600			
ANNUAL RUNOFF (CFSM)	*0.86			*1.50			*1.78			
ANNUAL RUNOFF (IN)	*11.70			*20.41			*24.16			
10 PERCENT EXCEEDS	117			339			368			
50 PERCENT EXCEEDS	51			55			75			
90 PERCENT EXCEEDS	26			20			14			

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted

* Adjusted to account for diversion, see Remarks

Apr. 1 to 8

b Mar. 1 and 2

c No flow during one or more days in water years 1956, 1960, 1969, and 1971

d Site and datum then in use

f Current site and datum

15276000 SHIP CREEK NEAR ANCHORAGE--Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		Diocini	KGE, CODIC		DAILY	MEAN VAI		. 2000 10		1001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e234	e90	e60	e46	e38	32	32	52	460	560	228	208
2	219	e85	e60	e48	e38	32	29	46	526	526	220	193
3	209	e85	e60	e46	e38	33	28	45	604	526	223	206
4	199	e80	e60	e46	e38	e32	29	42	637	505	235	215
5	201	e80	e55	e46	e36	e32	27	40	641	567	221	282
6	193	e75	e55	e46	e36	32	28	40	615	541	206	265
7	184	e75	e55	e44	e36	31	27	43	588	519	194	253
8 9	179 165	e70 e76	e50 e50	e44 e44	e36 e36	31 31	28 28	49 53	584 593	523 482	189 183	238 216
10	160	e85	e50 e47	e44	e36	31	28 28	5 <i>3</i>	636	482	175	202
11	157	e91	e61	e42	e36	32	28	56	667	428	166	192
12	152	e72	e55	e42	e36	32	29	60 66	656	396	157	186
13 14	149 151	e72 e71	e50 e50	e42 e44	e36 e36	32 31	29 29	66 77	641 625	378 358	153 154	180 169
15	147	e70	e50	e44	e36	30	30	95	703	346	154	159
15	14/	e70	esu	644	e36	30	30	95	703	340	154	159
16	141	e72	e50	e42	e36	30	30	108	792	337	151	154
17	137	e68	e50	e42	e36	30	30	114	819	331	150	149
18	132	e67	e48	e40	e36	e30	31	138	826	324	153	147
19	129	e67	e46	e40	e36	e30	32	152	781	349	146	154
20	121	e69	e48	e40	e36	32	34	179	757	446	178	147
21	e110	e69	e48	e40	35	33	35	189	766	430	166	143
22	122	e66	e46	e40	34	33	37	181	751	381	155	139
23	120	e64	e46	e42	e34	e34	39	183	783	345	146	136
24	114	e70	e46	e40	e34	e34	38	190	804	319	145	139
25	116	e65	e50	e42	e34	e36	40	189	766	302	136	132
26	e109	e65	e46	e42	e34	e36	40	188	765	285	129	127
27	e95	e65	e50	e40	e34	e38	46	204	759	267	123	124
28	e95	e73	e60	e40	e32	37	49	244	780	252	144	121
29	e90	e80	e70	e40		29	48	321	710	239	287	118
30	e100	e70	e55	e38		28	51	404	639	237	240	115
31	e90		e48	e38		28		436		240	220	
TOTAL	4520	2207	1625	1312	999	992	1009	4234	20674	12186	5527	5209
MEAN	146	73.6	52.4	42.3	35.7	32.0	33.6	137	689	393	178	174
MAX	234	91	70	48	38	38	51	436	826	567	287	282
MIN	90	64	46	38	32	28	27	40	460	237	123	115
AC-FT	8970	4380	3220	2600	1980	1970	2000	8400	41010	24170	10960	10330
				Δ	DJUSTED T	O INCLUDE	DIVERSIO)N				
MEAN	152	79.8	58.9	48.6	42.3	38.1	39.5	143	697	403	204	180 1.99
CFSM	1.68	0.88	0.65	0.54	0.47	0.42	0.44	1.58	7.70	4.46	2.26	1.99
IN	1.94	0.98	0.75	0.62	0.49	0.49	0.49	1.82	8.59	5.14	2.60	2.22
AC-FT	9340	4750	3620	2990	2350	2340	2350	8770	41470	24810	12560	10700
		STATISTIC	S OF MONT	HLY MEAN	DATA FOR	WATER YEA	RS 1947 -	2001, BY	WATER Y	EAR (WY)#		
	7.46		45.0	21.1	00.1	1.0.0	0.4.0	1.65	455	200	000	0.7.7
MEAN	149	77.6	47.2	31.1	22.1	16.6	24.8	165	455	308	209	211
MAX	318	177	107	79.3	54.6	42.1	69.7	456	798	645	510	471 1967
(WY)	1994	1953	1948	1961	1961	1947	1990	1990	1977	1980	1981	
MIN (WY)	48.7 1969	24.3 1969	13.9 1969	7.13 1956	5.36 1983	3.61 1956	4.77 1954	39.9 1971	132 1996	72.0 1996	73.0 1996	55.8 1969
(W I)	1303	1202	1202	1930	1202	TADO	T304	17/1	1330	T220	エフラひ	1909

See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted Estimated

SUMMARY STATISTICS	FOR 2000 CALENI	DAR YI	EAR	FOR 2001 WA	TER YEAR	WATER YEAR	RS 1947 - 2001#
ANNUAL TOTAL	66756			60494			
ANNUAL MEAN	182			166		143	
ANNUAL MEAN	*191			*174		*162	
HIGHEST ANNUAL MEAN						223	1980
LOWEST ANNUAL MEAN						67.3	1969
HIGHEST DAILY MEAN	880	Jun	8	826	Jun 18	1420	Aug 9 1971
LOWEST DAILY MEAN	27	Apr	1	a27	Apr 5	b.00	Jan 2 1956
ANNUAL SEVEN-DAY MINIMUM	28	Mar	26	28	Apr 5	.43	Jan 9 1956
MAXIMUM PEAK FLOW				891	Jun 18	1860	Jun 21 1949
MAXIMUM PEAK STAGE				6.05	Jun 18	c3.44	Jun 21 1949
MAXIMUM PEAK STAGE						d6.52	Sep 21 1995
ANNUAL RUNOFF (AC-FT)	132400			120000		103900	
ANNUAL RUNOFF (AC-FT)	*139000			*126100		*117400	
ANNUAL RUNOFF (CFSM)	*2.12			*1.92		*1.79	
ANNUAL RUNOFF (IN)	*28.80			*26.12		*24.30	
10 PERCENT EXCEEDS	528			511		369	
50 PERCENT EXCEEDS	84			73		76	
90 PERCENT EXCEEDS	32			32		14	

[#] See Period of Record and Remarks. Values shown on this page are unadjusted for diversion, unless otherwise noted

* Adjusted to account for diversion, see Remarks
a Apr. 5 and Apr. 7

b No flow during one or more days in water years 1956, 1960, 1969, and 1971
c Site and datum then in use
d Current site and datum

15278000 EKLUTNA LAKE NEAR PALMER

LOCATION.--Lat $61^{\circ}24'39''$, long $149^{\circ}07'20''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 18, T. 15 N., R. 2 E. (Anchorage B-6 quad), Municipality of Anchorage, Hydrologic Unit 19020402, on north shore, 0.7 mi upstream from lake outlet, 12 mi upstream from mouth of Eklutna River, and 14 mi south of Palmer.

DRAINAGE AREA. -- 119 mi².

PERIOD OF RECORD.--November 1946 to September 1962 (fragmentary after January 1955), June 1983 to current year. Fragmentary records for the period October 1962 to June 1983 available from Eklutna Hydroelectric Project.

GAGE.--Water-stage recorder. Datum of gage is sea level (levels by Alaska Power Administration). Prior to June 1983, non-recording gage at lake outlet at datum of 859.8 ft above sea level.

REMARKS.--Lake outlet consists of earth and rockfill dam with uncontrolled spillway crest at an elevation of 871 ft. Prior to 1965, control structure 1400 ft upstream with spillway crest at elevation of 867.5 ft which could be flash-boarded to elevation of 871 ft. Outflow was controlled by the flash boards and sluice gates. Dead storage below elevation of 859 ft. Reservoir is used for power generation and water supply. GOES satellite telemetry at station

EXTREMES FOR PERIOD OF RECORD.--Maximum elevation, 877.68 ft, September 25, 1995; minimum observed, 814.2 ft, June 1, 1962.

EXTREMES FOR CURRENT YEAR.--Maximum elevation, 867.94 ft, September 8; minimum, 821.82 ft, May 15,16,19, and 20.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	851.62 851.67 851.67 851.70	850.17 850.08 849.97 849.85 849.68	846.62 846.48 846.33 846.18 846.08	842.66 842.54 842.43 842.30 842.14	839.06 838.94 838.81 838.67 838.48	834.64 834.48 834.35 834.18 833.99	829.01 828.84 828.67 828.52 828.28	824.13 824.06 824.03 823.91 823.72	822.87 823.05 823.16 823.14 823.12	834.37 835.20 836.00 836.76 837.49	854.78 855.34 855.93 856.43 856.91	867.13 867.19 867.38 867.54 867.74
6 7 8 9 10	851.85 851.89 851.88 851.85 851.83	849.51 849.37 849.24 849.15 849.06	845.98 845.86 845.70 845.54 845.42	842.00 841.95 841.86 841.72 841.62	838.34 838.21 838.08 837.96 837.82	833.84 833.68 833.53 833.37 833.18	828.04 827.87 827.72 827.59 827.41	823.54 823.34 823.16 822.98 822.80	823.21 823.29 823.35 823.45 823.56	838.23 838.91 839.62 840.32 840.98	857.37 857.81 858.25 858.71 859.07	867.86 867.89 867.91 867.89
11 12 13 14 15	851.83 851.81 851.79 851.77	848.97 848.85 848.74 848.61 848.49	845.30 845.18 845.08 844.94 844.81	841.36 841.36 841.23 841.10	837.68 837.50 837.36 837.21 837.04	832.98 832.80 832.62 832.36 832.18	827.25 827.09 826.92 826.73 826.57	822.64 822.49 822.17 821.91 821.84	823.67 823.80 823.88 823.91 823.92	841.61 842.14 842.62 843.07 843.49	859.32 859.62 859.96 860.41 860.96	867.82 867.81 867.78 867.71
16 17 18 19 20	851.66 851.62 851.56 851.49 851.42	848.36 848.26 848.17 848.09 848.00	844.71 844.54 844.48 844.35 844.24	840.93 840.85 840.78 840.72	836.88 836.73 836.57 836.35 836.17	831.99 831.79 831.56 831.34 831.14	826.46 826.37 826.25 826.11 826.02	821.84 821.85 821.85 821.85	824.11 824.40 824.74 825.18 825.72	843.92 844.38 844.90 845.52 846.43	861.48 861.93 862.37 862.81 863.33	867.70 867.70 867.67 867.64 867.63
21 22 23 24 25	851.35 851.27 851.18 851.07 850.98	847.90 847.79 847.66 847.51 847.38	844.09 843.96 843.89 843.74 843.60	840.48 840.33 840.21 840.08 839.93	835.98 835.82 835.67 835.51 835.29	830.97 830.80 830.61 830.45 830.25	825.86 825.63 825.50 825.36 825.18	821.87 821.91 821.92 821.95 822.00	826.29 826.81 827.39 828.13 828.97	847.44 848.35 849.18 849.91 850.59	863.77 864.08 864.29 864.51 864.73	867.60 867.58 867.61 867.64 867.59
26 27 28 29 30 31	850.92 850.83 850.71 850.57 850.45 850.30	847.26 847.11 847.00 846.86 846.73	843.43 843.28 843.11 843.00 842.96 842.82	839.79 839.67 839.58 839.43 839.29 839.16	835.10 834.97 834.80 	830.02 829.81 829.58 829.41 829.29 829.15	824.95 824.74 824.54 824.35 824.19	822.03 822.05 822.09 822.20 822.42 822.65	829.75 830.59 831.59 832.58 833.52	851.24 851.90 852.48 853.05 853.64 854.26	864.90 865.04 865.28 866.12 866.72 867.02	867.52 867.45 867.37 867.29 867.19
MEAN MAX MIN	851.42 851.89 850.30	848.46 850.17 846.73	844.70 846.62 842.82	840.94 842.66 839.16	837.04 839.06 834.80	831.95 834.64 829.15	826.60 829.01 824.19	822.55 824.13 821.84	825.71 833.52 822.87	844.45 854.26 834.37	861.27 867.02 854.78	867.61 867.91 867.13

15281000 KNIK RIVER NEAR PALMER

LOCATION.--Lat $61^{\circ}30'18''$, long $149^{\circ}01'50''$, in $NE^{1}/_{4}$ SE $^{1}/_{4}$ sec. 2, T.16 N., R.2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020402, near the right bank on downstream side of bridge on Old Glenn Highway, 7 mi south of Palmer, 7 mi upstream from Alaska Railroad bridge, 9 mi downstream from Friday Creek, and about 17 mi downstream from Knik Glacier.

DRAINAGE AREA.--1,180 mi², approximately.

PERIOD OF RECORD.--October 1959 to January 1988, annual maximum, water year 1989, October 1991 to September 1992, and April to September, 2001.

REVISED RECORDS. -- WRD-AK-77-1: 1974-75(M).

GAGE.--Water-stage recorder and crest stage gage. Datum of gage is 27.51 ft above National Geodetic Vertical Datum of 1929 (surveys show a correction of -2.69 ft needed after earthquake of Mar. 27, 1964. Correction used beginning in 1985) Prior to June 27, 1960, nonrecording gage, and June 27, 1960 to Apr. 25,1974, water-stage recorder at old bridge 100 ft upstream at original 1929 datum. Apr. 26, 1974 to Apr. 18, 1976, recording gage at site 0.4 mi upstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. Flood peaks due to outbreak of glacier-dammed Lake George, 1948-62, 1964, 1965, published in WSP 1936. Streamflow augmented by glaciers, which cover 54 percent of the basin.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge since at least 1948, 359,000 ft³/s, July 18, 1958, gage height, 25.30 ft, at site in use beginning 1959, from outbreak of glacier-dammed Lake George.

		DISCHARGE	, CUBIC	FEET P			YEAR OCTOBE	ER 2000	TO SEPTEM	MBER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							e1200	1950	7390	27400	22600	22200
2							e1200	1910	8020	26600	23300	18800
3							e1200	1880	9080	26900	24700	17800
4							e1200	1790	10100	25900	23100	17900
5							1100	1650	10000	24200	22200	19200
6							1040	1540	9860	22200	21600	17400
7							1090	1530	9340	20900	21700	14600
8							1070	1530	9520	21100	22400	12600
9							1050	1610	11900	20500	22600	11400
10							1080	1720	12000	20900	21400	10700
10							1000	1/20	12000	20900	21400	10700
11							1110	1790	12600	22100	20200	10300
12							1330	1850	12200	22000	20200	10100
13							1350	1920	12600	20200	21700	10900
14							1300	2050	11800	18100	25900	10900
15							1230	2310	12500	17800	28700	10600
3.6							1000	0000	14500	15000	21.400	10000
16							1220	2820	14600	17900	31400	10000
17							1240	3150	17100	18300	29500	9820
18							1230	3220	20100	19300	27300	10200
19							1240	3280	21300	22100	25500	10300
20							1280	3630	22200	27100	26500	10400
21							1330	4290	22900	29900	28400	10600
22							1380	4450	23900	33000	28900	9860
23							1420	4320	25200	34200	26700	9070
24							1440	4340	27200	31900	24100	9180
25							1480	4520	28300	29300	21000	8820
26							1570	4590	28800	28100	19500	8070
27							1610	4380	30000	27400	18700	7410
28							1700	4660	30600	25800	19500	6640
29							1830	5620	31700	23900	27100	6320
30							1890	6720	31100	24000	29700	5970
31								7220	31100	23200	27700	
31								7220		23200	27700	
TOTAL							39410	98240	533910	752200	753800	348060
MEAN							1314	3169	17800	24260	24320	11600
MAX							1890	7220	31700	34200	31400	22200
MIN							1040	1530	7390	17800	18700	5970
AC-FT							78170	194900	1059000	1492000	1495000	690400
CFSM							1.11	2.69	15.1	20.6	20.6	9.83
IN.							1.24	3.10	16.83	23.71	23.76	10.97
												10.57
		STATISTICS C)F MONTH	ily MEAI	N DATA FOR	WATER	YEARS 1960	- 2001,	BY WATER	YEAR (WY)#	
MEAN	4346	1773	956	865	727	644	911	3683	12670	23490	21370	11340
MAX	9419		.932	3781	2464	1314	1534	7347	19960	37450	28300	16960
(WY)	1970		.977	1981	1977	1977	1983	1981	1969	1960	1979	1974
MIN	1782	637	500	460	338	260	348	1039	2598	17440	15260	6594
(WY)	1982	1969 1	.974	1976	1962	1962	1972	1965	1965	1970	1969	1992

[#] See Period of Record; partial years used in monthly statistics

e Estimated

15281000 KNIK RIVER NEAR PALMER--Continued

SUMMARY STATISTICS	FOR 2001 WA	TER Y	EAR	R WATER YEARS 1960 - 200			
ANNUAL TOTAL							
ANNUAL MEAN				6981			
HIGHEST ANNUAL MEAN				13800			2001
LOWEST ANNUAL MEAN				2286			1988
HIGHEST DAILY MEAN	34200	Jul	23	341000	Jul	26	1961
LOWEST DAILY MEAN				a260	Mar	1	1962
ANNUAL SEVEN-DAY MINIMUM				260	Mar	1	1962
MAXIMUM PEAK FLOW	35400	Jul	23	bc355000	Jul	26	1961
MAXIMUM PEAK STAGE	12.21	Jul	23	24.35	Jul	17	1960
ANNUAL RUNOFF (AC-FT)				5057000			
ANNUAL RUNOFF (CFSM)				5.92			
ANNUAL RUNOFF (INCHES)				80.38			
10 PERCENT EXCEEDS				21100			
50 PERCENT EXCEEDS				2000			
90 PERCENT EXCEEDS				500			

[#] See Period of Record; partial years used in monthly statistics
a Mar. 1-31, 1962
Site then in use, caused by release of stored water (Lake George) behind Knik Glacier
c Gage height, 24.3 ft

15281500 CAMP CREEK NEAR SHEEP MOUNTAIN LODGE

LOCATION.--Lat $61^{\circ}50'20''$, long $147^{\circ}24'31''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 11, T. 20 N., R. 11 E. (Anchorage D-2 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020402, on left bank 5 ft downstream from culvert on old alignment (1/2 mile upstream from new alignment) Glenn Highway, and 3.5 mi northeast of Sheep Mountain Lodge.

DRAINAGE AREA.--1.09 mi²

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Annual maximum, water years 1968-69, 1971, 1989-95. October 1995 to current year.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 2,950 ft above sea level, from topographic map. Prior to 1971 crest-stage gage at site above culvert at different datum, June 2, 1989 to September 30, 1995, crest-stage gage at same site, and datum.

REMARKS.--Records are poor. Goes satellite telemetry at station.

		DISCHARGE	E, CUBIC	FEET PER			YEAR OCTOBE	ER 2000 1	TO SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e1.9 e1.8 e1.7 e1.6 e1.5	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	5.1 6.7 7.6 8.7 9.5	5.1 4.8 4.5 4.3 4.3	.94 e.92 e.90 e.90	e.80 e1.0 e1.2 e1.8 e2.0
6 7 8 9 10	e1.3 e1.0 e.90 e.80 e.70	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	9.0 9.9 10 14 11	4.9 5.8 5.7 4.9	e.90 e.88 e.88 e.86	e1.8 e1.6 e.90 e.88 e.86
13 14 15	e.60 e.50 e.40 e.30	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.10 e.20	12 9.9 10 10	3.8 3.5 3.3 3.0	e.86 e.86 e.86 e.86	e.84 e.84 e.82 e.82
16 17 18 19 20	e.20 e.20 e.20 e.10 e.10	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.40 e.60 e.80 e1.0 e1.2	9.6 9.7 8.2 7.3 8.6	e2.6 e2.5 2.3 2.2	e.84 e.84 e.84 e.84	e.82 e.80 e.80 e.80
21 22 23 24 25	e.10 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e1.4 e1.6 e1.8 e2.0 e2.2	6.9 9.0 8.2 7.7 7.7	1.9 1.8 1.7 1.6 1.5	e.84 e.84 e.82 e.82 e.82	e.78 e.78 e.78 e.78
26 27 28 29 30 31	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	2.3 2.4 2.6 3.2 3.7 4.3	6.5 6.1 5.9 5.6	1.4 1.3 1.2 1.1 1.1	e.80 e.80 e.80 e.80 e.80	e.78 e.78 e.76 e.76
TOTAL MEAN MAX MIN AC-FT CFSM IN.	16.10 .52 1.9 .00 32 .48	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00 .00	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00	32.10 1.04 4.3 .00 64 .95 1.10	257.5 8.58 14 5.1 511 7.87 8.79	92.0 2.97 5.8 1.0 182 2.72 3.14	26.42 .85 .94 .80 52 .78	28.74 .96 2.0 .76 .57 .88
		STATISTICS	OF MONTH	HLY MEAN I	ATA FOR	WATER	YEARS 1996			YEAR (WY)#		
MEAN MAX (WY) MIN (WY)	.55 1.12 1998 .17 1997	.27 .65 1998 .000 2001	.10 .39 1998 .000 2001	.010 .042 1999 .000 1996	.000 .000 1996 .000 1996	.000 .000 1996 .000 1996	.019 .058 1996 .000 1999	.88 1.55 1998 .25 1999	4.50 8.58 2001 .56 1996	1.94 2.97 2001 .42 1996	1996	1.26 2.63 2000 .45 1998
SUMMARY	STATIST:	ICS	FOR 20	00 CALEND	AR YEAR		FOR 2001 WA	TER YEAR		WATER YEARS	1996	- 2001#
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM ANNUAL ANNUAL ANNUAL 10 PERC	MEAN T ANNUAL M T DAILY M T DEAK FL T PEAK ST T RUNOFF (T	EAN EAN AN Y MINIMUM DW AGE AC-FT) CFSM) INCHES) EDS			Jun 6 Jan 1 Jan 1		452.86 1.24 14 b.00 .00 19 14.77 898 1.14 15.46 4.6 .00	Jun 9) Oct 22) Oct 22 Jun 9 7 Jun 9		.92 1.46 .26 17 c.00 .00 d46 15.49 666 .84 11.46 2.5 .25		2000 1996 7 1997 6 1995 6 1995 21 1992 28 2000

See Period of Record
Jan. 1 to May 15 and Oct. 22 to Dec. 31
Oct. 22 to May 12
No flow most days during winter
From rating curve extended above 2 ft³/s
Fetimated

Estimated

15281500 CAMP CREEK NEAR SHEEP MOUNTAIN LODGE--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1996 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: June 1996 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for 1-hour recording interval.

REMARKS.--No record from October 22 to May 12 due to no flow conditions, and August 3 to September 3 due to equipment problems. Records represent water temperature at the sensor within 0.5° C. Temperature at the sensor was compared with the stream average by cross section on September 28. No variation was found within the cross section. No variation was found between mean stream temperature and temperature at the sensor. Large stream icing forms near the gage.

EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 9.5 $^{\circ}$ C, on several days in June and July 1997 and June 29-30, July 1, 1998; minimum, 0.0 $^{\circ}$ C, on many days during fall, winter, and spring breakup periods.

EXTREMES FOR CURRENT YEAR.-WATER TEMPERATURE: Maximum recorded, 7.5 °C, July 26, but may have been higher during a period of missing record;
minimum, 0.0 °C, on many days during fall, winter, and spring breakup periods.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)
SEP									
28	1202	5.20	1.0	13.90	.77	2.5	5.0	10	8010
28	1204	5.20	2.0	13.90	.77	2.5	5.0	10	8010
28	1206	5.20	3.0	13.90	.77	2.5	5.0	10	8010
28	1208	5.20	4.0	13.90	.77	2.5	5.0	10	8010
28	1210	5.20	5.0	13.90	.77	2.5	5.0	10	8010

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	.5 .5 .5 .5	.0 .0 .0	.0 .0 .0 .5	 	 	 	 	 	 	 	 	
6 7 8 9 10	1.0 1.0 1.0 1.0	.5 1.0 .5 .5	1.0 1.0 1.0 1.0	 	 	 	 	 	 	 	 	
11 12 13 14 15	1.0 1.0 1.0 1.0	.5 1.0 .5 .5	1.0 1.0 1.0 1.0	 	 	 	 	 	 	 	 	
16 17 18 19 20	1.0 .5 .5 .5	.5 .5 .5 .5	1.0 .5 .5 .5	 		 	 	 	 	 	 	
21 22 23 24 25	. 5 	. 5 	.5 	 		 	 	 		 	 	
26 27 28 29 30 31		 	 	 		 	 		 	 		
MONTH												

15281500 CAMP CREEK NEAR SHEEP MOUNTAIN LODGE--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	:	FEBRUARY			MARCH			APRIL			MAY	
1												
2 3												
4												
5												
6 7												
8												
9 10												
10												
11 12												
13										.0	.0	. 0
14										. 0	. 0	. 0
15										.0	. 0	. 0
16 17										.0	. 0	. 0
18										.0	.0	.0
19										. 5	.0	. 0
20										.5	. 0	. 0
21 22										.0 .5	.0	.0
23										.5	.0	.0
24										. 5	. 0	. 0
25										.5	. 0	. 0
26										. 5	. 0	. 5
27 28										.5 .5	.0	. 0 . 5
29										. 5	.0	.5
30 31										1.0 1.0	.0	. 5 . 5
MONTH												
11011111												
							EAR OCTOBE					
DAY	MAX	MIN	EMPERATURI MEAN	E, WATER (MIN	WATER YI	MAX	MIN	TO SEPTEME	MAX	MIN	MEAN
DAY	MAX		MEAN	MAX			MAX			MAX	MIN SEPTEMBE	
1	1.0	MIN JUNE .0	MEAN	MAX 5.5	MIN JULY 3.0	MEAN	MAX 4	MIN AUGUST 5.0	MEAN 5.5	MAX	SEPTEMBE	R
		MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	SEPTEMBE	R
1 2 3 4	1.0 1.5 1.5	MIN JUNE .0 .0 .0	MEAN . 5 . 5 . 5	MAX 5.5 6.5 5.5 4.5	MIN JULY 3.0 3.0 3.0 3.0 3.5	MEAN 4.0 4.5 4.5 4.5	MAX 6.0	MIN AUGUST 5.0 4.5 	MEAN 5.5	MAX	SEPTEMBE 	R
1 2 3	1.0 1.5 1.5	MIN JUNE .0 .0 .0	MEAN .5 .5	MAX 5.5 6.5 5.5	MIN JULY 3.0 3.0 3.0	MEAN 4.0 4.5 4.5	MAX 6.0	MIN AUGUST 5.0 4.5	MEAN 5.5	MAX 	SEPTEMBE 	R
1 2 3 4 5	1.0 1.5 1.5 1.5	MIN JUNE .0 .0 .0 .0 .5 .5	.5 .5 .5 .5	MAX 5.5 6.5 5.5 4.5 4.0 3.5	MIN JULY 3.0 3.0 3.0 3.5 3.5	MEAN 4.0 4.5 4.5 4.0 3.5	MAX 6.0	MIN 5.0 4.5	5.5 	MAX 4.5 4.0 4.5	SEPTEMBE 3.0 2.5	R 3.0 3.0
1 2 3 4 5	1.0 1.5 1.5 1.5	MIN JUNE .0 .0 .0 .5	MEAN .5 .5 .5 .5	5.5 6.5 5.5 4.5 4.0	MIN JULY 3.0 3.0 3.0 3.5 3.5	MEAN 4.0 4.5 4.5 4.5 3.5	MAX 6.0	MIN 5.0 4.5	5.5 	MAX 4.5 4.0	SEPTEMBE 3.0	R 3.0
1 2 3 4 5 6 7 8 9	1.0 1.5 1.5 1.5 1.5 2.0	MIN JUNE .0 .0 .0 .5 .5 .5 .5	.5 .5 .5 .5 .5	5.5 6.5 5.5 4.5 4.0 3.5 3.0 4.5 5.5	MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0	4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0	6.0 	MIN 5.0 4.5	5.5 	MAX 4.5 4.0 4.5 3.5 4.0 4.0	SEPTEMBE 3.0 2.5 2.5 2.0 2.0	R 3.0 3.0 3.0 3.0 2.5
1 2 3 4 5 6 7 8	1.0 1.5 1.5 1.5 1.5 2.0 2.5 2.0	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5	.5 .5 .5 .5 .5	5.5 6.5 5.5 4.5 4.0 3.5 3.0 4.5 5.5	MIN JULY 3.0 3.0 3.0 3.5 2.5 2.5 2.5 2.0 2.0 2.0	MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5	MAX 6.0	MIN 5.0 4.5	5.5	MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0	SEPTEMBE 3.0 2.5 2.5 2.0 2.0	R 3.0 3.0 3.0 3.0 2.5 2.5
1 2 3 4 5 6 7 8 9 10	1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.5 2.0	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5	.5 .5 .5 .5 .5 .5	MAX 5.5 6.5 5.5 4.5 4.0 3.5 3.0 4.5 5.5 5.5	MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 3.0	MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5	MAX 6.0	MIN AUGUST 5.0 4.5	5.5	MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0 3.5	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0	R 3.0 3.0 3.0 3.0 2.5 2.5
1 2 3 4 5 6 7 8 9	1.0 1.5 1.5 1.5 1.5 2.0 2.5 2.0	MIN JUNE .00 .00 .05 .5 .5 .5 .5 .5 .5 .5	.5 .5 .5 .5 .5	5.5 6.5 5.5 4.5 4.0 3.5 3.0 4.5 5.5	MIN JULY 3.0 3.0 3.0 3.5 3.5 2.5 2.0 2.0 2.0 3.0 3.0	MEAN 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 3.5	6.0 	MIN 5.0 4.5	5.5 	MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0	R 3.0 3.0 3.0 2.5 2.5 2.5 3.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14	1.0 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.0	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .5 .1 .5 .1	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.0 1.5	MAX 5.5 6.5 5.5 4.5 4.0 3.5 3.0 4.5 5.5 4.0 4.5 5.5 5.5	MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0	MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 4.0	MAX 6.0	MIN AUGUST 5.0 4.5	5.5	MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0 3.5 4.0 4.0 4.0	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0	R 3.0 3.0 3.0 3.0 2.5 2.5 2.5 3.0 3.0
1 2 3 4 5 6 7 8 9 10	1.0 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.0	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .5	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.0	MAX 5.5 6.5 5.5 4.5 4.0 3.5 5.5 5.5 4.0 4.5 5.5	MIN JULY 3.0 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0	MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 3.5	MAX 6.0	MIN AUGUST 5.0 4.5	5.5	MAX 4.5 4.0 4.5 3.5 4.0 4.0 3.5 4.0 4.0	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0	R 3.0 3.0 3.0 3.0 2.5 2.5 2.5 3.0 3.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.0 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5	MAX 5.5 6.5 5.5 4.5 4.0 3.5 3.0 4.5 5.5 5.5 6.0 6.5	MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.5 3.5	MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 4.0 4.5	MAX 6.0	MIN AUGUST 5.0 4.5	5.5	MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	R 3.0 3.0 3.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	1.0 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.5 2.5 2.5	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5	5.5 6.5 5.5 4.5 4.0 3.5 3.0 4.5 5.5 5.5 6.0	MIN JULY 3.0 3.0 3.0 3.5 3.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 4.0 4.5	MAX 6.0	MIN AUGUST 5.0 4.5	5.5	MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0 3.5 4.0 4.0 4.0 4.0 3.5	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	R 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 2.5	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0	MAX 5.5 6.5 5.5 4.5 4.0 3.5 3.0 4.5 5.5 6.0 6.5 6.5 6.0	MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.5 3.5 4.0 4.0 4.5	MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 4.0 4.5 5.0 5.5 5.5	MAX 6.0	MIN AUGUST 5.0 4.5	MEAN 5.5	MAX 4.5 4.0 4.5 3.5 4.0 4.0 4.0 3.5 4.0 4.0 4.0 3.5 4.0 4.0 4.0 3.5 4.0	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.5 3.5	R 3.0 3.0 3.0 3.0 2.5 2.5 3.0 3.0 2.5 2.5 3.0 3.0 3.0 2.5 3.5 3.5 3.5 3.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	1.0 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 2.5 2.0 2.5	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0	MAX 5.5 6.5 5.5 4.0 3.5 3.0 4.5 5.5 6.0 6.5 6.0	MIN JULY 3.0 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.5 3.5 4.0 4.0	MEAN 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 4.0 4.5 5.0 5.5	MAX 6.0	MIN AUGUST 5.0 4.5	MEAN 5.5	MAX 4.5 4.0 4.5 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 4.0 3.5 4.0 4.0 4.5 4.5	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	R 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 3.0 3.0 4.0	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 2.0 2.0 2.5	MAX 5.5 6.5 5.5 4.0 3.5 3.0 4.5 5.5 4.0 6.5 6.0 6.5 6.5 6.5	MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.5 3.5 4.0 4.5 4.5	MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 4.0 4.5 5.0 5.5 5.5	MAX 6.0	MIN AUGUST 5.0 4.5	MEAN 5.5	MAX 4.5 4.0 4.5 4.0 4.0 4.0 4.0 3.5 4.0 4.0 4.0 4.5 4.0 4.0 4.5 4.0 4.5 4.0 4.5 4.5 4.5 4.5	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	R 3.0 3.0 3.0 3.0 2.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	1.0 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.5 2.5 2.5 2.5 3.0 3.0 4.0 4.0	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5	MAX 5.5 6.5 5.5 4.0 3.5 3.0 4.5 5.5 5.5 4.0 6.5 6.0 6.5 6.5 7.0 6.5 6.5 7.0	MIN JULY 3.0 3.0 3.0 3.5 3.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 4.0 4.0 4.5 4.5	MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 3.5 5.5 5.5 5.5 5.5	MAX 6.0	MIN AUGUST 5.0 4.5	MEAN 5.5	MAX 4.5 4.0 4.5 4.0 4.0 4.0 3.5 4.0 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	R 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 3.0 3.0 4.0 4.0 4.5 5.0	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.5	MAX 5.5 6.5 5.5 4.0 3.5 5.5 4.0 4.5 5.5 6.0 6.5 6.5 7.0 6.5 7.0 6.5 7.0 6.5 7.0	MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 3.0 3.0 3.0 3.5 3.5 4.0 4.5 4.5 5.0 5.0	MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 5.5 5.5 5.5 5.5 6.0	MAX 6.0	MIN AUGUST 5.0 4.5	MEAN 5.5	MAX 4.5 4.0 4.5 4.0 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5	R 3.0 3.0 3.0 3.0 2.5 2.5 2.5 3.0 3.0 3.0 3.0 3.0 2.5 2.5 3.0 3.0 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	1.0 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 3.0	MAX 5.5 6.5 5.5 4.0 3.5 3.0 4.5 5.5 6.0 6.5 6.5 6.5 6.5 6.5	MIN JULY 3.0 3.0 3.0 3.5 3.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.5 4.0 4.5 4.5 5.0 4.5 5.0	MEAN 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 5.5 5.5 5.5 5.5 5.5 5.5	MAX 6.0	MIN AUGUST 5.0 4.5	MEAN 5.5	MAX 4.5 4.0 4.5 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.5 4.5 4.5 4.5 4.5	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	R 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 3.0 4.0 4.0 4.5 5.0 5.0	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.5 2.5	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.5 3.5	MAX 5.5 6.5 5.5 4.5 4.0 3.5 5.5 5.5 4.0 6.5 6.0 6.5 7.0 6.5 7.0 7.5	MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 3.0 3.0 3.0 3.5 4.0 4.5 4.5 5.0 5.0 5.0	MEAN 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 4.0 4.5 5.0 5.5 5.5 5.5 5.5 6.0 6.0 6.0	MAX 6.0	MIN AUGUST 5.0 4.5	MEAN 5.5	MAX 4.5 4.0 4.5 4.0 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 3.5 4.5 4.5 4.5 4.5 4.5 3.0 3.0 3.5 3.0 3.0 3.0	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	R 3.0 3.0 3.0 3.0 2.5 2.5 3.0 3.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27	1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 2.5 2.5 3.0 3.0 4.0 4.0 4.5 5.0 5.0 5.0 5.0	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 2.0 2.0 2.5 2.5 2.5	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 3.0 3.5 3.5 3.5	MAX 5.5 6.5 5.5 4.0 4.5 5.5 5.5 4.0 4.5 5.5 6.0 6.5 7.0 6.5 7.0 6.5 7.0 7.0 7.5	MIN JULY 3.0 3.0 3.5 3.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.5 3.5 4.0 4.5 4.5 5.0 5.0 5.0	MEAN 4.0 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 5.5 5.5 5.5 5.5 6.0 6.0 6.0	MAX 6.0	MIN AUGUST 5.0 4.5	MEAN 5.5	MAX 4.5 4.0 4.5 4.0 4.0 4.0 3.5 4.0 4.0 4.0 3.5 4.0 4.5 4.5 4.5 4.5 4.5 4.5 3.0 3.5 3.0 3.5	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 3.5 3.5 3.5 3.5 3.5 1.5 1.5 1.5	R 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	1.0 1.5 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 3.0 4.0 4.0 4.5 5.0 5.0	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.5 2.5	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.5 3.5	MAX 5.5 6.5 5.5 4.5 4.0 3.5 5.5 5.5 4.0 6.5 6.0 6.5 7.0 6.5 7.0 7.5	MIN JULY 3.0 3.0 3.5 3.5 2.5 2.5 2.0 2.0 3.0 3.0 3.0 3.5 4.0 4.5 4.5 5.0 5.0 5.0	MEAN 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 4.0 4.5 5.0 5.5 5.5 5.5 5.5 6.0 6.0 6.0	MAX 6.0	MIN AUGUST 5.0 4.5	MEAN 5.5	MAX 4.5 4.0 4.5 4.0 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 3.5 4.5 4.5 4.5 4.5 4.5 3.0 3.0 3.5 3.0 3.0 3.0	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	R 3.0 3.0 3.0 3.0 2.5 2.5 3.0 3.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	1.0 1.5 1.5 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 3.0 3.0 4.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	MIN JUNE .0 .0 .0 .5 .5 .5 .5 .5 .5 .1 .0 1.0 1.0 1.0 1.0 2.0 2.0 2.5 2.5 2.5 2.5	MEAN .5 .5 .5 .5 .5 .1.0 1.0 1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.5 2.5 3.0 3.5 3.5 4.0	MAX 5.5 6.5 5.5 4.0 3.5 5.5 4.0 4.5 5.5 6.0 6.5 7.0 6.5 7.0 7.5 7.0 6.0	MIN JULY 3.0 3.0 3.5 3.5 2.5 2.0 2.0 2.0 3.0 3.0 3.0 3.0 4.0 4.5 4.5 5.0 5.0 5.0 5.0	MEAN 4.0 4.5 4.5 4.5 4.0 3.5 3.0 2.5 3.0 3.5 3.5 3.5 5.5 5.5 5.5 5.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0	MAX 6.0	MIN AUGUST 5.0 4.5	MEAN 5.5	MAX 4.5 4.0 4.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 4.0 3.5 4.0 3.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 5.5 5	SEPTEMBE 3.0 2.5 2.5 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3	R 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.5 2.5 2.5 2.5 3.5 3.5 3.5 3.5 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0

--- 7.5 2.0 4.6

MONTH ---

15283700 MOOSE CREEK NEAR PALMER

LOCATION.--Lat $61^{\circ}41'00''$, long $149^{\circ}02'36''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 2, T. 18 N., R. 2 E. (Anchorage C-6 quad), Hydrologic Unit 19020402, on right bank 0.2 mi upstream from Glenn Highway bridge over Moose Creek, 0.8 mi upstream from mouth and 6.5 mi north of Palmer.

DRAINAGE AREA.--47.3 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1998 to September 2001 (discontinued).

REVISED RECORDS. -- WDR AK-00-1: 1999, drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 450 ft above sea level, from topographic map.

EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge, $18,000 \text{ ft}^3/\text{s}$, August $10, 1971 \text{ (at site 0.3 mi upstream from Buffalo Creek mine and 5 mi upstream from present gage site), gage height not determined.$

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

REMARKS.--Records good except for estimated daily discharges, which are poor.

		DIBCIA	KGE, CODI	S FEET FE	DAIL'	Y MEAN VA		K 2000 10	DEFTENDE	1001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	219 192 176 164 160	e65 e65 e65 e60	e40 e40 e40 e40 e38	e24 e24 e24 e24 e24	e23 e22 e22 e22 e22	e20 e20 e20 e20 e20	e18 e19 e19 e19 e20	64 55 50 45 42	171 239 299 308 289	230 211 212 211 276	231 217 204 218 189	84 83 98 92 137
6 7 8 9 10	158 143 132 123 115	e60 e60 e60 e55	e38 e38 e38 e36 e36	e24 e24 e24 e24 e24	e22 e21 e21 e21 e21	e20 e20 e20 e20 e20	e20 e20 e20 e20 e21	42 46 56 59 58	269 253 240 278 322	281 242 204 188 172	171 158 155 164 154	161 126 113 104 98
11 12 13 14 15	109 103 100 97 93	e55 e55 e55 e50	e34 e34 e34 e32 e32	e24 e24 e24 e24 e24	e21 e21 e21 e21 e21	e20 e20 e20 e20 e20	e21 e21 e21 e21 e22	59 65 77 85 87	403 415 367 396 465	162 148 147 149 142	142 137 134 144 167	94 91 89 86 82
16 17 18 19 20	90 87 85 83 80	e50 e50 e50 e48 e50	e32 e32 e30 e30 e30	e26 e25 e26 e26 e25	e20 e20 e20 e20 e20	e20 e20 e20 e20 e20	24 24 25 27 30	87 83 86 87 91	514 564 542 503 477	136 135 132 137 177	158 145 152 148 134	78 76 76 79 78
21 22 23 24 25	80 82 80 78 76	e48 e46 e46 e46 e44	e30 e29 e28 e27 e27	e25 e25 e24 e24 e24	e20 e20 e20 e20 e20	e20 e20 e19 e19 e19	34 38 42 45 49	89 86 85 80 77	460 429 415 408 371	172 158 147 147 150	123 121 116 143 131	75 72 70 65 65
26 27 28 29 30 31	72 e70 e65 e65 e65 e65	e44 e42 e42 e42 	e26 e26 e25 e26 e26 e24	e24 e24 e23 e23 e23 e23	e20 e20 e20 	e18 e18 e18 e18 e18	55 59 64 66 68	78 83 110 143 152 168	368 354 345 308 260	165 204 219 276 258 294	120 114 103 98 92 89	64 62 61 59 58
TOTAL MEAN MAX MIN AC-FT CFSM IN.	3307 107 219 65 6560 2.26 2.60	1577 52.6 65 42 3130 1.11 1.24	998 32.2 40 24 1980 .68 .78	750 24.2 26 23 1490 .51	582 20.8 23 20 1150 .44 .46	605 19.5 20 18 1200 .41 .48	952 31.7 68 18 1890 .67	2475 79.8 168 42 4910 1.69 1.95	11032 368 564 171 21880 7.77 8.68	5882 190 294 132 11670 4.01 4.63	4572 147 231 89 9070 3.12 3.60	2576 85.9 161 58 5110 1.82 2.03
		STATISTIC	S OF MONT	HLY MEAN	DATA FOR	WATER YEA	ARS 1998 -	- 2001, BY	WATER Y	EAR (WY)#		
MEAN MAX (WY) MIN (WY)	98.8 107 2001 87.4 1999	48.6 55.4 2000 37.8 1999	27.6 32.2 2001 24.8 1999	21.7 24.2 2001 19.1 1999	18.5 20.8 2001 14.6 1999	16.7 19.5 2001 14.1 1999	28.8 34.4 2000 20.2 1999	78.7 89.9 2000 66.5 1999	339 385 2000 265 1999	212 327 2000 152 1998	182 210 1999 147 2001	139 236 2000 85.9 2001

See period of record, partial years used in monthly statistics ${\tt Estimated}$

15283700 MOOSE CREEK NEAR PALMER--Continued

SUMMARY STATISTICS	FOR 2000 CALENDA	AR YEAR	FOR 2001 WATE	ER YEAR	WATER YEARS 1	998 - 2001#
ANNUAL TOTAL	46144		35308			
ANNUAL MEAN	126		96.7		103	
HIGHEST ANNUAL MEAN					125	2000
LOWEST ANNUAL MEAN					87.0	1999
HIGHEST DAILY MEAN	754	Sep 22	564	Jun 17	754	Sep 22 2000
LOWEST DAILY MEAN	a15	Mar 26	b18	Mar 26	c13	Feb 3 1999
ANNUAL SEVEN-DAY MINIMUM	15	Mar 24	18	Mar 26	14	Apr 8 1999
MAXIMUM PEAK FLOW			658	Jun 17	1080	Sep 22 2000
MAXIMUM PEAK STAGE			14.70	Jun 17	15.32	Sep 22 2000
MAXIMUM PEAK STAGE			d16.36	Dec 16	d16.36	Dec 16 2000
ANNUAL RUNOFF (AC-FT)	91530		70030		74680	
ANNUAL RUNOFF (CFSM)	2.67		2.05		2.18	
ANNUAL RUNOFF (INCHES)	36.29		27.77		29.61	
10 PERCENT EXCEEDS	367		230		248	
50 PERCENT EXCEEDS	66		60		72	
90 PERCENT EXCEEDS	18		20		18	

See period of record, partial years used in monthly statistics Mar.26 to Mar.30 Mar.26 to Apr.1 Feb.3 to Feb.4 and Apr.12 to Apr.14, 1999 Backwater from ice

15283700 MOOSE CREEK NEAR PALMER--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1948-49, 1951-52, 1956, 1998 to current year.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	COLOR (PLAT- INUM COBALT UNITS) (00080)	SAM- PLING METHOD, CODES (82398)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C) (00010)
MAR 2001 27	1330	9	9	18	<1	10	24.0	713	13.1	96	8.1	144	.1
JUN 19	1310	9	9	465		10		737	11.6	99	7.8	57	7.1
DATE	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD (MG/S AS CACO3) (39086)	ANC WATER UNFLTRD FET FIELD (MG/L AS CACO3) (00410)	BICAR- BONATE WATER DIS IT FIELD (MG/L AS HCO3) (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG.C DIS- SOLVED (MG/L) (70300)
MAR 2001		10.4	0.00			4.0	4.0	50	4.5			10.5	0.0
27 JUN	60	19.4	2.83	.51	5.3	48	49	58	4.5	<.2	6.5	12.5	90
19	24	8.10	.946	.31	1.3	21	22	27	. 6	<.2	3.8	4.7	43
DATE	SOLDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, PARTI- CULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS-PHORUS DIS-SOLVED (MG/LAS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CAR-BON, INORG + ORGANIC PAR-TIC. TOTAL (MG/L AS C) (00694)	CAR-BON, INOR-GANIC, PAR-TIC. TOTAL (MG/L AS C) (00688)	CAR- BON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)
MAR 2001 27	82	.006	E.06	<.08	.400	<.001	<.022	<.006	<.007	E.002	<.1	<.1	.64
JUN 19	34	.002	<.10	<.08	.099	<.001	<.022	<.006	<.007	.013	<.1		.89
DATE MAR 2001 27 JUN	CAR-BON, ORGANIC PARTIC-ULATE TOTAL (MG/L AS C) (00689)	ALUMI- NUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105)	ARSENIC TOTAL (UG/L AS AS) (01002)	BAR- IUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012)	CAD- MIUM WATER UNFL- TRD TOTAL (UG/L AS CD) (01027)	CHRO-MIUM, TOTAL RECOV-ERABLE (UG/L AS CR) (01034)	COP- PER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYA- NIDE TOTAL (MG/L AS CN) (00720)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
19		361	E2	23.3	<2.50	<.10	<1	1.9	<.01	M	480	<1	<3.0

15283700 MOOSE CREEK NEAR PALMER--Continued

								SEDI-		
	MANGA-							MENT,		
	NESE,	MERCURY	NICKEL,	SELE-	SILVER,	ZINC,	SEDI-	DIS-		
	TOTAL	TOTAL	TOTAL	NIUM,	TOTAL	TOTAL	MENT,	CHARGE,	PURPOSE	
	RECOVER-	RECOVER-	RECOVER-	TOTAL	RECOVER-	RECOVER-	SUS-	SUS-	SITE	SAMPLER
	ABLE (UG/	ABLE (UG/	ABLE (UG/	(UG/L AS	ABLE (UG/	ABLE (UG/	PENDED	PENDED	VISIT,	TYPE
	L AS MN)	L AS HG)	L AS NI)	SE)	L AS AG)	L AS ZN)	(MG/L)	(T/DAY)	(CODE)	(CODE)
DATE	(01055)	(71900)	(01067)	(01147)	(01077)	(01092)	(80154)	(80155)	(50280)	(84164)
MAR 2001										
27	<3	<.14	<2	<2.6	<.43	<31	<1		1099	3045
JUN										
19	14	<.01	<2	<3.0	< .40	<31	16	20	1099	3045

15284000 MATANUSKA RIVER NEAR PALMER

LOCATION.--Lat $61^{\circ}36'33''$, long $149^{\circ}04'15''$, in SE^{1}_{4} NW $^{1}_{4}$ sec. 34, T. 18 N., R. 2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020402, on downstream left bank of old Glenn Highway bike path bridge, and 1 mi east of Palmer.

DRAINAGE AREA. -- 2,070 mi², approximately.

PERIOD OF RECORD.--April 1949 to September 1973, May 1985 to September 1986, October 1991 to September 1992, and May 2000 to current year. Annual maximum, water year 1974 and 1995.

GAGE.--Water-stage recorder. Datum of gage is 170.92 ft above National Geodetic Vertical Datum of 1929 (Alaska Railroad Commission benchmark, prior to Mar. 27,1964 earthquake). Prior to Nov. 2, 1950, non-recording gage at bridge 20 ft upstream at same datum. Nov.2,1950 to Apr.30,1952, non-recording gage at current site and same datum. May 1, 1952 to Sep.30, 1973, July 19 to Oct. 20, 1987, and Oct. 1, 1991 to Sep.30, 1992, water-stage recorder at site 100 ft downstream at same datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor.

EXTREMES FOR CURRENT YEAR.--Peak discharges greater than base discharge of 21,000 ft^3/s and maximum (*).

	Date	Time	Disch (ft³		Gage Heigh (ft)	it	Date	Т	ime D	ischarge (ft ³ /s)	Gage H (ft	
	Jun 18	0945	a32,	700	a11.22		Jul 23	0	100	a22,200	a10	. 82
	Jun 29	0645	*a34,	300	a11.24							
		DISCHA	ARGE, CUBI	C FEET	PER SECOND,	WATER LY MEAN		BER 2000	TO SEPTEM	1BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5780 5180 4840 4810 4840	e1600 e1600 e1600 e1600 e1600	1090 899 829 985 ell00	e900 899 860 1020 889	e650 e650 e650 e650 e650	540 553 610 543 540	616 576 566 558 536	942 794 750 687 643	4160 6080 7280 7940 7850	22400 19300 18800 16700 15200	12800 12000 11800 11100 11600	5070 5530 8690 8980 7750
6 7 8 9 10	4740 4450 4190 3890 3630	1730 1590 1710 1930 1940	e1000 e1000 e1000 e1000 e1000	853 e850 e850 e800 e800	e650 626 690 637 697	579 556 543 546 579	511 512 526 507 508	647 660 746 833 819	7280 7800 6360 6140 7220	14200 13700 14000 12000 11000	10300 9730 9790 9590 9320	6830 5690 5120 4680 4330
11 12 13 14 15	3500 3360 3250 3110 2950	1860 1540 1410 1460 1400	e1000 e1000 e1000 e1000 962 989	e800 777 810 979 1070	631 606 564 631 625	556 581 573 555 527	633 581 621 624 619	830 852 927 1080 1190	10600 11300 10300 11300 13600	10200 9540 8700 8460 8520	8620 9630 11300 12300 12200	4080 3950 3820 3620 3420
16 17 18 19 20	2810 2680 2480 2370 2170	1430 1540 1510 1510 1460	e950 e950 e950 e950 e950	885 779 821 837 716	716 720 654 635 622	546 e550 e550 e550 e550	642 663 689 780 e820	1240 1250 1270 1340 1540	15900 20100 24700 22600 21200	9220 10400 11400 12400 14800	13500 13800 14000 11400 9840	3290 3230 3290 3570 3740
21 22 23 24 25	2060 2000 2070 2020 2010	1410 1310 1170 e1200 e1200	e950 e950 e950 e950 e950	645 680 688 678 687	612 571 555 653 531	e550 560 575 664 667	e870 e820 e790 797 885	1680 1780 1760 1790 1750	18100 13500 13500 18500 19700	16000 16700 18900 18000 17000	9420 11100 10100 9290 8500	3680 3430 3200 2960 2800
26 27 28 29 30 31	2020 1860 e1700 e1700 e1700 e1700	e1200 e1100 e1100 e1100 1070	e950 e900 e900 e900 e900	661 690 638 e650 e650 e650	571 593 579 	744 730 642 567 638 605	933 945 975 937 936	1740 1810 1960 2790 3530 4860	21600 28300 30700 31300 28500	15200 13700 12600 10600 10500 12100	7970 7770 7480 7400 6550 5790	2610 2490 2360 2270 2190
TOTAL MEAN MAX MIN AC-FT CFSM IN.	95870 3093 5780 1700 190200 1.49 1.72	43880 1463 1940 1070 87040 .71 .79	29804 961 1100 829 59120 .46 .54	24512 791 1070 638 48620 .38 .44	17619 629 720 531 34950 .30 .32	18069 583 744 527 35840 .28	20976 699 975 507 41610 .34 .38	44490 1435 4860 643 88250 .69	453410 15110 31300 4160 899300 7.30 8.15	422240 13620 22400 8460 837500 6.58 7.59	315990 10190 14000 5790 626800 4.92 5.68	126670 4222 8980 2190 251200 2.04 2.28
		STATISTI	CS OF MON	THLY ME	AN DATA FOR	WATER	YEARS 1949	- 2001,	BY WATER	YEAR (WY)#	
MEAN MAX (WY) MIN (WY)	1939 3093 2001 1166 1992	985 1793 1972 568 1959	728 1024 1972 440 1969	621 821 1961 349 1959	519 629 2001 381 1971	473 583 2001 360 1971	637 985 1964 465 1972	2657 6019 1960 1007 1966	10210 17250 1964 5415 1965	13170 18750 2000 9206 1973	9945 15730 1971 4992 1969	4916 8966 1951 2123 1969

Peak discharge adjusted to exclude surge; peak gage-height not adjusted to exclude surge

15284000 MATANUSKA RIVER NEAR PALMER--Continued

SUMMARY STATISTICS	FOR 2000 CALEND	AR YEAR	FOR 2001 WAT	ER YEAR	WATER YEARS	1949 - 2001#
ANNUAL TOTAL			1613530			
ANNUAL MEAN			4421		3835	
HIGHEST ANNUAL MEAN					4815	1957
LOWEST ANNUAL MEAN					2562	1969
HIGHEST DAILY MEAN	a31300	Jul 1	31300	Jun 29	40700	Aug 10 1971
LOWEST DAILY MEAN	808	Apr 20	507	Apr 9	234	Apr 25 1956
ANNUAL SEVEN-DAY MINIMUM	914	Dec 25	523	Apr 4	304	Apr 20 1956
MAXIMUM PEAK FLOW			b34300	Jun 29	c82100	Aug 10 1971
MAXIMUM PEAK STAGE			b11.24	Jun 29	d13.60	Aug 10 1971
INSTANTANEOUS LOW FLOW			415	Mar 4		
ANNUAL RUNOFF (AC-FT)			3200000		2778000	
ANNUAL RUNOFF (CFSM)			2.14		1.85	
ANNUAL RUNOFF (INCHES)			29.00		25.17	
10 PERCENT EXCEEDS	19800		12700		12200	
50 PERCENT EXCEEDS	4900		1430		1310	
90 PERCENT EXCEEDS	998		579		480	

[#] See Period of Record; partial years used in monthly statistics
a Jul. 1 and Jul. 5
b Peak discharge adjusted to exclude surge; meak gage-height not adjusted to exclude surge.
c From rating curve extended above 34,000 ft /s on basis of velocity-area study, from break-out of natural reservoir on Granite Creek tributary
d Site then in use

15290000 LITTLE SUSITNA RIVER NEAR PALMER

LOCATION.--Lat 61°42'37", long 149°13'47", in SE¹/₄ NW¹/₄ sec. 26, T. 19 N., R. 1 E. (Anchorage C-6 NW quad), Matanuska-Susitna Borough, Hydrologic Unit 19020505, on right bank 100 ft downstream from highway bridge on Wasilla-Fishhook Road, 1.5 mi north of road junction, 1.8 mi downstream from unnamed tributary, and 8 mi northwest of Palmer. Prior to October 1, 1991 at site 60 ft upstream.

DRAINAGE AREA. -- 61.9 mi2.

PERIOD OF RECORD.--July 1948 to current year. Low-flow records not equivalent prior to January 1962 because most measurements below 300 $\rm ft^3/s$ were made at site 3.4 mi downstream.

GAGE.--Water-stage recorder. Datum of gage is 916.6 ft above sea level (river-profile survey). Prior to August 16, 1948, non-recording gage and August 17, 1948 to May 15, 1972, water-stage recorder on left bank; water-stage recorder on right bank, May 16, 1972 to September 30, 1991, at site 60 ft upstream. Prior to October 1, 1974, at datum 4.00 ft higher; October 1, 1974 to September 30, 1991, at datum 2.00 ft higher.

REMARKS.--Records fair except for October 28 to March 23 (flow under ice), and for discharges above 700 ft^3/s , which are poor. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR. -- Peak discharges greater than base discharge of 1,200 ft³/s and maximum (*).

	Date	Time	Discha (ft³/		Gage Height (ft)		Date	Time	Discharge (ft ³ /s)	Gag	e height (ft)	
	June 17	2315	142	20	5.59		June 20	2345	1630*		5.75*	
		DISCHARG	E, CUBIC	FEET			YEAR OCTOBER VALUES	2000	TO SEPTEMBER	2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	344	93	e60	35	28	23	22	48	517	466	407	185
2	306	e90	e60	36	29	23	20	40	697	439	376	184
3	283	e90	e60	35	27	e23	21	36	806	412	364	225
4	262	e85	e60	34	27	23	21	33	756	400	395	223
5	263	e85	e60	35	27	23	20	31	728	533	349	330
6	271	e85	e55	34	27	23	20	31	650	456	322	345
7	239	e80	e55	34	27	23	20	33	591	398	302	301
8	216	e80	e55	33	26	23	21	39	553	369	288	282
9	201	81	e55	33	26	23	20	40	652	372	274	259
10	190	91	e50	32	e26	23	21	41	783	338	259	246
11	183	e85	e50	32	26	23	21	45	959	335	242	231
12	174	e80	e50	32	26	23	21	55	918	307	234	220
13	167	e75	49	32	27	22	21	72	796	302	233	210
14	161	74	48	32	28	22	21	92	855	296	263	199
15	154	68	e48	34	26	22	21	111	972	282	305	185
16	147	84	e46	32	26	22	21	121	1060	274	279	177
17	141	71	e48	32	25	22	21	121	1100	278	273	169
18	134	66	51	31	25	e22	22	143	1060	271	287	166
19	129	65	48	31	25	e22	23	156	993	290	269	172
20	118	64	45	30	25	e22	25	183	983	378	251	170
21	115	63	44	30	25	e20	28	194	1060	337	238	161
22	125	60	44	30	24	e20	31	191	854	307	229	151
23	113	63	48	30	24	e20	35	189	859	286	217	142
24	113	75	43	29	26	22	33	180	839	306	308	135
25	108	72	40	29	25	22	36	169	738	296	261	129
26 27 28 29 30 31	98 98 e100 e100 e95 e95	e70 e65 e65 e65 e65	39 37 37 38 40 37	29 29 e26 e28 e28 28	24 24 24 	22 21 21 21 21 21	40 43 47 50 53	169 204 300 372 428 475	809 719 779 598 516	319 400 369 380 425 464	243 220 216 217 201 195	123 118 114 109 104
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	5243 169 344 95 147 10400 2.73 3.15	2255 75.2 93 60 74 4470 1.21 1.36	1500 48.4 60 37 48 2980 .78 .90	975 31.5 36 26 32 1930 .51 .59	725 25.9 29 24 26 1440 .42 .44	682 22.0 23 20 22 1350 .36 .41	819 27.3 53 20 21 1620 .44 .49	4342 140 475 31 121 8610 2.26 2.61	807 1100 516 801 48000 2 13.0 14.54	1085 358 533 271 338 1990 5.78 6.66	8517 275 407 195 263 16890 4.44 5.12	5765 192 345 104 180 11430 3.10 3.46
MEAN	138	62.6	40.2	30.8	24.8	20.4	25.2	218	671	500	408	302
MAX	391	134	61.7	54.1	41.2	29.7	68.0	649	1215	1047	909	651
(WY)	1984	1980	1980	1961	1982	1991	1990	1990	1977	1963	1971	1985
MIN	51.3	24.5	17.4	17.5	14.0	10.0	10.0	52.9	276	193	169	82.2
(WY)	1969	1969	1955	1959	1952	1956	1955	1971	1996	1996	1969	1969

See Period of Record for remark on low-flow records; partial years used in monthly statistics

15290000 LITTLE SUSITNA RIVER NEAR PALMER--Continued

SUMMARY STATISTICS	FOR 2000 CALENDA	AR YEAR	FOR 2001 WAT	TER YEAR	WATER YEARS	1948 - 2001#
ANNUAL TOTAL	86367		66108			
ANNUAL MEAN	236		181		204	
HIGHEST ANNUAL MEAN					316	1949
LOWEST ANNUAL MEAN					95.8	1969
HIGHEST DAILY MEAN	1680	Sep 22	1100	Jun 17	5040	Aug 10 1971
LOWEST DAILY MEAN	a22	Apr 7	b20	Mar 21	c8.0	Apr 1 1956
ANNUAL SEVEN-DAY MINIMUM	22	Apr 5	20	Apr 2	8.0	Apr 1 1956
MAXIMUM PEAK FLOW			1630	Jun 20	d7840	Aug 10 1971
MAXIMUM PEAK STAGE			5.75	Jun 20	f13.00	Aug 10 1971
INSTANTANEOUS LOW FLOW			19	Apr 1	8.0	Apr 1 1956
ANNUAL RUNOFF (AC-FT)	171300		131100		147500	
ANNUAL RUNOFF (CFSM)	3.81		2.93		3.29	
ANNUAL RUNOFF (INCHES)	51.90		39.73		44.69	
10 PERCENT EXCEEDS	765		432		568	
50 PERCENT EXCEEDS	89		80		70	
90 PERCENT EXCEEDS	28		22		20	

See Period of Record for remark on low-flow records; partial years used in monthly statistics Apr. 7 to Apr. 11
Mar. 21 to Mar. 23, Mar. 31, Apr. 2, Apr. 5 to Apr. 7 and Apr. 9
Apr. 1 to Apr. 20, 1956; and Mar. 11 and 12, 1957
From rating curve extended above 4,600 ft³/s on basis of slope-area measurement of peak flow
Gage height about 13.0 ft, from floodmarks; 9.84 ft in gage well; 12.30 ft at top of needle peak in gage well; at prior datum (WY 1974-91) at sites then in use

15292000 SUSITNA RIVER AT GOLD CREEK

LOCATION.--Lat $62^{\circ}46'04''$, long $149^{\circ}41'28''$, in $NW^{1}/_{4}$ sec. 20, T. 31 N., R. 2 W. (Talkeetna Mts. D-6 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020501, near left bank under Alaska Railroad bridge, 0.1 mi downstream from Gold Creek, 0.9 mi north of Gold Creek railroad station, and 2.0 mi. downstream from Indian River.

DRAINAGE AREA.--6,160 mi², approximately.

PERIOD OF RECORD.--August 1949 to 1996 and May 25 to September 30, 2001.

GAGE.--Water-stage recorder. Elevation of gage is 676.50 ft above sea level. Prior to June 6, 1957, non-recording gage at same site and datum. June 7, 1957 to June 2, 1964, water-stage recorder at site 0.3 mi upstream at same datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DISCHARGE	E, CUBIC	FEET PER		WATER Y MEAN	YEAR OCTOBE	R 2000	TO SEPTEM	MBER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									24000	22700	38400	13700
2									26800	20900	32100	12900
3									e30000	19900	28000	13000
4 5									e38000 e36000	20300 21800	28300 27600	13800 15500
6									e36000	24900	24200	18000
7									e35400	24900	21100	16800
8									34100	21500	19800	13800
9									31100	22500	19300	12300
10									28700	28600	17900	11100
11 12									29800	20900	16500	10300 9760
13									33600 34400	18600 18300	15600 15400	9570
14									34500	16600	15100	10100
15									33400	16100	17000	9940
16									31800	17000	21000	9380
17									30900	17700	23200	8840
18 19									31100 32800	17400 17100	25700 28400	8440
20									34400	18600	28100	8360 8330
21 22									33900 33500	21100 24400	23200 21500	8710 9100
23									31900	24900	20800	9020
24									29800	24500	23100	8410
25								16800	28500	22000	22500	7900
26								15500	27600	21600	19300	7380
27 28								15100 18200	26200 25300	23100 25300	17900 17000	7040
29								21800	23400	28200	16500	6720 6460
30								23200	23100	29100	15900	e6000
31								24600		33900	15100	
TOTAL									930000	683500	675500	310660
MEAN									31000	22050	21790	10360
MAX									38000	33900	38400	18000
MIN AC-FT									23100 1845000	16100 1356000	15100 1340000	6000 616200
CFSM									5.03	3.58	3.54	1.68
IN.									5.62	4.13	4.08	1.88
		CMA MI CMI CC	OF MONEY	T 37 MELANT E	3.00 EOD	MARIED	YEARS 1949	2001	DV WARED	WEAD (NO	r \ 11	
		STATISTICS	OF MONTE	ILY MEAN I	DATA FOR	WAIER	IEARS 1949	- 2001,	BY WAIER	YEAR (WY)#	
MEAN	6208	2658	1878	1591	1399	1289	1648	13500	27040	24010	21350	13660
MAX	12680		3264	2452	2028	1900	4250	25630	50580	34400	37870	26510
(WY) MIN	1987 3124		1958 866	1961 724	1972 723	1968 713	1990 745	1990 3745	1964 15500	1963 16010	1981 8879	1990 5093
(WY)	1970		1970	1969	1969	1964	1964	1971	1969	1996	1969	1969
SUMMARY	STATISTI	CS		FOR 2001	WATER Y	EAR	WATER	YEARS 1	949 - 200	1#		
ANNUAL	MEAN						9724					
HIGHEST ANNUAL MEAN							13020		1990			
LOWEST ANNUAL MEAN HIGHEST DAILY MEAN			38400	Aug	1	5597 85900	.T11	1969 1964 n				
LOWEST DAILY MEAN			30400	Aug	1	a600		b 16 1950				
ANNUAL SEVEN-DAY MINIMUM						614		b 16 1950				
MAXIMUM PEAK FLOW				40200		1	90700		ın 7 1964			
MAXIMUM PEAK STAGE MAXIMUM PEAK STAGE				12.22	Aug	1	16.5 b24.4		ın 7 1964 ıy 10 1954			
	RUNOFF (A				7045000	o Ma	., 10 193 4					
ANNUAL RUNOFF (CFSM)							1.5					
ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS							21.4	5				
	CENT EXCEE CENT EXCEE						25700 3400					
							1100					
90 PERCENT EXCEEDS 1100												

See Period of Record; partial years used in monthly statistics Feb. 16-20, 1950 Maximum observed, ice jam $\,$

Estimated

15292700 TALKEETNA RIVER NEAR TALKEETNA (Hydrologic Bench-Mark Station)

LOCATION.--Lat $62^{\circ}20'49''$, long $150^{\circ}01'01''$, in NE $^{1}/_{4}$ sec. 16, T. 26 N., R. 4 W. (Talkeetna B-1 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020503, on left bank 1.7 mi downstream from Chunilna Creek, 3.5 mi northeast of Talkeetna, and about 5 mi upstream from mouth.

DRAINAGE AREA.--1,996 mi².

REVISED RECORDS.-- WRD AK 2000-1: Drainage Area.

PERIOD OF RECORD. -- June 1964 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 400 ft above sea level, from topographic map. From October 1, 1992 to September 30, 1994 at site 0.5 mi upstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor.

		DISCHA	ARGE, CUE	BIC FEET I	PER SECOND, DAIL		YEAR OCT	OBER 2000	TO SEPTEM	MBER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	5570 4970 4640 4670 4780	e1600 e1600 e1500 e1500	e1000 e1000 e950 e950 e950	e750 e750 e750 e750 e750	e650 e630 e630 e630 e630	e550 e550 e550 e550	e500 e525 e525 e525 e525	e800 e850 e850 e900 e900	9800 12500 14100 15200 13800	7560 7480 7350 7010 7980	11600 10400 10400 11100 10200	5690 5590 5800 6110 7200
6 7 8 9 10	5030 4670 4430 4150 3710	e1500 e1400 e1400 e1400 e1400	e950 e950 e900 e900	e750 e750 e750 e750 e750	e630 e630 e630 e600 e600	e550 e550 e550 e530 e530	e550 e550 e550 e550 e550	e950 e950 e1020 e1100 e1200	11900 13100 11400 11100 11800	8380 7250 6350 6030 5780	9040 8400 8240 7950 7450	7200 e6500 e6000 e5000 4640
11 12 13 14 15	3740 3500 3470 3330 3210	e1300 e1300 e1300 e1200 e1200	e900 e900 e900 e850 e850		e600 e600 e600 e600	e530 e530 e530 e530 e530	e550 e550 e550 e600 e600		13500 16200 13900 13100 13400	5960 5710 5480 5900 5740	6900 6690 6720 7410 8140	4410 4190 4050 4010 3720
16 17 18 19 20	3030 2930 2770 2650 2350	e1200 e1200 e1200 e1200 e1100	e850 e850 e850	e720 e720 e700	e600 e600 e570 e570	e530 e530 e530 e530 e530	e600 e600 e600 e650 e650	2890 3210 3690 3880 4670	13700 13300 13600 13300 14600	5600 5890 6030 6280 7600	9910 10100 10700 10700 9490	3530 3390 3290 3240 3290
21 22 23 24 25	2090 2080 2410 2110 2200	e1100 e1100 e1100 e1100 e1100	e850 e800 e800 e800 e800	e700 e700 e670	e570 e570 e570 e570 e570	e530 e500 e500 e500 e500	e650 e650 e650 e700	5230 5180 5100 5440 5460	13900 12900 11600 10800 10800	8400 9990 13200 11600 10600	8270 7980 7480 7920 7850	3250 3020 2860 2740 2710
26 27 28 29 30 31	2190 1810 1740 e1700 e1700 e1600	e1100 e1000 e1000 e1000 e1000	e800 e800 e800 e800 e800 e800	e670 e670 e650 e650 e650 e650	e570 e570 e570 	e500 e500 e500 e500 e500	e700 e750 e750 e750 e800		10000 9290 9400 9480 8670	10200 9910 10100 9800 10300 12800	7850 7140 6840 6400 6110 5780 5750	2930 2680 2540 2450 2360
TOTAL MEAN MAX MIN AC-FT CFSM IN.	99230 3201 5570 1600 196800 1.60 1.85	37600 1253 1600 1000 74580 .63	26950 869 1000 800 53460 .44 .50	22150 715 750 650 43930 .36 .41	16730 598 650 570 33180 .30	16290 525 550 500 32310 .26 .30	18400 613 800 500 36500 .31 .34	112310 3623 10600 800 222800 1.82 2.09	370140 12340 16200 8670 734200 6.18 6.90	248260 8008 13200 5480 492400 4.01 4.63	259060 8357 11600 5750 513800 4.19 4.83	124390 4146 7200 2360 246700 2.08 2.32
		STATISTI	CS OF MO	NTHLY MEA	N DATA FOR	WATER	YEARS 196	4 - 2001,	BY WATER	YEAR (WY)#	
MEAN MAX (WY) MIN (WY)	2798 10000 1987 1424 1997	1171 1992 1987 672 1992	834 1122 1987 538 1996	684 996 1990 457 1996	576 990 1990 401 1969	517 1058 1990 285 1982	1990 396	11510	11070 19040 1971 5207 1969	10370 15410 1981 7080 1969	9133 16770 1971 3787 1969	5800 12090 1993 2070 1969
SUMMARY STATISTICS					ENDAR YEAR			WATER YEA	IR.	WATER Y	EARS 1964	4 - 2001#
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN				1642790 4488	Tup 20		1351510 3703	Tup 1	2	4042 5389 2249	Oat	1990 1969
HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS					Jun 28 Feb 29 Feb 29		10200	Mar 2 Mar 2 Jun 1 .16 Jun 1	2 2 2 2	4042 5389 2249 63200 c260 75700 17.3 2928000 27.5 10700	Feb Feb Oct Oct	27 1982 27 1982 11 1986 11 1986
50 PERCENT EXCEEDS 90 PERCENT EXCEEDS				550			1400 550			1400 500		

See Period of Record; partial years used in monthly statistics

Feb. 29 to Apr. 1 Mar. 22 to Apr. 1 From Feb. 27 to Mar. 20, 1982 Estimated

15294005 WILLOW CREEK NEAR WILLOW

LOCATION.--Lat $61^{\circ}46'51''$, long $149^{\circ}53'04''$, in $NW^{1}/_{4}$ SE $^{1}/_{4}$ sec. 31, T.20 N., R.3 W. (Anchorage D-8 quad), Matanuska-Susitna Borough, Hydrologic Unit 19020505, on the right bank, 0.9 mi downstream from unnamed tributary, 5.5 mi northeast of Willow, and 6.7 mi upstream from Deception Creek.

DRAINAGE AREA.--166 mi².

PERIOD OF RECORD. -- June 1978 to September 1993, and May to September 2001.

REVISED RECORDS.--WRD-AK-80-1: 1979 (M).

GAGE.--Water-stage recorder. Elevation of gage is 350 ft above sea level from topographic map. Prior to Apr. 2, 1981 at site 0.2 mi upstream at different datum.

REMARKS.--Records good, except for estimated daily discharges, which are poor. Rain gage at station. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge 2,300 ${\rm ft}^3/{\rm s}$ and maximums (*).

				Date	Time	Dischar (ft ³ /s		Gage Heigl (ft)	nt			
				June 21	0200	*2580		*4.99				
		DISCHA	RGE, CUB	C FEET PE		WATER YEA Y MEAN VAL		BER 2000 '	TO SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								e80	1120	773	632	274
2								e80	1420	724	566	270
3 4								e80 e90	1630 1520	672 696	592 841	336 326
5								e90	1480	1070	709	719
3								650	1400	1070	703	110
6								e100	1380	950	597	653
7								e100	1320	733	535	536
8								e100	1320	691	501	512
9								e110	1460	776	476	446
10								e130	1560	688	449	413
11								e140	1750	814	422	384
12								e170	1750	665	395	358
13								e200	1520	662	373	353
14								e260	1430	656	377	341
15								e280	1640	570	432	313
16								e300	1780	538	418	296
17								e350	1800	515	457	283
18								458	1740	482	581	271
19								479	1550	484	509	279
20								539	1480	648	445	271
21								590	1050	F.C.F.	206	255
21 22								590 587	1950 1520	565 510	396 351	255 242
23								539	1430	475	325	229
24								554	1410	526	436	219
25								513	1260	503	401	211
23								313	1200	303	401	211
26								467	1320	485	386	204
27								498	1260	782	341	197
28								702	1340	718	318	191
29								894	1060	612	316	184
30								1080	930	710	299	178
31								1100		775	303	
								11660	44120	00460	14150	0.7.4.4
TOTAL								11660	44130	20468	14179	9744
MEAN								376	1471	660	457	325
MAX								1100	1950	1070	841	719
MIN								80 23130	930 87530	475 40600	299 28120	178 19330
AC-FT CFSM								23130	8.86	3.98	28120	1.96
IN.								2.61	9.89	4.59	3.18	2.18
±1V.								2.01	7.07	4.55	3.10	2.10
		STATISTIC	S OF MON	THLY MEAN	DATA FOR	WATER YEAR	RS 1978	3 - 2001,	BY WATER	YEAR (WY)	#	
MEAN	405	162	110	86.6	74.1	64.5	93.9	635	1074	722	620	644
MEAN	1197	162 364	152	112	98.8	97.5	205	1578	1500	722 1287	1286	1177
(WY)	1987	1980	1980	1980	1990	1990	1990	1990	1990	1980	1981	1993
MIN	177	81.5	57.3	57.1	52.9	33.7	50.5	340	484	338	307	259
(WY)	1985	1985	1981	1981	1981	1982	1986	1985	1981	1983	1978	1978
· · · - /	2200	2,00	1,01			1000		2703		1703	20,0	17,0

[#] See Period of Record; partial years used in monthly statistics
e Estimated

15294005 WILLOW CREEK NEAR WILLOW--Continued

SUMMARY STATISTICS	FOR 2001 WATER YEAR	WATER YEARS 1978 - 2001#
ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN	1950 Jun 21	401 536 1990 320 1986 8670 Oct 11 1986
LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW	2580 Jun 21	a33 Mar 9 1982 33 Mar 9 1982 b12000 Oct 11 1986
MAXIMUM PEAK STAGE MAXIMUM PEAK STAGE	4.99 Jun 21	9.01 Oct 11 1986 c9.40 Dec 18 1986
ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES)		290700 2.42 32.85
ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS		1000 223 65

See Period of Record; partial years used in monthly statistics Mar. 9-30, 1982 From rating curve extended above 3,900 ft³/s on basis of slope-area measurement of peak flow Backwater from ice

15294100 DESHKA RIVER NEAR WILLOW

LOCATION.--Lat $61^{\circ}46'05''$, long $150^{\circ}20'13''$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 3, T. 19 N., R. 6 W. (Tyonek D-1 quad), Mantanuska-Susitna Borough , Hydrologic Unit 19020505, on left bank, 0.2 mi upstream from unnamed tributary, 1.1 mi downstream from unnamed tributary, 7.9 mi upstream from mouth, and 10 mi west of Willow.

DRAINAGE AREA. -- 591 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1978 to September 1986, and October 1998 to September 2001 (discontinued).

REVISED RECORDS.--WRD AK-83-1: 1980, WRD AK-00-1: Drainage area.

GAGE.--Water-stage recorder. Elevation of gage is 80 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES FOR CURRENT YEAR.--Peak discharge greater than base discharge $3,600~{\rm ft}^3/{\rm s}$ and maximums (*).

	Date	Time	Discha (ft ³ /		Gage Height (ft)		Date		e Discharge (ft ³ /s)		Gage Height (ft)	
	May 01	2015	4440		4.40		May 20	1630	*48	50	*4.62	
		DISCHA	RGE, CUBIC	FEET P			YEAR OCTOB	ER 2000	TO SEPTEME	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	720 655 589 550 600	e400 e400 e400 e400 e400	e380 e360 e360 e360	e320 e320 e320 e320 e320	e260 e260 e260 e260 e260	e270 e270 e270 e270 e270	e290 e290 e290 e290 e290	4280 4130 3440 2980 2650	1880 1600 1420 1200 1030	250 240 229 250 309	1610 1590 1010 928 1500	558 553 524 536 1200
6 7 8 9 10	756 1080 1230 1080 920	e400 e400 e400 e420 e440	e360 e360 e360 e360	e320 e320 e320 e300 e300	e260 e260 e260 e260 e260	e280 e280 e280 e280 e280	e290 e300 e300 e300 e300	2430 2310 2300 2480 2920	902 853 851 873 767	377 420 346 301 308	1180 827 636 535 465	2820 3060 2310 1720 1360
11 12 13 14 15	805 724 662 e600 e550	e440 e420 e400 e400 e400	e360 e360 e340 e340 e340	e300 e300 e300 e290 e290	e260 e260 e260 e260 e260	e280 e280 e290 e290 e290	e300 e300 e300 e300 e300	3290 3420 3470 3630 3870	688 660 664 661 610	365 796 1030 725 565	426 392 371 347 328	1140 978 879 809 776
16 17 18 19 20	e500 e480 e460 e460 e440	e400 e400 e400 e420 e420	e340 e340 e340 e340 e340	e290 e290 e280 e280 e280	e260 e260 e260 e260 e260	e290 e290 e290 e280 e280	e300 e320 e320 e320 e340	4140 4400 4540 4680 4780	554 501 453 421 399	475 413 371 335 352	370 1050 1260 1470 1500	727 679 640 609 584
21 22 23 24 25	e420 e420 e420 e420 e420	e400 e400 e380 e380 e380	e340 e340 e340 e340 e340	e280 e280 e270 e270 e260	e260 e260 e260 e260 e260	e280 e280 e280 e280 e290	e360 e400 e500 e700 e1000	4640 4420 4300 4010 3660	379 362 362 338 316	561 720 673 677 596	1530 1150 848 713 699	550 510 488 475 460
26 27 28 29 30 31	e420 e420 e400 e400 e400 e400	e380 e380 e380 e380 e380	e340 e340 e340 e340 e340 e340	e260 e260 e260 e260 e260 e260	e260 e260 e270 	e290 e290 e290 e290 e290 e290	e1400 e1900 e2500 3440 3940	3230 2840 2770 2940 2930 2460	299 313 298 278 259	565 531 580 621 550 583	807 695 607 562 556 558	444 423 406 386 376
TOTAL MEAN MAX MIN AC-FT CFSM IN.	18401 594 1230 400 36500 1.00 1.16	12000 400 440 380 23800 .68 .76	10800 348 380 340 21420 .59 .68	8980 290 320 260 17810 .49 .57	7290 260 270 260 14460 .44 .46	8760 283 290 270 17380 .48 .55	22180 739 3940 290 43990 1.25 1.40	108340 3495 4780 2300 214900 5.91 6.82	20191 673 1880 259 40050 1.14 1.27	15114 488 1030 229 29980 .82 .95	26520 855 1610 328 52600 1.45 1.67	26980 899 3060 376 53510 1.52 1.70
		STATISTIC	CS OF MONTH	ILY MEAN	N DATA FOR	WATER	YEARS 1979	- 2001,	BY WATER	YEAR (W	7)#	
MEAN MAX (WY) MIN (WY)	1161 1748 2000 480 1985	673 2669 1980 277 1986	338 561 1980 218 1999	277 393 1980 191 1999	239 362 1980 182 1986	240 332 1980 177 1982	590 1215 1980 215 1985	2800 4367 1985 1361 1986	902 1911 1985 421 1986	831 2580 1981 247 1983	1140 2714 1981 399 2000	1231 2561 1982 443 1984

See Period of Record Estimated

SUMMARY STATISTICS	FOR 2000 CALEN	DAR YEAR	FOR 2001 WATE	ER YEAR	WATER YEARS 1	.979 - 2001#
ANNUAL TOTAL	286777		285556			
ANNUAL MEAN	784		782		873	
HIGHEST ANNUAL MEAN					1242	1980
LOWEST ANNUAL MEAN					632	1984
HIGHEST DAILY MEAN	6930	May 5	4780	May 20	9440	Nov 13 1979
LOWEST DAILY MEAN	a260	Feb 21	229	Jul 3	b160	Feb 24 1986
ANNUAL SEVEN-DAY MINIMUM	260	Feb 21	258	Jun 28	160	Feb 24 1986
MAXIMUM PEAK FLOW			4850	May 20	c48000	Oct 12 1986
MAXIMUM PEAK STAGE			4.62	May 20	d13.54	Oct 12 1986
INSTANTANEOUS LOW FLOW			220	Jul 3	160	Feb 24 1986
ANNUAL RUNOFF (AC-FT)	568800		566400		632800	
ANNUAL RUNOFF (CFSM)	1.33		1.32		1.48	
ANNUAL RUNOFF (INCHES)	18.05		17.97		20.08	
10 PERCENT EXCEEDS	1470		2300		2120	
50 PERCENT EXCEEDS	400		400		429	
90 PERCENT EXCEEDS	260		260		210	

[#] See Period of Record
a Feb. 21 to Mar. 28
b Feb. 24 to Mar. 8, 1986
c From rating curve extended above 6,430 ft³/s on basis of slope-area measurement of peak flow 7.0 mi upstream from station
d From floodmarks

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1981 to 1984, 1998 to September 2001 (discontinued).

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: January 1999 to September 2001.

INSTRUMENTATION. -- Electronic water-temperature recorder since January 1999, set for 15-minute recording interval.

WATER TEMPERATURE: Records represent water temperature at the sensor within 0.5° C. Temperature at the sensor was compared with the average of the stream by cross section measurements on March 13, May 15, and June 11. No variation was found within the cross sections. No variation was found between mean stream temperature and temperature at the sensor.

EXTREMES FOR PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: Maximum, 24.0 °C, July 7, 1999; minimum, 0.0°C on many days during winter periods.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 23.5 °C, June 28; minimum, 0.0°C on many days during winter.

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
MAR								
13	1300	7.00	72	7.0	0	762	8.5	58.1
13	1302	35.0	72	7.1	0	762	8.4	57.4
13	1304	63.0	73	7.2	0	762	8.3	56.8
13	1306	91.0	73	7.2	0	762	8.4	57.5
13	1308	119	74	7.2	0	762	8.5	58.1
13	1310	140	75	7.2	0	762	8.4	57.5
MAY								
15	1245	20.0	21	6.7	6.5	751	11.2	92.4
15	1246	65.0	21	6.7	6.5	751	11.0	90.8
15	1247	110	21	6.7	6.5	751	11.0	90.8
15	1248	155	21	6.7	6.5	751	11.0	90.8
15	1249	200	21	6.7	6.5	751	10.9	89.9
JUN								
11	1423	15.0	51	7.5	16.0	762	9.7	98.3
11	1425	45.0	51	7.4	16.0	762	9.6	97.2
11	1426	75.0	51	7.4	16.0	762	9.6	97.2
11	1428	105	51	7.4	16.0	762	9.6	97.2
11	1430	135	51	7.3	16.0	762	9.6	97.2

						DIS- CHARGE,				QUALITY ASSUR-	SPE-	PH WATER	
						INST.	CAM		PURPOSE	ANCE	CIFIC	WHOLE	MEMBER A
					~-~-	CUBIC	SAM-	~		DATA	CON-	FIELD	TEMPERA
				STREAM	GAGE	FEET	PLING	SAMPLER	SITE	INDICA-	DUCT-	(STAND-	TURE
				WIDTH	HEIGHT	PER	METHOD,	TYPE	VISIT	TOR	ANCE	ARD	AIR
		MEDIUM	SAMPLE	(FT)	(FEET)	SECOND	CODES	(CODE)	(CODE)	CODE	(US/CM)	UNITS)	(DEG C)
DATE	TIME	CODE	TYPE	(00004)	(00065)	(00061)	(82398)	(84164)	(50280)	(99111)	(00095)	(00400)	(00020)
OCT													
06	1300	9	9	160	1.90	737	10	3045	1001		49	7.6	
NOV													
14	1050	9	9	E160			10	3045	1001		48	7.0	
FEB													
02	1440	9	9	142		262	10	3045	1001		73	7.4	
MAR		_	_										
13	1200	9	9	143		286	10	3045	1001		73	7.0	5.5
MAY	1700	0	0	005	2 10	0070	1.0	2052	1001		0.0		0 5
08 15	1720	9 9	9 9	205	3.10	2270	10 10	3053	1001 1001		23 21	6.6 6.7	8.5
JUN	1240	9	9	222	4.07	3880	10	3039	1001		21	6.7	
11	1350	9	7	150	1.85	659	10	3045	1001	30	51	7.4	15.0
JUL	1330	9	,	130	1.05	039	10	3043	1001	30	31	7.4	13.0
02	1330	9	9	160	1.26	230	10	3045	1001		77	7.4	20.0
AUG	1330	,		100	1.20	250	10	3013	1001			,	20.0
15	1230	D	9					8010	1099				
15	1620	9	9	133	1.46	331	10	3045	1001		64	7.3	18.0
SEP		-	-								0.1		
07	1450	9	9	191	3.60	3120	10	3053	1003		28	6.7	18.5

DATE	TEMP- ERATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MMOF HG) (00025)	OXYGEN DIS- OLVED (MG/L) (00300)	OXYGEN, DIS- OLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	HCO3	ALKA- LINITY WAT DIS TOT IT FIELD MG/S AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)
OCT													
06 NOV					27	7.62	1.84	1.9	29	.85	33	28	.6
14 FEB	.0		12.8	88	20	5.86		1.6	23	.67	26	21	.6
02 MAR	. 0		8.1	56	34	9.74		2.2	38	.86	43	36	.7
13 MAY	.0	0 762	8.4	57	34	9.83	2.30	2.3	38	.91	44	37	.8
08 15	3.5 6.5		11.5 11.0	87 91	13 9	3.90 2.73			13 10	.61 .35	15 10	12 8	.2
JUN 11	16.0	762	9.6	97	23	6.75	1.59	1.8	25	.74	28	23	. 4
JUL 02	20.0			95	35	10.1	2.36	2.4	36	.93	41	34	. 4
AUG 15													
15 SEP	16.0	763	9.5	96	29	8.51	1.96	2.0	35	.74	41	34	.5
07	10.5	760	10.6	95	13	3.89	.899	1.1	10	.55	12	10	.3
DATE	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLOU- RIDE DIS- SOLVED (MG/L AS F) (00950)	SIL- ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOL- IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	ENTS, DIS- SOLVED (MG/L)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	TOTAL (MG/L AS N)	NITRO- GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)
OCT 06	.7	<.2	14.2	60	45	.002	.107	.035	.27	.24	.041	.019	.013
NOV 14	.6	E.1	13.6	53	41	.006	.764	<.002	E.38	.23	E.027	.012	.092
FEB 02	.6	E.1	19.7	66	59	.001	.159	.015	.17	.16	.030	.018	.015
MAR 13													
MAY 08	.8	<.2	19.0	65	59	.001	.133	.025	.20	.14	.030	.017	.013
	.3	<.2	9.6	47	25	.001	.049	.006	.31	.21	.045	.011	<.007
15 JUN	.3	<.2 <.2	9.6 8.2	47 51	25 19	.001	.049	.006	.31	.21	.045	.011	<.007 <.007
15	.3	<.2	9.6	47	25	.001	.049	.006	.31	.21	.045	.011	<.007
15 JUN 11 JUL 02 AUG	.3 .2 .2	<.2 <.2 <.2	9.6 8.2 12.7	47 51 51	25 19 39	.001 .002	.049 .066	.006	.31 .40	.21 .26	.045	.011	<.007 <.007 E.005
15 JUN 11 JUL 02	.3 .2 .2 .4	<.2 <.2 <.2 <.2	9.6 8.2 12.7 14.9	47 51 51 68	25 19 39 52	.001 .002 .001 <.001	.049 .066 .017	.006 .008 .007 <.002	.31 .40 .36	.21 .26 .23	.045 .080 .030	.011 .011 .013	<.007 <.007 E.005

SOUTH-CENTRAL ALASKA

15294100 DESHKA RIVER NEAR WILLOW--Continued

				CAR-		CAR-							
				BON,	CAR-	BON,	NITRO-	CHLOR-A		PERIPH-			
			CAR-	INOR-	BON,	INORG +	GEN,	PERIPH-	PERIPH-	YTON			SEDI-
		MANGA-	BON,	GANIC,	ORGANIC	ORGANIC	PARTIC-	YTON	YTON	BIO-	PHEO-		MENT,
	IRON,	NESE,	ORGANIC	PAR-	PARTIC-	PAR-	ULATE	CHROMO-	BIO-	MASS	PHYTIN	SEDI-	DIS-
	DIS-	DIS-	DIS-	TIC.	ULATE	TIC.	WAT FLT	GRAPHIC	MASS	TOTAL	Α,	MENT,	CHARGE,
	SOLVED	SOLVED	SOLVED	TOTAL	TOTAL	TOTAL	SUSP	FLUO-	ASH	DRY	PERI-	SUS-	SUS-
	(UG/L	(UG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	ROM	WEIGHT	WEIGHT	PHYTON	PENDED	PENDED
	AS FE)	AS MN)	AS C)	AS C)	AS C)	AS C)	AS N)	(MG/M2)	G/SQ M	G/SQ M	(MG/M2)	(MG/L)	(T/DAY)
DATE	(01046)	(01056)	(00681)	(00688)	(00689)	(00694)	(49570)	(70957)	(00572)	(00573)	(62359)	(80154)	(80155)
DAIL	(01046)	(01036)	(00001)	(00000)	(00009)	(00094)	(49570)	(70957)	(00572)	(00573)	(02339)	(00134)	(00133)
OCT													
06	820	111	5.1	<.1	.6	.6	.070					7	14
NOV													
14	680	52.9	6.6	<.1	. 5	E.5	E.046						
FEB												_	
02	790	95.0	3.1			.3	<.022					3	2.1
MAR	600	02.0	0 0		. 1	2	. 000					2	0 0
13	690	83.9	2.9	<.1	<.1	.3	<.022					3	2.3
MAY 08	660	44.5	8.6			1.0	E.086					23	141
15	440	26.2	8.1			1.4	.135					56	587
JUN	440	20.2	0.1			1.4	.133					30	307
11	520	44.8	5.2			.5	.052					4	7.1
JUL	320	11.0	3.2			. 5	.032					-	, . ±
02	550	33.8	4.2			E.2	<.022					2	1.2
AUG												_	
15								21.1	140.1	151.0	8.2		
15	660	34.8	5.1			. 2	<.022					4	3.6
SEP													
07	550	34.4	14			2.6	.226					33	278

DATE	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
OCT	
06	76
NOV	
14	
FEB 02	84
MAR	84
13	8.4
MAY	01
08	58
15	51
JUN	
11	82
JUL	
02 AUG	
15	
15	
SEP	
07	39

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NC	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	3.0 2.5 2.5 3.5 3.5	2.0 1.5 1.5 2.0 2.5	2.5 2.0 2.0 2.5 3.0	. 5 . 5 . 5 . 5	.5 .5 .5 .5	.5 .5 .5 .5	. 5 . 5 . 5 . 5	.0.0.0.0	.5 .5 .0 .0	.0 .0 .0 .0	.0.0.0.0	.0.0.0
6 7 8 9 10	4.5 4.5 4.5 4.0 3.5	3.0 3.5 4.0 3.5 2.0	3.5 4.0 4.5 4.0 2.5	.5 .5 .5 .0	.5 .5 .0	.5 .5 .0	. 5 . 0 . 0 . 0	.0.0.0.0	.0.0.0.0	.0 .0 .0 .0	.0.0.0.0	.0.0.0
11 12 13 14 15	3.0 2.5 2.5 3.0 3.5	2.0 1.5 1.0 2.5 2.5	2.5 2.0 2.0 2.5 3.0	. 5 . 5 . 5 . 5	.0 .5 .5	.0 .5 .5 .0	. 0 . 0 . 0 . 0	.0.0.0.0	.0.0.0.0	.0 .0 .0 .0	.0.0.0.0	.0.0.0
16 17 18 19 20	3.5 3.5 3.0 2.5 1.5	3.0 2.5 2.5 1.5	3.0 3.0 2.5 2.0	. 5 . 5 . 5 . 5	.5 .0 .0 .0	.5 .5 .0 .0	. 0 . 0 . 0 . 0	.0.0.0.0	.0.0.0.0	.0 .0 .0 .0	.0.0.0.0	.0.0.0
21 22 23 24 25	.5 .5 .5 .5	.0.0.0.0	.5 .0 .0 .5	.5 .5 .5	.0 .5 .5 .5	.5 .5 .5 .5	. 0 . 0 . 0 . 0	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0.0.0
26 27 28 29 30 31	.5 .5 .5 .5	.0 .5 .5 .5	.5 .5 .5 .5	.5 .5 .0 .5	.5 .0 .0 .0	.5 .5 .0 .0	. 0 . 0 . 0 . 0	.0.0.0.0.0	. 0 . 0 . 0 . 0 . 0	.0.0.0	.0.0.0.0	.0.0.0.0
MONTH	4.5	.0	1.9	.5	.0	.3	.5	.0	. 0	.0	.0	.0

SOUTH-CENTRAL ALASKA

15294100 DESHKA RIVER NEAR WILLOW--Continued

TEMPERATURE, WATER (DEGREES CELSIUS), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

				•								
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	.0	.0.0.0	.0	.0.0.0.0	.0.0.0.0	.0.0.0	.0 .0 .0	.0.0.0.0	.0.0.0.0	3.0 1.5 1.5 2.5 2.5	. 0	2.0 .5 1.0 2.0 2.0
6 7 8 9 10	.0.0.0	.0.0.0.0	.0.0.0	.0.0.0		.0.0.0	.0 .0 .0 .0	. 0	.0.0.0.0	3.0 3.5 4.0 4.5 4.0	2.0 2.5 2.5 3.5 3.0	2.5 3.0 3.5 4.0 3.5
11 12 13 14 15	.0.0.0	. 0 . 0 . 0 . 0	.0.0.0	.0.0.0	.0	.0.0.0	.0 .0 .0	.0.0.0	.0.0.0	5.0 5.5 6.5 7.5 7.0	3.0 3.5 4.5 5.5 6.0	4.0 4.5 5.5 6.5
16 17 18 19 20	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	.0.0.0	.0 .0 .0 .0	. 0	.0.0.0	.0 .0 .0		.0.0.0	6.5 6.5 7.5 7.5 8.0	5.5 4.5 5.5 6.0 6.5	6.0 5.5 6.5 7.0 7.5
21 22 23 24 25	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	.0.0.0	.0 .0 .0 .0	.0	.0.0.0	.0 .0 .0	. 0	.0	8.0 8.0 8.0 8.0 7.5	7.0 7.0 7.0	7.5 7.5 7.5 7.5 7.0
26 27 28 29 30 31	.0.0.0	.0.0.0	.0.0.0	. 0 . 0 . 0 . 0 . 0	.0	.0.0.0.0.0	.0 1.0 1.5 2.5 3.0	.0 .0 .0 .5	.0 .5 1.5 2.0	8.0 10.0 11.5 11.5 11.0	7.0 7.0 9.0 10.0 10.0	7.5 8.5 10.5 11.0 11.0
MONTH	.0	.0	.0	.0	.0	.0	3.0	.0	.1	11.5	.0	5.8
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	
	MAX 13.0 15.5 16.0 15.5 14.0			MAX 21.5 22.0 19.5 17.5 17.0	JULY	MEAN 19.0 19.5 18.0 16.0 15.5			MEAN 15.0 16.5 16.5 15.5		SEPTEMBE	
DAY 1 2 3 4	13.0 15.5 16.0 15.5	JUNE 10.5 12.5 14.0 13.5 13.0 10.0 10.0 11.0 13.0	11.5 13.5 15.0 14.5	21.5 22.0 19.5 17.5	JULY 17.0 17.5 16.0 15.0 14.0 14.5 16.0 14.5	19.0 19.5 18.0 16.0	16.0 17.5 17.5 16.5	AUGUST 13.5 15.5 15.5 15.0 15.0 15.0 15.6 16.5 16.5	15.0 16.5 16.5 15.5	13.0 13.0 14.5 13.0	SEPTEMBE 11.5 11.5 11.5 11.5 10.5 10.0 9.0 8.5	12.5 12.0 12.5 12.0
DAY 1 2 3 4 5 6 7 8 9 10	13.0 15.5 16.0 15.5 14.0 13.5 13.0 14.0 16.0	JUNE 10.5 12.5 14.0 13.5 13.0 10.0 10.0 11.0 13.0 14.5	11.5 13.5 15.0 14.5 13.5 12.5 11.5 12.5 14.5 16.0	21.5 22.0 19.5 17.5 17.0 17.0 18.5 17.5	JULY 17.0 17.5 16.0 15.0 14.0 14.5 15.5 16.0 14.5 15.0	19.0 19.5 18.0 16.0 15.5 16.0 17.0 16.5 17.0	16.0 17.5 17.5 16.5 16.5 17.0 18.0 17.0	AUGUST 13.5 15.5 15.5 15.0 15.0 15.0 15.5 16.5 16.5 16.5 16.0 15.5	15.0 16.5 16.5 15.5 15.5 16.0 16.5 17.0 16.5	13.0 13.0 14.5 13.0 12.0 11.0 11.0 10.5	SEPTEMBE 11.5 11.5 11.5 11.5 10.5 10.0 9.0 8.5	12.5 12.0 12.5 12.0 11.5 10.5 10.5 10.0
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14	13.0 15.5 16.0 15.5 14.0 13.5 13.0 16.0 17.5	JUNE 10.5 12.5 14.0 13.5 13.0 10.0 10.0 11.0 13.0 14.5 14.5 13.5 13.5 13.5	11.5 13.5 15.0 14.5 13.5 12.5 11.5 12.5 14.5 16.0	21.5 22.0 19.5 17.5 17.0 17.0 18.5 17.5 19.0 17.5	JULY 17.0 17.5 16.0 15.0 14.0 14.5 15.5 16.0 14.5 15.0 14.5 15.0	19.0 19.5 18.0 16.0 15.5 16.0 17.0 16.5 17.0 16.5	16.0 17.5 17.5 16.5 16.5 17.0 18.0 17.0 16.0	AUGUST 13.5 15.5 15.5 15.0 15.0 15.0 15.5 16.5 16.5 16.0 15.5	15.0 16.5 16.5 15.5 15.5 16.0 16.5 17.0 16.5 16.0 17.0 18.0 17.0	13.0 13.0 14.5 13.0 12.0 11.0 11.0 10.5 10.5	SEPTEMBE 11.5 11.5 11.5 10.5 10.0 10.0 9.0 8.5 8.5 7.5 9.5 9.0 9.5	12.5 12.0 12.5 12.0 11.5 10.5 10.5 10.0 9.5 9.0 9.5 10.0
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	13.0 15.5 16.0 15.5 14.0 13.5 13.0 16.0 17.5 16.5 15.0 17.0 18.5 20.0 20.5 20.0	JUNE 10.5 12.5 14.0 13.5 13.0 10.0 10.0 11.0 13.0 14.5 14.5 13.5 13.5 13.5 15.0 16.0 17.0 16.5 17.0	11.5 13.5 15.0 14.5 13.5 12.5 11.5 12.5 14.5 16.0 16.0 14.5 15.0 16.5	21.5 22.0 19.5 17.5 17.0 17.0 18.5 17.5 19.0 17.5 16.0 15.5 16.5 16.5	JULY 17.0 17.5 16.0 15.0 14.0 14.5 15.5 16.0 14.5 15.0 14.5 14.5 14.0 13.0 14.5 15.5	19.0 19.5 18.0 16.0 15.5 16.0 17.0 16.5 17.0 16.5 15.0 14.0 15.5 16.0	16.0 17.5 17.5 16.5 16.5 17.0 18.0 17.0 16.0 17.5 19.0 20.5 18.5 16.5	AUGUST 13.5 15.5 15.5 15.0 15.0 15.0 15.5 16.5 16.0 15.5 16.0 16.0 16.0 16.5 15.0 14.0 14.0	15.0 16.5 16.5 15.5 15.5 16.0 16.5 17.0 16.5 16.0 17.0 16.0 17.0 18.0 17.5 16.0	13.0 13.0 14.5 13.0 12.0 11.0 11.0 10.5 10.5 10.5 10.5 11.0 11.5 12.0	SEPTEMBE 11.5 11.5 11.5 10.0 10.0 9.0 8.5 8.5 7.5 9.5 9.5 9.6 9.0 10.0 10.0	12.5 12.0 12.5 12.0 11.5 10.5 10.5 10.0 9.5 10.0 9.5 10.0 10.5 10.0
DAY 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	13.0 15.5 16.0 15.5 14.0 13.5 13.0 16.0 17.5 16.5 15.5 17.0 18.5 20.0 20.5 20.0 20.5 21.5 21.5 22.0 23.0 22.5	JUNE 10.5 12.5 14.0 13.5 13.0 10.0 11.0 13.0 14.5 14.5 13.5 13.5 13.5 15.0 16.0 17.0 17.0 18.0 17.0 18.0 19.0	11.5 13.5 13.5 14.5 13.5 12.5 11.5 14.5 16.0 16.0 14.5 15.0 16.5 17.5 18.5 19.0 19.5 19.5 20.5	21.5 22.0 19.5 17.5 17.0 17.0 18.5 19.0 17.5 16.0 15.5 16.5 17.0 17.5 18.5 18.5 18.5	JULY 17.0 17.5 16.0 15.0 14.0 14.5 15.5 16.0 14.5 15.0 14.5 15.5 14.5 16.0 17.0 16.5 17.0 16.5 16.5	19.0 19.5 18.0 16.0 17.0 17.0 16.5 17.0 16.5 15.0 14.0 15.5 16.0 16.5 17.0 16.5 17.0 16.5	16.0 17.5 17.5 16.5 16.5 17.0 18.0 17.0 16.0 17.5 19.0 20.5 18.5 16.5 16.0 15.5 16.0 15.5	AUGUST 13.5 15.5 15.5 15.0 15.0 15.0 15.5 16.5 16.0 15.5 16.0 16.0 16.5 15.0 14.5 14.0 13.5	15.0 16.5 16.5 15.5 15.5 16.0 16.5 17.0 16.5 16.0 17.0 18.0 17.5 16.0 15.0 15.0 15.0 15.5 14.5	13.0 13.0 14.5 13.0 12.0 11.0 11.0 10.5 10.5 10.5 10.5 11.0 11.5 12.0 12.5 11.0 9.5 9.0 9.5	SEPTEMBE 11.5 11.5 11.5 10.0 10.0 9.0 8.5 8.5 7.5 9.5 9.5 9.6 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10	12.5 12.0 12.5 12.0 11.5 10.5 10.5 10.0 9.5 10.0 9.5 10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.5 10.0 10.5

15294700 JOHNSON RIVER ABOVE LATERAL GLACIER NEAR TUXEDNI BAY

LOCATION.--Lat $60^{\circ}05'41"$, long $152^{\circ}54'38"$, in $SW^{1}_{/4}$ $NW^{1}_{/4}$ $NW^{1}_{/4}$ sec. 16, T. 1 S., R. 21 W. (Kenai A-8 quad), Kenai Peninsula Borough, Hydrologic Unit 19020602, on the right bank about 20 mi upstream from mouth, 10 mi south of Tuxedni Bay, and 60 mi northeast of Iliamna.

DRAINAGE AREA. -- 24.8 mi2.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- July 1995 to current year (no winter record).

GAGE.--Water-stage recorder. Elevation of gage is 450 ft above sea level, from topographic map. July 1995 to June 1996, at site 300 ft downstream at same datum.

EXTREMES FOR PERIOD OF RECORD.—Maximum discharge $8,800~{\rm ft}^3/{\rm s}$, September 21, 1995 from rating curve extended above $3,500~{\rm ft}^3/{\rm s}$ on the basis of slope-area measurement, gage height $14.60~{\rm ft}$ at site then in use, gage height $16.27~{\rm ft}$ at the current site; minimum not determined, occurs during the winter.

EXTREMES FOR CURRENT PERIOD.--Maximum discharge for the period October 2000 and May through September 2001, 4,690 $\,$ ft $^3/s$, July 19 gage height, 14.35 $\,$ ft; minimum not determined, occurs during the winter.

REMARKS.--Records are fair except for estimated discharges, which are poor. Rain gage at station. GOES satellite telemetry at station.

DICCULARCE CURTO FEET DED CECOND MATER VEAR OCTORER 2000 TO CERTEMBER 2001

		DISCHARGE	, CUBIC	FEET	PER S	ECOND,	WATER	YEAR	OCTOBER	2000	TO SEPTI	EMBER	2001		
						DAIL	Y MEAN	VALUE	ES						
DAY	OCT	NOV	DEC	JAN		FEB	MAR		APR	MAY	JUN	r	JUL	AUG	SEP
DAI	001	110 V	DEC	UAN		FED	MAIN		AFK	MAI	0.01		ООП	AUG	SEF
1	98									e85	463		910	833	703
2	91									e85	523		933	836	556
3	86									e85	559		908	742	506
4	111									e90	533		819	668	648
5	176									e90	506		807	651	604
_	204									0.5	4.50		000	677	404
6	324									e95	463		996	673	434
7	354									e100	474		1020	684	345
8	195									e100	484		907	634	300
9	133									e100	528		865	573	264
10	111									e110	581		854	581	250
11	100									e110	613		893	666	230
12	90									e120	613		1030	853	355
13	88									e120	603		925	908	591
14	191									e130	684		858	816	508
15	167									e140	807		884	754	462
13	107									CITO	007		004	754	402
16	182									e140	832		940	654	405
17	139									e140	816		985	714	430
18	112									e150	799		956	766	432
19	95									e150	790		2960	947	411
20	83									e150	851		2270	1340	481
21	76									e160	942		1750	1170	520
22	72									e170	994		1470	937	407
23	65									e180	1090		1190	695	564
24	e65									192	1100		1040	762	714
25	e65									202	1080		950	742	428
26	C.F.									210	1050		002	602	240
26	65									218	1250		903	623	340
27	62									212	1340		932	605	287
28	60									254	1310		867	1190	266
29	59									291	1180		821	1040	267
30	57									311	1030		834	1300	223
31	47									339			827	1030	
TOTAL	3619									4819	23838	3	3304	25387	12931
MEAN	117									155	795		1074	819	431
MAX	354									339	1340		2960	1340	714
MIN	47									85	463		807	573	223
AC-FT	7180									9560	47280		6060	50360	25650
CFSM	4.71									6.27	32.0		43.3	33.0	17.4
IN.	5.43									7.23	35.76		9.96	38.08	19.40
	5.15									23	55.70			50.00	10.10

e Estimated

15294700 JOHNSON RIVER ABOVE LATERAL GLACIER NEAR TUXEDNI BAY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1998 to current year.

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	DIS- CHARGE INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN DIS- OLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	ARD UNITS)	SPE- CIFIC CONDUCT ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)
MAY 2001 23 JUN	1300	9	9	174	10	752	14.2	102	7.2	93	1.2	39	13.8
26	1230	9	9	1220	10	762	12.8	94	7.2	45	2.5	18	6.38
01 SEP	1430	9	9	827	10	757	12.9	104	7.1	38	5.8	15	5.34
03	1130 1130	9 9	9 9	693 280	10 10	745 745	11.5 13.3	90 102	7.2 6.9	46 58	4.3	19 25	6.68 8.69
DATE	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	SIUM, DIS- SOLVED (MG/L AS MG)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	POTAS- SIUM, TOTAL RECOV- ERABLE (MG/L AS K) (00937)	SODIUM DIS- SOLVED (MG/L AS NA) (00930)	SODIUM, TOTAL RECOV- ERABLE (MG/L AS NA) (00929)	CACO3	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SIL- ICA, DIS- SOLVED (MG/L AS SIO2) (00955)
MAY 2001 23		1.04		.31		1.8		18	20	23	2.0	<.2	4.7
JUN 26	7.62	.581	2.05	. 27	.5	. 9	1.2	12	12	16	. 7	<.2	2.7
AUG 01 SEP	6.26	.453	1.39	.27	. 4	.6	.6	10	12	13	.5	<.2	2.0
03 27	6.40 8.31	.541 .719	.72 .83	.21	<.1 .3	.7 .9	1.5	12 14	13 16	16 18	.5	<.2 <.2	2.4 3.2
DATE	SUL- FATE DIS- SOLVED (MG/L AS SO4) (00945)	SOL- IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOL- IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	DIS. (MG/L AS N)	NITRO- GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)	DIS- SOLVED (MG/L AS N)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, PARTI- CULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CAR-BON, INORG + ORGANIC PAR-TIC. TOTAL (MG/L AS C) (00694)
MAY 2001 23	17 8	44	54	<.002	<.10	<.08	.181	<.001	<.022	<.006	<.007	.017	.1
JUN 26	5.9	23	26	.002	<.10	E.06	.079	<.001	.030	E.003	<.007	.059	.3
AUG 01	5.3	20	21	<.002	<.10	<.08	.025	<.001	.043	<.006	<.007	.042	. 4
SEP 03 27	7.0 10.8	20 34	26 34	E.005	E.06	<.08 <.08	E.023 .024	<.001 .001	<.022 <.022	<.006 <.006	<.007 <.007	.012	.1 <.1

15294700 JOHNSON RIVER ABOVE LATERAL GLACIER NEAR TUXEDNI BAY--Continued

DATE	CAR- BON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ALUMI- NUM, DIS- SOLVED (UG/L AS AL) (01106)	ALUMI- NUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	ARSENIC TOTAL (UG/L AS AS)	BAR- IUM, DIS- SOLVED (UG/L AS BA) (01005)	BAR- IUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CAD- MIUM DIS- SOLVED (UG/L AS CD) (01025)	CAD- MIUM WATER UNFIL- TERED TOTAL (UG/L AS CD) (01027)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)
MAY 2001 23		11		. 4		14.9		<.06		54	E.03		E.4
JUN 26	E.19	33	4070	.5	E1	8.8	27.0	<.06	<2.50	17	E.03	E.07	<.8
AUG 01	<.30	21	2570	.7	E1	6.3	15.7	<.06	<2.50	16	< .04	<.10	<.8
SEP 03		20	706	.8	М	6.9	10	<.06	<2.50	19	E.02	E.05	<.8
27	<.30	19	353	. 8	E1	8.7	10.1	<.06	<2.50	33	.04	<.10	<.8
DATE	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COBALT, TOTAL RECOV- ERABLE (UG/L AS CO) (01037)	COP- PER, DIS- SOLVED UG/L AS CU) (01040)	COP- PER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	LITH- IUM DIS- SOLVED (UG/L AS LI) (01130)	LITH- IUM TOTAL RECOV- ERABLE (UG/L AS LI) (01132)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)
MAY 2001 23		.12		.6		<10		<.08		1.4		3.1	
JUN 26 AUG	М	.07	E2	.6	<20.0	10	3510	E.06	<1	E.2	<7.0	4.9	79
01 SEP	<1	.04	E1	.5	<20.0	<10	2240	<.08	<1	E.2	<7.0	4.8	52
03	<1 <1	.04	<2 <2	<.2	<20.0 <20.0	M <10	540 310	<.08	<1 <1	E.2	<7.0 <7.0	2.6	16 8
DATE MAY 2001	MER- CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	MOLYB- DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SIL- VER, DIS- SOLVED (UG/L AS AG) (01075)	SIL- VER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	STRON- TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) (01082)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS AN) (01090)
DATE MAY 2001 23 JUN	CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	DENUM, DIS- SOLVED (UG/L AS MO)	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO)	DIS- SOLVED (UG/L AS NI)	TOTAL RECOV- ERABLE (UG/L AS NI)	NIUM, DIS- SOLVED (UG/L AS SE)	NIUM, TOTAL (UG/L AS SE)	VER, DIS- SOLVED (UG/L AS AG)	VER, TOTAL RECOV- ERABLE (UG/L AS AG)	TIUM, DIS- SOLVED (UG/L AS SR)	TIUM, TOTAL RECOV- ERABLE (UG/L AS SR)	DIUM, DIS- SOLVED (UG/L AS V)	DIS- SOLVED (UG/L AS AN) (01090)
MAY 2001 23	CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062)	DIS- SOLVED (UG/L AS NI) (01065)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	NIUM, TOTAL (UG/L AS SE) (01147)	VER, DIS- SOLVED (UG/L AS AG) (01075)	VER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TIUM, DIS- SOLVED (UG/L AS SR) (01080)	TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) (01082)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS AN) (01090)
MAY 2001 23 JUN 26	CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 E.8	DIS- SOLVED (UG/L AS NI) (01065)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2 <2	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <.3 <.3	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 E.2	VER, DIS- SOLVED (UG/L AS AG) (01075)	VER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 26.3 12.5	TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) (01082)	DIUM, DIS- SOLVED (UG/L AS V) (01085)	DIS- SOLVED (UG/L AS AN) (01090) 4 3
MAY 2001 23 JUN 26 AUG 01	CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	DENUM, DIS- SOLVED (UG/L AS MO) (01060)	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062)	DIS- SOLVED (UG/L AS NI) (01065) .18	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2	NIUM, DIS- SOLVED (UG/L AS SE) (01145)	NIUM, TOTAL (UG/L AS SE) (01147)	VER, DIS- SOLVED (UG/L AS AG) (01075) <1.0	VER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 26.3	TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) (01082)	DIUM, DIS- SOLVED (UG/L AS V) (01085) E.2	DIS- SOLVED (UG/L AS AN) (01090) 4
MAY 2001 23 JUN 26 AUG 01 SEP 03	CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)03 <.01 <.01 <.01 <.01 K.01 K.01 K.01 K.01 K.01 K.01 K.01 K	DENUM, DIS- SOLVED (UG/L AS MO) (01060) .4 .3 .4 .6 NC, UR ITAL NA COV- ABLE S GJL (C ZN) A	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 E.8 <1.5 E1.1 ANIUM TURAL DIS- DIVED SUUG/L S U)	DIS- SOLVED (UG/L AS NI) (01065) .18 .15 <.06 <.06 <.06	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2 <2 <2 <2 <2 <2 SEDI- MENT, DIS- CHARGE, SUS- PENDED T/DAY)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <.3 <.3 <.3	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 E.2 <3.0	VER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	VER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 26.3 12.5 10.6	TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) (01082) 18.9 14.5	DIUM, DIS- SOLVED (UG/L AS V) (01085) E.2 .5 .5	DIS- SOLVED (UG/L AS AN) (01090) 4 3 3
MAY 2001 23 JUN 26 AUG 01 SEP 03 27	CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)03 <.01 <.01 <.01 TO' REG ER; (UU AS (010)	DENUM, DIS- SOLVED (UG/L AS MO) (01060) .4 .3 .4 .6 NC, UR ITAL NA COV- ABLE S GJ/L (C ZN) A 092) (2	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 E.8 <1.5 E1.1 ANIUM TURAL DIS- DIVED SUUG/L S U)	DIS- SOLVED (UG/L AS NI) (01065) .18 .15 <.06 <.06 <.06	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2 <2 <2 <2 <2 <2 SEDI- MENT, DIS- CHARGE, SUS- PENDED T/DAY)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <.3 <.3 <.3 <.3 E.2 <.3	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 E.2 <3.0 <3.0	VER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	VER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 26.3 12.5 10.6	TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) (01082) 18.9 14.5	DIUM, DIS- SOLVED (UG/L AS V) (01085) E.2 .5 .5	DIS- SOLVED (UG/L AS AN) (01090) 4 3 3
MAY 2001 23 JUN 26 AUG 01 SEP 03 27	CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)03 <.01 <.01 <.01 TOTAL TOTAL TOTAL TOTAL AS HG) (010 COMMAND TOTAL T	DENUM, DIS- SOLVED (UG/L AS MO) (01060) .4 .3 .4 .4 .6	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 E.8 <1.5 E1.1 ANIUM TURAL DIS- DLVED SU UG/L SU) 2703) (8	DIS- SOLVED (UG/L AS NI) (01065) .18 .15 <.06 <.06 <.06	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2 <2 <2 <2 <2 <2 TENT, DIS- CHARGE, SUS- PENDED T/DAY) (80155)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <.3 <.3 <.3 <.3 E.2 <.3	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 E.2 <3.0 <3.0	VER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	VER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 26.3 12.5 10.6	TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) (01082) 18.9 14.5	DIUM, DIS- SOLVED (UG/L AS V) (01085) E.2 .5 .5	DIS- SOLVED (UG/L AS AN) (01090) 4 3 3
MAY 2001 23 JUN 26 AUG 01 SEP 03 27 DATE MAY 2001 23 JUN	CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900) 03 <.01 <.01 <.01 ZII TO' REC ER (UG AS (01)	DENUM, DIS- SOLVED (UG/L AS MO) (01060) .4 .3 .4 .4 .6 NC, UR TAL NA COV- ABLE S 3/L (ZN) A 092) (2	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 E.8 <1.5 E1.1 ANIUM TURAL S DIS- DIS- DIVED S UG/L I S U) (2703) (8	DIS- SOLVED (UG/L AS NI) (01065) .18 .15 <.06 <.06 <.06 <.06 MENT, (SUS- PENDED (MG/L) (30154) (TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2 <2 <2 <2 <2 Figure 1.5 MENT, DIS- CHARGE, SUS- PENDED T/DAY) (80155)	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <.3 <.3 <.3 <.3 E.2 <.3	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 E.2 <3.0 <3.0 <3.0	VER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	VER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 26.3 12.5 10.6	TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) (01082) 18.9 14.5	DIUM, DIS- SOLVED (UG/L AS V) (01085) E.2 .5 .5	DIS- SOLVED (UG/L AS AN) (01090) 4 3 3
DATE MAY 2001 23 JUN 26 AUG 01 SEP 03 27 DATE MAY 2001 23 JUN 26 AUG	CURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900) 03 <.01 <.01 <.01 ZIII TO' REC ERA (UGAS (010) ESTABLE ESTABLE ESTABLE (UGAS (010) ESTABLE ESTAB	DENUM, DIS- SOLVED (UG/L AS MO) (01060) .4 .3 .4 .4 .6 NC, UR TAL NA COV- ABLE S 3/L (ZN) A 092) (2 < 23 < 17 < 31 <	DENUM, TOTAL RECOV- ERABLE (UG/L AS MO) (01062) <1.5 E.8 <1.5 E1.1 ANIUM TURAL DIS- DLVED SUG/L 1 S SU) 2703) (8	DIS- SOLVED (UG/L AS NI) (01065) .18 .15 <.06 <.06 <.06 <.06 30154) (01065)	TOTAL RECOV- ERABLE (UG/L AS NI) (01067) <2 <2 <2 <2 <2 <12 <10 MENT, DIS- PENDED T/DAY) (80155) 12 387	NIUM, DIS- SOLVED (UG/L AS SE) (01145) <.3 <.3 <.3 <.3 E.2 <.3	NIUM, TOTAL (UG/L AS SE) (01147) <3.0 E.2 <3.0 <3.0 <3.0	VER, DIS- SOLVED (UG/L AS AG) (01075) <1.0 <1.0 <1.0	VER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077) <.40 <.40	TIUM, DIS- SOLVED (UG/L AS SR) (01080) 26.3 12.5 10.6	TIUM, TOTAL RECOV- ERABLE (UG/L AS SR) (01082) 18.9 14.5	DIUM, DIS- SOLVED (UG/L AS V) (01085) E.2 .5 .5	DIS- SOLVED (UG/L AS AN) (01090) 4 3 3

15295700 TERROR RIVER AT MOUTH NEAR KODIAK

LOCATION.--Lat $57^{\circ}41'41''$, long $153^{\circ}09'42''$, in $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec. 5, T. 29 S., R. 24 W. (Kodiak C-4 quad), Kodiak Island Borough, Hydrologic Unit 19020701, on Kodiak Island, in Kodiak National Wildlife Refuge, on right bank, 0.9 mi upstream from mouth, 7.5 mi downstream from Terror Lake Dam, and 29 mi southwest of Kodiak.

DRAINAGE AREA.--30.7 mi², 45.7 mi² prior to partial diversion of Terror Lake to hydropower plant in February 1985.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- February 1964 to October 1968, October 1981 to current year.

REVISED RECORDS.--WDR AK-84-1: 1982-83. WDR AK-96-1: 1995(M).

GAGE.--Water-stage recorder. Elevation of gage is 30 ft above sea level, from topographic map. Prior to October 1, 1981 at site 0.2 mi downstream at different datum.

REMARKS.--No estimated daily discharges. Records fair. Flow from 15 mi² at headwaters regulated by Terror Lake Dam and some flow diverted from Terror Lake to Kizhuyak River. Regulation for construction began in November 1982. Began filling reservoir April 29, 1984. Diversion to hydropower plant began February 12, 1985. GOES satellite telemetry at station.

		DISCHA	ARGE, CUBI	C FEET PE		, WATER LY MEAN	YEAR OCTOB	ER 2000	TO SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	161 161 162 196 231	156 150 137 138 138	116 127 127 131 176	139 119 105 99 94	77 86 79 91 95	88 89 91 116 116	113 128 147 131 125	166 169 168 167 164	421 411 422 667 566	393 391 406 435 451	310 299 280 497 355	200 209 208 227 212
6 7 8 9 10	217 244 204 188 201	156 218 171 217 290	134 119 113 115 129	121 100 87 86 100	86 87 89 88	95 93 94 95 102	124 124 127 130 156	167 167 164 162 162	525 479 430 414 427	455 401 348 369 407	285 267 263 298 281	194 197 197 190 201
11 12 13 14 15	193 186 198 188 180	205 170 266 193 180	119 117 216 251 161	102 89 93 149 246	99 90 81 87 75	118 113 94 98 96	151 127 123 123 124	168 174 185 207 226	447 440 424 455 447	417 411 370 346 478	256 244 249 252 253	215 208 192 181 193
16 17 18 19 20	193 189 181 177 177	241 216 175 142 173	123 127 126 169 289	168 524 407 218 265	105 151 105 156 98	84 85 85 90 92	120 118 124 123 130	295 314 264 238 308	492 516 479 492 537	513 415 487 878 491	267 357 294 254 615	332 312 240 209 255
21 22 23 24 25	199 191 189 224 243	271 240 205 283 200	196 145 126 206 332	190 136 108 100 93	86 89 96 99	98 97 97 113 97	139 157 134 130 129	584 402 294 264 253	546 563 541 487 456	393 401 399 335 288	439 296 224 202 234	731 1000 550 557 503
26 27 28 29 30 31	209 200 192 197 232 191	157 137 133 107 109	215 186 346 350 227 175	103 91 92 86 94 88	102 124 95 	95 84 85 87 83 91	140 136 134 142 135	245 218 236 313 344 380	506 608 659 557 460	277 281 277 288 325 312	220 256 264 215 217 197	375 349 313 358 283
TOTAL MEAN MAX MIN AC-FT	6094 197 244 161 12090	5574 186 290 107 11060	5489 177 350 113 10890	4492 145 524 86 8910	2708 96.7 156 75 5370	2961 95.5 118 83 5870	3944 131 157 113 7820	7568 244 584 162 15010	14874 496 667 411 29500	12438 401 878 277 24670	8940 288 615 197 17730	9391 313 1000 181 18630
		STATISTI	CS OF MON	THLY MEAN	DATA FOR	WATER	YEARS 1986	- 2001,	BY WATER	YEAR (WY)	#	
MEAN MAX (WY) MIN (WY)	274 427 1995 192 1998	184 354 1987 93.8 1995	145 313 1986 78.4 1988	121 153 1988 81.8 1989	110 168 1994 72.6 1989	101 152 1998 60.9 1986	172 247 1993 115 1986	324 454 1993 244 2000	500 872 1987 305 1990	369 1070 1987 228 1989	290 662 1988 183 1994	295 707 1995 175 2000

[#] See Period of Record and Remarks

15295700 TERROR RIVER AT MOUTH NEAR KODIAK--Continued

SUMMARY STATISTICS	FOR 2000 CAI	LENDAR YEAR	FOR 2001 W	ATER YEAR	WATER YEA	RS 1986 - 2001#
ANNUAL TOTAL	72075		84473			
ANNUAL MEAN	197		231		241	
HIGHEST ANNUAL MEAN					369	1987
LOWEST ANNUAL MEAN					193	2000
HIGHEST DAILY MEAN	1110	Jun 12	1000	Sep 22	4610	Sep 20 1995
LOWEST DAILY MEAN	85	Feb 19	75	Feb 15	a26	Dec 11 1996
ANNUAL SEVEN-DAY MINIMUM	88	Feb 14	86	Jan 29	39	Nov 19 1985
MAXIMUM PEAK FLOW			1730	Sep 22	b10000	Sep 19 1995
MAXIMUM PEAK STAGE			3.77	Sep 22	7.67	Sep 19 1995
INSTANTANEOUS LOW FLOW			67	Jan 9	a9.8	Dec 11 1996
ANNUAL RUNOFF (AC-FT)	143000		167600		174500	
10 PERCENT EXCEEDS	342		449		462	
50 PERCENT EXCEEDS	175		192		185	
90 PERCENT EXCEEDS	93		93		85	

PRIOR TO CONSTRUCTION OF TERROR LAKE DAM

SUMMARY STATISTICS, WATER YEARS 1965 - 1983 #

ANNUAL MEAN	293			
HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN	421 230			1983 1967
LOWEST ANNOAL MEAN	250			100
HIGHEST DAILY MEAN	2600	Oct	2	1965
LOWEST DAILY MEAN	c19	Feb	23	1967
ANNUAL SEVEN-DAY MINIMUM	20	Feb	23	1967
INSTANTANEOUS PEAK FLOW	3820	Sep	26	1966
INSTANTANEOUS PEAK STAGE	d6.48	Sep	26	1966
INSTANTANEOUS PEAK STAGE	f7.54	Mar	28	1964
ANNUAL RUNOFF (AC-FT)				
ANNUAL RUNOFF (CFSM)				
ANNUAL RUNOFF (IN)	129.66			
10 PERCENT EXCEEDS	774			
50 PERCENT EXCEEDS	157			
90 PERCENT EXCEEDS	39			

See Period of Record and Remarks Occurred while dam release valve was closed for repair From rating curve extended above 960 $\,$ ft $^3/s$ on basis of slope-area measurement of peak flow Feb. 23 and Mar. 1, 1967 Site and datum then in use Site and datum then in use; from tidal wave

15295700 TERROR RIVER AT MOUTH NEAR KODIAK--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1968, 1982 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: December 1981 to current year.

INSTRUMENTATION.--Water-temperature recorder since December 10, 1981. Electronic water temperature recorder set 1-hour recording interval.

REMARKS.--Records represent water temperature at sensor within 0.5° C. Temperature at the sensor was compared with the average for the river by cross section on December 28, and July 17. No variation was found within the cross sections. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: Maximum, 13.5°C, July 19, 1990 and August 8, 1993; minimum, 0.0°C on many days during winter periods.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 11.0° C, August 7,13 and 23; minimum, 0.0° C on many days during winter.

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)		DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)		
DEC 28 28 28 28 28 28	1330 1331 1332 1333 1334 1335	70.0 70.0 70.0 70.0 70.0 70.0	2.0 17.0 32.0 47.0 62.0	1.68 1.68 1.68 1.68 1.68	313 313 313 313 313 313	2.5	4.5 4.5 4.5 4.5 4.5
JUL 17 17 17 17	1155 1156 1157 1158 1159	71.5 71.5 71.5 71.5 71.5	4.5 18.5 33.5 48.5 63.5	1.84	388 388 388 388 388	6.0	19.5

SOUTH-CENTRAL ALASKA

15295700 TERROR RIVER AT MOUTH NEAR KODIAK--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER			NOVEMBER			DECEMBER			JANUARY	
2	8.0 8.5 8.5 8.5	6.0 7.5 7.0 7.5 7.5	7.0 8.0 8.0 8.0 7.5	4.0 5.0 4.0 4.0 4.5	2.0 4.0 3.0 3.0 3.5	3.0 4.0 3.5 4.0 4.0	.5 1.0 1.5 2.0	.0 .5 1.0 1.0	.5 .5 1.5 2.0	1.5 2.0 1.5 .5	1.0 1.0 .5 .5	1.5 1.5 1.0 .5
6 7 8 9 10	8.5 7.5 6.5 6.0 7.0	7.0 6.0 5.0 4.5 5.0	7.5 7.0 5.5 5.0 6.0	4.5 4.0 4.5 5.0 4.5	3.5 3.0 3.0 4.0 3.5	4.0 3.5 4.0 4.5 4.0	2.5 2.0 1.5 2.5 2.0	1.0 1.0 1.0 1.5	2.0 1.5 1.0 2.0 2.0	.5 1.0 1.0 .5	.0 .5 .5 .0	.5 1.0 .5 .5
11 12 13 14 15	6.5 6.5 7.0 6.5 6.5	5.0 4.5 4.5 5.5 5.0					2.5 3.0 2.5 2.0					
16 17 18 19 20	6.5 6.5 6.0 5.5	5.5 5.5 5.5 4.5 4.5	6.0 6.0 5.5 5.0	3.0 3.0 3.0 3.0 3.5	2.5 2.5 2.5 2.0 2.0	2.5 2.5 2.5 2.5 3.0	1.0 1.0 2.0 2.5 2.5	.5 1.0 .5 2.0	.5 1.0 1.5 2.0	1.5 1.5 2.0 2.0	1.0 1.0 1.5 1.5	1.5 1.5 1.5 1.5 2.0
	5.0 5.5 4.5 6.0 5.0		5.0 5.0 4.0 5.0 4.0	3.0 3.0 3.0 3.0 2.5	2.5 2.5 2.5 2.5 2.5	3.0 3.0 2.5 3.0 2.5	2.0 2.0 2.5 3.0 2.5	1.5 2.0 2.0 2.0 2.0	1.5 2.0 2.5 2.5 2.0	1.5 2.0 1.5 2.0	1.0 1.0 .5 .5	1.5 1.5 1.0 1.0
26 27 28 29 30 31	5.5 5.0 5.0 5.5 5.0 3.5	4.0 4.0 3.5 4.5 3.5 2.5	4.5 4.5 4.0 5.0 4.0 3.5	2.5 2.0 2.0 1.5 .5	1.0 .5 1.0 .5 .5	2.0 1.5 2.0 1.0 .5	2.0 2.5 3.0 2.5 2.0	1.5 1.5 2.5 1.5 .5	2.0 2.0 2.5 2.0 2.0	2.0 1.5 1.5 1.0 .5	.5 .5 .0 .0	1.0 1.0 1.0 .5 .5
							3.0					
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	.5 .5 .5 .5	.0 .0 .0 .5	.5 .5 .5 .5	1.5 1.0 2.5 1.5 2.5	.0 .0 .5 1.0	.5 .5 1.5 1.5	3.0 3.5 3.5 3.5 4.0	.0 1.0 1.0 .5	1.0 2.0 2.0 1.5	6.0 4.0 4.0 5.0 3.5	1.0 2.0 .5 .5	3.0 2.5 2.0 2.0
6 7 8 9 10	2.0 1.0 1.5 1.5	.5 .0 .0 .5	1.0 .5 .5 1.0	3.5 2.0 3.0 3.5 3.5	.5 .0 1.5 2.0	1.5 1.0 2.0 2.5 2.5	4.0 4.0 5.0 4.0 4.5	1.0 1.0 1.5 1.5	2.0 2.5 2.5 2.5 3.0	4.0 6.5 6.5 4.5 6.0	1.5 1.5 1.0 2.0	2.5 3.5 3.5 3.0 3.5
				3.5 4.0 3.0 2.5 3.0	2.0 2.0 .5 1.5	2.5 2.5 2.0 2.0 2.0	4.0 4.0 3.5 6.0 4.5	1.5 .5 1.5 2.0	2.5 2.0 2.5 3.0 2.5	6.5 6.5 7.0 6.0 5.0	1.0 1.5 2.0 2.5 2.5	3.5 3.5 4.0 4.0 3.5
16 17 18 19 20	2.0 2.0 2.5 2.0	1.0 1.0 1.0 .5	1.5 1.5 1.5 1.5	3.0 3.0 3.0 2.0 2.5	1.5 1.5 .5 .0	2.0 2.0 1.5 1.0	4.5 4.5 4.5 4.5	2.0 2.0 1.5 1.0 2.0	3.0 3.0 3.0 2.5 3.0	4.5 6.0 7.5 8.5 4.0	2.5 3.0 2.5 2.0 3.0	3.5 4.0 4.5 4.5 3.5
21 22 23 24 25	1.0 .5 1.0 1.0	.0 .0 .0 .0	.5 .5 .5 .5	1.5 1.5 1.0 .5 2.5	.0 .0 .0 .0	.5 .5 .0 .5	5.0 5.5 6.0 6.0 5.0	2.0 2.5 1.5 2.5 2.0	3.5 4.0 3.5 4.0 3.5	4.5 6.5 7.0 6.5 8.0	3.0 2.5 2.5 3.0 2.5	3.5 4.0 4.5 4.5 5.0
26 27 28 29 30 31	2.0 2.0 1.5 	.5 .5 .0 	1.0 1.5 .5 	3.5 4.0 3.5 3.0 2.5 2.0	1.0 .5 .0 .5 .0	2.0 1.5 1.5 1.5 1.5	5.0 7.0 5.5 4.5 6.0	2.5 2.0 2.0 2.5 2.0	3.5 4.0 3.5 3.5 4.0	5.0 8.5 8.5 8.0 8.5	3.0 3.0 3.5 2.5 3.0	4.0 5.5 5.5 5.5 5.0 5.0
MONTH	2.5	. 0	.9	4.0	.0	1.4	7.0	.0	2.8	8.5	.5	3.8

SOUTH-CENTRAL ALASKA

15295700 TERROR RIVER AT MOUTH NEAR KODIAK--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY		1	AUGUST		S	EPTEMBE	R
1 2 3 4 5	8.0 8.5 5.5 4.5 5.0	2.5 2.5 2.5 3.0 2.5	5.0 5.0 4.0 3.5 3.5	8.0 8.5 6.5 7.5 6.5	3.5 3.5 4.0 4.0 4.5	5.5 5.5 5.0 5.5 5.0	10.0 9.0 7.5 7.0 9.0	5.5 5.5 6.0 6.0 5.5	7.5 7.0 6.5 6.5 7.0	9.5 9.5 9.0 8.5 7.5	6.0 7.0 7.0 7.0 6.5	7.5 8.0 8.0 7.5 7.0
6 7 8 9 10	5.0 5.0 6.5 8.0 8.5	3.0 3.0 3.0 2.5 3.0	4.0 4.0 4.5 5.0	7.5 7.5 8.5 9.0 6.0	4.0 3.5 4.0 4.0 4.5	5.5 5.5 6.0 6.0 5.5	10.0 11.0 10.5 8.5 8.5	5.5 6.0 6.0 7.0 6.5	7.5 8.0 8.0 7.5 7.5	7.0 8.5 8.0 8.0 7.5	5.5 6.0 5.0 4.5 6.5	6.0 7.0 6.5 6.0 7.0
11 12 13 14 15	8.0 5.5 8.0 8.0	3.0 3.0 3.5 2.5 3.0	5.0 4.5 5.5 5.0	7.0 6.5 6.0 9.0 6.5	4.5 4.5 4.0 5.0	5.5 5.5 5.0 6.5 5.5	10.0 10.5 11.0 10.5 9.5	6.5 6.5 6.5 7.0 7.5	8.0 8.5 8.5 8.5	7.0 7.0 8.0 8.0 7.0	6.0 6.0 5.5 5.5 6.5	6.5 6.5 6.5 6.5
16 17 18 19 20	8.0 7.5 6.5 6.5	3.5 3.0 3.0 3.5 3.5	5.0 5.0 4.5 4.5	7.5 8.0 8.0 6.5 8.0	5.0 4.0 5.0 5.0 4.0	5.5 6.0 6.5 5.5 6.0	9.0 8.5 9.5 8.5 7.5	7.5 7.5 7.0 6.5 7.0	8.0 8.0 8.0 7.5	8.0 8.5 8.0 7.5	7.0 7.0 7.0 6.5 5.5	7.5 7.5 7.5 7.0 6.5
21 22 23 24 25	8.0 8.0 7.5 7.5 8.5	3.0 3.5 3.5 3.0 3.5	5.0 5.0 5.0 5.0	7.5 7.5 7.0 7.0 7.5	5.0 5.5 5.0 5.5 5.5	6.0 6.5 6.0 6.5	10.0 10.0 11.0 8.5 8.5	6.0 6.0 7.0 7.5	7.5 8.0 8.5 8.0	7.0 8.0 6.5 6.5	5.5 6.0 5.5 5.5 6.0	6.5 7.0 6.0 6.0
26 27 28 29 30 31	8.0 8.0 8.0 6.0 5.5	3.5 3.5 3.5 3.5 3.5	5.5 5.5 5.0 5.0 4.5	8.0 9.0 8.5 10.0 8.0 8.0	5.5 5.0 5.5 5.5 6.5	6.5 7.0 7.0 7.5 7.0 6.5	8.5 8.0 8.0 8.0 8.5	7.0 7.0 6.5 6.5 6.5	8.0 7.5 7.0 7.0 7.5	7.0 6.5 7.0 7.5 6.0	6.0 5.5 6.0 6.0 4.5	6.5 6.5 6.5 5.5
MONTH	8.5	2.5	4.8	10.0	3.5	6.0	11.0	5.5	7.7	9.5	4.5	6.7

15297610 RUSSELL CREEK NEAR COLD BAY

LOCATION.--Lat 55°10'40", long 162°41'15", (Cold Bay A-3 quad), Aleutians East Borough, Hydrologic Unit 19030101, on left bank, at Russell Creek Fish Hatchery, 2.1 mi upstream from mouth, and 2.6 mi southeast of Cold Bay. Prior to February 27, 1997, at site 0.2 mi downstream.

DRAINAGE AREA.--30.9 mi².

From rating curve extended above 610 ft³/s on basis of estimate by slope-area measurement of 6,000 ft³/s and gage height of 11.19 ft

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1981 to December 1986, October 1995 to current year.

REVISED RECORDS. -- WRD AK-97-1: 1996, Drainage area.

GAGE.--Water-stage recorder and crest-stage gage. Elevation of gage is 7.65 ft above sea level. Prior to February 27, 1997, elevation 3.55 ft above sea level at site 0.2 mi downstream (levels by private engineering firm). REMARKS.--Records good, except for estimated daily discharges, which are poor.

		DISCHA	RGE, CU	BIC FEET		, WATER LY MEAN	YEAR OCTOBER	R 2000	TO SEPTEMB	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e80	436	e190	238	e140	177	150	138	156	382	225	346
2	e75	303	844	237	e130	173	398	131	192	377	245	314
3	e70	260	537	201	e130	158	275	129	196	524	251	297
4	e70	374	353	191	e120	243	175	126	208	484	221	291
5	e80	266	309	e190	e130	249	224	125	221	632	210	217
6	e75	236	381	e180	e140	231	216	116	214	482	192	184
7	e70	258	555	e170	e150	193	188	112	207	371	187	160
8	e65	345	666	e170	e160	204	173	112	206	345	207	153
9	e60	462	1070	e170	e150	229	172	111	202	319	262	144
10	e75	349	568	e160	e160	259	155	108	211	426	235	149
11	e90	274	499	e160	e170	276	e150	108	207	401	206	231
12	e110	1050	696	e160	e170	205	e140	127	213	343	223	367
13	e120	706	536	e150	e180	191	e150	152	224	284	295	211
14	e110	488	493	e150	e190	210	156	139	226	414	342	181
15	e100	737	459	e150	197	186	191	138	245	818	388	216
16	e420	557	361	e150	332	163	174	145	250	525	263	204
17	278	619	303	e150	252	156	150	162	267	352	212	197
18	216	514	710	e150	189	145	138	162	281	667	204	165
19	183	391	584	e160	175	155	163	152	294	565	465	189
20	189	530	467	e160	178	136	246	153	345	406	337	480
21	251	413	366	e160	221	139	218	149	352	314	231	349
22	183	339	391	e150	227	125	189	142	617	264	278	283
23	167	316	356	e150	257	e120	196	136	1060	231	420	307
24	1230	292	355	e150	277	e120	179	128	555	219	402	473
25	463	269	312	e150	219	e120	166	129	385	216	306	329
26 27 28 29 30 31	376 325 277 276 243 235	250 232 216 202 195	280 312 361 321 267 243	e150 e150 e150 e150 e140 e140	209 183 169 	e110 e110 e110 e100 e110 e130	167 164 158 156 149	132 120 121 136 145 152	327 338 384 463 382	220 325 385 340 289 250	276 252 215 206 228 284	311 247 209 204 218
TOTAL	6562	11879	14145	5087	5205	5233	5526	4136	9428	12170	8268	7626
MEAN	212	396	456	164	186	169	184	133	314	393	267	254
MAX	1230	1050	1070	238	332	276	398	162	1060	818	465	480
MIN	60	195	190	140	120	100	138	108	156	216	187	144
AC-FT	13020	23560	28060	10090	10320	10380	10960	8200	18700	24140	16400	15130
CFSM	6.85	12.8	14.8	5.31	6.02	5.46	5.96	4.32	10.2	12.7	8.63	8.23
IN.	7.90	14.30	17.03	6.12	6.27	6.30	6.65	4.98	11.35	14.65	9.95	9.18
		STATISTIC	CS OF MO	ONTHLY MEA	AN DATA FOR	R WATER	YEARS 1982 -	2001,	BY WATER	EAR (WY)#		
MEAN	274	304	262	169	153	132	139	209	337	347	317	369
MAX	516	530	549	318	272	218	261	300	634	528	403	538
(WY)	1986	1986	1984	1982	1982	1996	1998	1982	2000	1982	2000	1998
MIN	172	168	86.8	59.5	71.2	75.8	80.3	133	208	192	256	170
(WY)	1997	2000	2000	2000	2000	1986	1985	2001	1997	1997	1996	2000
	STATIST	ICS	FOR		ENDAR YEAR		FOR 2001 WAT	ER YEA	R	WATER YE	ARS 1982	- 2001#
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM INSTANI ANNUAL ANNUAL 10 PERC 50 PERC 90 PERC	MEAN T ANNUAL ANNUAL M DAILY ME SEVEN-DA 4 PEAK FL 4 PEAK ST TANEOUS L RUNOFF (RUNOFF (RUNOFF (ENTEXTE EXCE LENT EXCE LENT EXCE	EAN EAN AN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES) EDS EDS EDS		102190 279 1570 a55 55 202700 9. 123. 560 212 65	Jun 2 Jan 6 Jan 6		95265 261 1230 60 70 3060 28.74 189000 8.45 114.69 464 213 128	Oct 2 Oct Oct Nov 1 Nov 1	9 3 2 2	251 302 206 4000 550 51 c6000 d11.76 f49 181800 8.12 110.37 444 202 92	Feb Feb Oct Jun	1982 1983 24 1996 1982 18 1982 22 1981 24 1996 13 1983
a Jar b Fel	e Period o n. 6-15 b. 19-23,	1982	led above	610 ft ³ /c	on bagig of		d Site and de Estimated f Mar. 13-14		en in use; f	rom flood ma	arks	

15297610 RUSSELL CREEK NEAR COLD BAY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1982-83, 1996 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: August 1996 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for 1-hour recording interval.

REMARKS.--Records represent water-temperature at the sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross section on August 28. No variation was found within the cross section. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF RECORD.-- WATER TEMPERATURE: Maximum, 15.5° C, August 13-14, 2001; minimum, 0.0° C on many days during winter periods.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 15.5°C, August 13-14; minimum 0.0°C on many days during winter.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		STREAM	SAMPLE LOC- ATION, CROSS SECTION	GAGE	DIS- CHARGE, INST. CUBIC FEET	TEMPER- ATURE	TEMPER- ATURE
DATE	TIME	WIDTH (FT) (00004)	(FT FM L BANK) (00009)	HEIGHT (FEET) (00065)	PER SECOND (00061)	WATER (DEG C) (00010)	AIR (DEG C) (00020)
AUG							
28	1132	75.0	3.00	25.95	210	6.0	11.5
28	1133	75.0	19.0	25.95	210	6.0	11.5
28	1134	75.0	39.0	25.95	210	6.0	11.5
28	1135	75.0	59.0	25.95	210	6.0	11.5
28	1136	75.0	74.0	25.95	210	6.0	11.5

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	ECEMBER			JANUARY	
1 2 3 4 5	8.0 9.5 8.5 8.0 6.5	6.0 6.0 5.0 5.5 4.0	7.0 7.0 7.0 6.5 5.5	4.5 4.0 5.0 5.5	2.5 1.5 3.0 3.5 3.0	4.0 2.5 4.0 4.5 4.0	.5 2.0 1.5 2.0 2.0	.0 .5 1.0 1.5	.0 1.5 1.5 1.5	.5 .5 1.0 1.0	.0 .0 .5 .0	.0 .0 1.0 .5
6 7 8 9 10	4.0 3.5 6.5 4.5	1.0 .5 2.0 2.0 3.0	2.5 1.5 3.5 3.5	4.0 5.5 6.5 6.0 5.0	3.5 2.5 5.0 5.0 3.0	3.5 4.0 5.5 5.5 4.5	3.0 3.5 4.5 4.0 2.5	1.0 1.0 3.0 2.0 1.0	2.0 2.5 4.0 3.0 1.5	.0 .0 .0 .0	.0 .0 .0 .0	.0.0.0
11 12 13 14 15	6.5 8.0 7.0 5.5 4.5	2.5 1.0 4.5 4.0 3.5	4.0 4.5 5.5 5.0 4.0	4.0 5.0 4.0 4.5 4.5	2.0 2.0 2.0 2.0 3.0	3.0 3.5 3.0 3.0 4.0	3.0 4.0 2.0 2.5 2.0	1.5 2.0 1.0 1.5 1.0	2.5 3.5 1.5 2.0 1.5	.0 .0 .0 .0	.0 .0 .0 .0	.0.0.0
16 17 18 19 20	5.5 4.5 6.0 6.0 5.5	3.5 2.5 2.0 1.5 2.5	4.5 3.5 3.5 3.0 4.0	3.0 2.5 2.5 3.0 2.5	2.0 1.5 1.0 1.5	2.5 2.0 1.5 2.0 2.0	1.5 1.0 2.0 2.0	.5 .0 .5 .5	1.0 .5 1.5 1.5	.5 1.0 2.0 1.5 2.0	.0 .5 1.0 .5	.5 1.0 1.0 1.0
21 22 23 24 25	4.5 3.5 5.5 5.5 6.0	2.5 1.0 1.5 3.5 3.5	4.0 2.0 3.0 4.5 4.5	3.0 3.5 3.0 3.0 2.5	2.0 2.0 2.5 1.5	2.5 2.5 2.5 2.5 2.0	2.0 3.0 3.0 3.0 2.5	1.0 2.0 2.5 2.5 1.0	1.5 2.5 2.5 2.5 2.0	.5 .5 .5 1.0	.0 .0 .0 .0	.0 .0 .0 .5
26 27 28 29 30 31	4.5 5.0 5.5 4.5 5.0 4.5	2.5 3.0 3.5 3.0 2.0	3.5 4.0 4.5 4.0 3.0	2.0 1.5 .0 1.0	.5 .0 .0 .0	1.0 .5 .0 .5 .5	3.0 3.0 3.0 2.5 2.5	1.5 1.5 2.5 2.0 .5	2.0 2.0 2.5 2.5 1.5	1.5 .5 1.5 .5 .5	.0.0.0.0.0	.5 .0 .5 .0
MONTH	9.5	.5	4.2	6.5	.0	2.8	4.5	.0	1.9	2.0	.0	. 2

SOUTHWEST ALASKA

15297610 RUSSELL CREEK NEAR COLD BAY--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1 2 3 4 5	.0 .0 .0 .0	.0.0.0	.0 .0 .0 .0	1.5 1.0 3.0 2.0 4.0	.0 .0 .0 .0	.5 .5 1.0 .5 2.0	2.5 2.0 4.0 3.0 5.0	.0 .5 .0 .0	.5 1.5 1.0 1.0 2.5	9.5 3.5 6.5 8.0 4.5	1.0 .5 .5 1.0	4.5 1.5 3.0 3.5 2.0
6 7 8 9 10	1.5 2.0 2.0 1.0 2.0	.0 .5 .0 .0	.5 1.0 1.0 .5	4.0 4.5 5.0 3.5 3.5	1.0 1.0 2.0 1.5	2.0 2.0 3.0 2.5 2.0	6.0 7.5 6.5 6.0 3.0	.5 1.0 .5 1.5	3.0 3.0 3.0 3.5	4.5 8.0 7.0 7.5 7.0	.5 .5 2.0 2.0	2.0 3.5 4.5 4.5
		.0 .0 .0 1.0		2.5 6.5 3.0 3.5 2.0	1.5 .5 1.0 2.0	2.0 2.5 2.0 2.5 1.0	.0 .5 1.5 1.5	.0 .0 .0 .0	.0 .5 .5	5.5 3.5 9.0 11.5 10.0	2.5 2.5 2.5 1.5 3.5	4.0 3.0 4.5 6.0 6.5
16 17 18 19 20	2.0 2.0 2.5 2.0 2.5	.0 .5 .0 .0	1.5 1.0 1.0 2.0	1.0 .0 4.0 5.0 5.0	.0.0.0		3.5 3.5 4.0 4.5 5.0					
21 22 23 24 25	2.5 2.5 4.0 3.0 4.5	1.5 1.5 2.0 1.0	2.0 2.0 2.5 2.0 2.0	3.5 3.0 .5 .0	. 0 . 0 . 0 . 0	1.5 1.5 .0 .0	5.5 7.5 5.0 4.5 6.5	2.0 2.5 2.0 .0 1.5	3.5 4.5 3.5 2.0 3.5	8.5 7.5 6.5 11.5 8.0	2.0 2.0 2.5 2.5 1.5	5.0 4.5 4.5 6.0 5.0
26 27 28 29 30 31	3.5 2.0 1.0 	1.0 .0 .0 	2.0 1.0 .0 	.0 .0 .0 .5 .5	.0.0.0.0	.0 .0 .0 .0	7.5 10.0 5.5 5.0 6.5	1.5 2.5 2.5 1.5 .5	4.0 5.5 4.0 3.0 3.5	6.0 5.0 5.0 8.0 12.5 10.5	2.5 1.5 2.5 3.0 3.0 4.0	3.5 3.0 3.5 5.0 6.5 6.5
MONTH		.0					10.0					
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		JUNE			JULY			AUGUST			SEPTEMBI	ER.
	9.0 10.5 13.0 13.0 9.0	JUNE			JULY			AUGUST			SEPTEMBI	ER.
1 2 3 4 5	9.0 10.5 13.0 13.0 9.0	JUNE	6.0 7.0 7.5 7.5 5.5	9.0 11.5 8.0 13.0 8.0	JULY 5.0 5.0 5.0 4.0 4.5	6.5 7.5 6.5 7.0 6.0		AUGUST 6.0 7.0 5.5 5.5 6.0	8.0 8.0 7.0 7.0 8.5	9.5 9.5 11.5 10.5 12.0	5.5 5.5 5.0 6.5 4.5	7.0 7.0 7.5 8.0 7.5
1 2 3 4 5	9.0 10.5 13.0 13.0 9.0	JUNE 4.0 4.5 4.0 4.0 3.5 3.5 4.5 4.0 4.0 4.0	6.0 7.0 7.5 5.5 6.0 7.0 6.0 7.5	9.0 11.5 8.0 13.0 8.0 6.5 12.5 10.0 8.0	JULY 5.0 5.0 5.0 4.0 4.5 4.0 3.5 4.5 5.0	6.5 7.5 6.5 7.0 6.0	12.0 9.0 9.5 9.0 13.0 10.0 14.5 10.5 13.0	6.0 7.0 5.5 5.5 6.0 6.0 7.0 7.5 6.0	8.0 8.0 7.0 7.0 8.5 8.0 9.0 8.5 9.5	9.5 9.5 11.5 10.5 12.0 10.0 11.0 12.0 8.5	5.5 5.5 5.0 6.5 4.5 4.5 4.0 5.5 4.0 6.0	7.0 7.0 7.5 8.0 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	9.0 10.5 13.0 13.0 9.0 9.5 12.5 11.5 13.5 12.5 10.5 9.0	JUNE 4.0 4.5 4.0 3.5 3.5 4.5 4.0 4.0 4.0 4.0 4.0	6.0 7.05 7.5 5.5 6.0 7.0 6.5 7.5 7.5	9.0 11.5 8.0 13.0 8.0 6.5 12.5 10.0 8.0 8.0 9.0 6.5 9.0	JULY 5.0 5.0 4.0 4.5 4.0 3.5 4.5 5.0 5.0 5.0 6.5	6.5 7.5 7.0 6.0 5.0 6.0 5.5 6.5 6.5 6.5 6.5 6.5	12.0 9.0 9.5 9.0 13.0 10.0 14.5 13.0 13.5	AUGUST 6.0 7.0 5.5 5.5 6.0 6.0 6.0 7.5 6.0 5.0 6.5	8.0 8.0 7.0 7.0 8.5 8.0 9.0 8.5 9.5 9.0	9.5 9.5 11.5 10.5 12.0 10.0 11.0 12.0 8.5 11.5	SEPTEMBI 5.5 5.5 5.0 6.5 4.5 4.0 5.5 4.0 6.0 5.5 7.0 4.5	7.0 7.0 7.5 8.0 7.5 6.5 6.5 7.5 6.5 8.0 7.5 8.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	9.0 10.5 13.0 9.0 9.5 12.0 9.5 12.5 10.5 10.0 9.5	JUNE 4.0 4.5 4.0 4.0 3.5 3.5 4.5 4.0 4.0 4.0 4.5 3.5 4.0 4.0 4.0 4.0 4.0 4.0 4.0	6.0 7.05 7.5 5.5 6.0 7.0 6.5 7.5 7.0 6.5 6.5 8.0 8.0 7.5	9.0 11.5 8.0 13.0 8.0 6.5 12.5 10.0 8.0 8.0 9.0 6.5 9.0 11.0 8.5 9.0 9.0 9.0 9.0 9.0	JULY 5.0 5.0 4.0 4.5 4.0 3.5 4.5 4.5 5.0 5.0 6.5 5.5 4.0 7.0 6.0	6.55 7.55 7.00 5.00 5.05 6.05 6.55 7.55 7.00 8.00 7.00	12.0 9.0 9.5 9.0 13.0 10.0 14.5 13.0 13.5 12.0 15.5 15.5 11.5	AUGUST 6.0 7.0 5.5 5.5 6.0 6.0 7.0 7.5 6.0 5.0 6.5 7.5 6.5 8.0 6.5 6.5 7.0	8.0 8.0 7.0 7.0 8.5 8.0 9.0 8.5 9.5 9.0 8.5 10.0 10.5 10.0 9.5	9.5 9.5 11.5 10.5 12.0 10.0 11.0 12.0 8.5 11.5 8.5 10.0 9.0 7.5 7.0	SEPTEMBI 5.5 5.0 6.5 4.5 4.5 4.0 6.0 5.5 7.0 4.5 6.0 6.5 5.5 6.0	7.0 7.0 7.5 8.0 7.5 6.5 6.5 7.5 6.5 7.5 6.0 7.5 7.5 6.0 7.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	9.0 10.5 13.0 9.0 9.5 12.0 9.5 11.5 10.5 10.0 9.5 14.5 13.5 12.5 10.0 9.5	JUNE 4.0 4.5 4.0 4.0 3.5 3.5 4.5 4.0 4.0 4.0 4.5 4.0 4.0 4.0 4.0 4.0 4.0 4.5 4.5 4.0 4.5 4.5 4.0 4.5	6.0 7.5 7.5 5.5 6.0 7.0 7.5 7.5 7.0 6.5 6.5 8.0 8.0 7.5 7.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	9.0 11.5 8.0 13.0 8.0 6.5 12.5 10.0 8.0 8.0 9.0 6.5 9.0 11.0 8.5 9.0 9.0 8.5	JULY 5.0 5.0 4.0 4.5 4.0 3.5 4.5 4.5 5.0 5.0 6.5 5.5 4.0 7.0 6.0 5.0 4.5	6.5557.00 5.05 5.05 5.5505 7.06 6.5 5.5500 7.06 6.5 7.5	12.0 9.0 9.5 9.0 13.0 10.0 14.5 13.0 13.5 12.0 15.5 15.5 11.5 10.5 10.5 11.0 10.0 11.0 10.0	AUGUST 6.0 7.0 5.5 6.0 6.0 6.0 7.5 6.0 5.0 6.5 7.5 6.5 8.0 6.5 7.5 6.5 8.0 6.5 6.5 7.0 6.0 6.0 6.0 6.0	8.0 8.0 7.0 7.0 8.5 9.0 8.5 9.0 8.5 9.0 10.0 9.5 8.5 9.0 7.5 8.0 9.0 7.5	9.5 9.5 11.5 10.5 12.0 10.0 11.0 12.0 8.5 11.5 8.5 10.0 9.0 7.5 7.0 8.5 10.0 9.5 8.5 7.5	SEPTEMBI 5.5 5.0 6.5 4.5 4.0 6.0 5.5 4.0 6.0 5.5 6.0 4.5 5.5 6.0 6.5 5.5 6.0 6.5 5.5 6.0 6.5 6.0	7.0 7.0 7.5 8.0 7.5 6.5 7.5 6.5 7.5 6.5 7.5 6.5 7.5 6.5 7.5 6.5 7.5 6.5 7.5 6.5

15300300 ILIAMNA RIVER NEAR PEDRO BAY

LOCATION.--Lat $59^{\circ}45'31''$, long $153^{\circ}50'41''$, in $NE^{1}_{/4}$ SE $^{1}_{/4}$ sec. 10, T. 5 S., R. 27 W.(Iliamna D-3 quad), Lake and Peninsula Borough, Hydrologic Unit 19030206, on left bank 100 ft downstream from bridge on road between Pile Bay and Williamsport, 9.2 mi east of Pedro Bay, and 37 mi east of Iliamna.

DRAINAGE AREA.--128 mi².

PERIOD OF RECORD. -- May 1996 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 80 ft above sea level, from topographic map.

REMARKS.--Records are good except for estimated daily discharges which are poor. GOES satellite telemetry at station.

DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 1 453 e400 e400 e320 e340 e210 e160 e220 1980 2870 1770 2 425 376 e400 e300 e320 e200 e160 e220 2070 2660 1700 3 408 355 e400 e270 e320 e200 e160 e230 2540 3000 1520 4 444 338 e380 e250 e300 e200 e160 e230 2480 3100 1390 5 690 328 e380 e240 e290 e200 e160 e240 2410 2620 1220 6 894 317 382 e250 e290 e190 e160 e240 2410 2620 1220 6 894 317 382 e250 e290 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e290 2450 2530 1270 10 635 838 352 e230 e250 e260 e190 e160 290 2450 2530 1270 11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350 12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620 13 499 850 494 e280 e230 e180 e150 387 2580 2600 1580 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580 15 846 669 419 e400 e230 e180 e150 556 2860 2810 1530	SEP 1290 1060 949 1120 2010 2730 1790 1240 992 850
1 453 e400 e400 e320 e340 e210 e160 e220 1980 2870 1770 2 425 376 e400 e300 e320 e200 e160 e220 2070 2660 1700 3 408 355 e400 e270 e320 e200 e160 e230 2540 3000 1520 4 444 338 e380 e250 e300 e200 e160 e230 2480 3100 1390 5 690 328 e380 e240 e290 e200 e160 e230 2480 3100 1390 6 894 317 382 e250 e290 e190 e160 e240 2410 2620 1220 6 894 317 382 e250 e290 e190 e160 e240 2070 2700 1260 7 1280 302 441	1290 1060 949 1120 2010 2730 1790 1240 992 850
2 425 376 e400 e300 e320 e200 e160 e220 2070 2660 1700 3 408 355 e400 e270 e320 e200 e160 e230 2540 3000 1520 4 444 338 e380 e250 e300 e200 e160 e230 2480 3100 1390 5 690 328 e380 e240 e290 e160 e240 2410 2620 1220 6 894 317 382 e250 e290 e190 e160 e240 2410 2620 1220 7 1280 302 441 e280 e280 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 <td>1060 949 1120 2010 2730 1790 1240 992 850</td>	1060 949 1120 2010 2730 1790 1240 992 850
3 408 355 e400 e270 e320 e200 e160 e230 2540 3000 1520 4 4444 338 e380 e250 e300 e200 e160 e230 2480 3100 1390 5 690 328 e380 e240 e290 e200 e160 e240 2410 2620 1220 6 894 317 382 e250 e290 e190 e160 e240 2070 2700 1260 7 1280 302 441 e280 e280 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 635 838 352 e230 e250 e190 e160 290 2450 2530 1270 <	949 1120 2010 2730 1790 1240 992 850
5 690 328 e380 e240 e290 e200 e160 e240 2410 2620 1220 6 894 317 382 e250 e290 e190 e160 e240 2070 2700 1260 7 1280 302 441 e280 e280 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 635 838 352 e230 e250 e190 e160 e280 2170 2350 1270 11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350 12 511 701 511 <t< td=""><td>2010 2730 1790 1240 992 850</td></t<>	2010 2730 1790 1240 992 850
6 894 317 382 e250 e290 e190 e160 e240 2070 2700 1260 7 1280 302 441 e280 e280 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 635 838 352 e230 e250 e190 e160 290 2450 2530 1270 11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350 12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620 13 499 850 494	2730 1790 1240 992 850
7 1280 302 441 e280 e280 e190 e160 e250 1980 2780 1350 8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 635 838 352 e230 e250 e190 e160 290 2450 2530 1270 11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350 12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620 13 499 850 494 e280 e230 e180 e150 387 2580 2600 1580 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580	1790 1240 992 850
8 910 292 384 e280 e270 e190 e160 e260 2000 2460 1360 9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 635 838 352 e230 e250 e190 e160 290 2450 2530 1270 11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350 12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620 13 499 850 494 e280 e230 e180 e150 387 2580 2600 1580 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580	1240 992 850
9 721 360 359 e250 e260 e190 e160 e280 2170 2350 1380 10 635 838 352 e230 e250 e190 e160 290 2450 2530 1270 11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350 12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620 13 499 850 494 e280 e230 e180 e150 387 2580 2600 1580 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580	992 850
11 565 867 354 e240 e240 e190 e160 306 2700 3300 1350 12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620 13 499 850 494 e280 e230 e180 e150 387 2580 2600 1580 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580	
12 511 701 511 e250 e240 e180 e150 332 2700 3640 1620 13 499 850 494 e280 e230 e180 e150 387 2580 2600 1580 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580	772
13 499 850 494 e280 e230 e180 e150 387 2580 2600 1580 14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580	
14 903 823 451 e320 e230 e180 e150 462 2570 2140 1580	733 801
15 846 669 419 e4NN e23N e18N e15N 556 286N 201N 152N	791
15 010 005 415 0400 0250 0100 0150 550 2000 2010 1550	884
16 771 669 388 e440 e230 e180 e150 721 3040 3280 1650 17 690 806 e420 e500 e240 e180 e160 765 3330 2900 1490	867
17 690 806 e420 e500 e240 e180 e160 765 3330 2900 1490 18 680 857 e440 e600 e250 e180 e160 859 3470 2630 1750	848 838
19 615 869 e460 e650 e250 e170 e170 959 3200 7460 1710	848
20 557 901 e440 e650 e240 e170 e170 1070 3210 6990 3510	801
21 512 1150 e420 e625 e240 e170 e180 1160 3740 3900 1850	1410
22 477 1370 e380 e600 e230 e170 e180 1160 4060 2790 1550 23 426 1030 e400 e600 e230 e170 e190 1240 4250 2540 1170	1110 1340
24 457 815 e420 521 e220 e170 e190 1170 4070 2410 1180	2090
25 983 669 e420 477 e220 e170 e200 1200 3820 2110 1690	1250
26 732 571 e440 546 e220 e160 e200 1310 4280 1940 1210	1050
27 624 502 e440 502 e210 e160 e210 1170 4300 2150 1060 28 548 518 e420 430 e210 e160 e210 1210 4500 1930 1260	987 872
29 498 470 e420 393 e160 e220 1470 3820 1870 1870	782
30 464 420 e400 365 e160 e220 1610 3520 2210 2240 31 419 e360 342 e160 1750 2190 1800	694
TOTAL 19637 19433 12775 12401 7080 5560 5170 23327 92170 90860 48870 MEAN 633 648 412 400 253 179 172 752 3072 2931 1576	33799 1127
MAX 1280 1370 511 650 340 210 220 1750 4500 7460 3510	2730
MIN 408 292 352 230 210 160 150 220 1980 1870 1060	694
AC-FT 38950 38550 25340 24600 14040 11030 10250 46270 182800 180200 96930 CFSM 4.95 5.06 3.22 3.13 1.98 1.40 1.35 5.88 24.0 22.9 12.3	67040 8.80
IN. 5.71 5.65 3.71 3.60 2.06 1.62 1.50 6.78 26.79 26.41 14.20	9.82
STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1996 - 2001, BY WATER YEAR (WY)#	
MEAN 588 427 208 168 128 175 278 986 2557 1741 1240	1454
MAX 861 748 412 400 253 407 500 1313 3790 2931 1631	2178
(WY) 2000 1999 2001 2001 2001 1998 1998 1998 1998 2001 1999 MIN 289 161 84.5 75.2 61.6 60.6 87.8 752 1716 788 692	1999 627
(WY) 1997 1997 1998 1998 1999 1999 2001 1996 1997 1997	1996
SUMMARY STATISTICS FOR 2000 CALENDAR YEAR FOR 2001 WATER YEAR WATER YEARS 1996	- 2001#
ANNUAL TOTAL 291542 371082	
ANNUAL MEAN 797 1017 874 HIGHEST ANNUAL MEAN 1083	1998
LOWECT ANNUAL MEAN	1007
20,201 111,012 11211	8 1000
HIGHEST DAILY MEAN 7830 Aug 2 7460 Jul 19 12300 Jun 10MEST DAILY MEAN 3140 Mar 8 b150 Apr 12 328 Jan	5 1007
HIGHEST DAILY MEAN 7830 Aug 2 7460 Jul 19 12300 Jun LOWEST DAILY MEAN a140 Mar 8 b150 Apr 12 c38 Jan ANNUAL SEVEN-DAY MINIMUM 140 Mar 8 153 Apr 10 40 Jan	5 1997 2 1997
HIGHEST DAILY MEAN 7830 Aug 2 7460 Jul 19 12300 Jun LOWEST DAILY MEAN a140 Mar 8 b150 Apr 12 c38 Jan ANNUAL SEVEN-DAY MINIMUM 140 Mar 8 153 Apr 10 40 Jan MAXIMUM PEAK FLOW 11400 Jul 19 14800 Jun	0 100
HIGHEST DAILY MEAN 7830 Aug 2 7460 Jul 19 12300 Jun LOWEST DAILY MEAN a140 Mar 8 b150 Apr 12 c38 Jan ANNUAL SEVEN-DAY MINIMUM 140 Mar 8 153 Apr 10 40 Jan MAXIMUM PEAK FLOW 11400 Jul 19 14800 Jun MAXIMUM PEAK STAGE 69.44 Jul 19 71.82 Jun	5 1997 2 1997 8 1998 8 1998
HIGHEST DAILY MEAN 7830 Aug 2 7460 Jul 19 12300 Jun LOWEST DAILY MEAN a140 Mar 8 b150 Apr 12 c38 Jan ANNUAL SEVEN-DAY MINIMUM 140 Mar 8 153 Apr 10 40 Jan MAXIMUM PEAK FLOW 11400 Jul 19 14800 Jun MAXIMUM PEAK STAGE 69.44 Jul 19 71.82 Jun ANNUAL RUNOFF (AC-FT) 578300 736000 633500 633500 ANNUAL RUNOFF (CFSM) 6.22 7.94 6.83	0 100
HIGHEST DAILY MEAN 7830 Aug 2 7460 Jul 19 12300 Jun LOWEST DAILY MEAN a140 Mar 8 b150 Apr 12 c38 Jan ANNUAL SEVEN-DAY MINIMUM 140 Mar 8 153 Apr 10 40 Jan MAXIMUM PEAK FLOW 11400 Jul 19 14800 Jun MAXIMUM PEAK STAGE 69.44 Jul 19 71.82 Jun ANNUAL RUNOFF (AC-FT) 578300 736000 633500	0 100

180

85

150

90 PERCENT EXCEEDS

See Period of Record; partial year used in monthly statistics From Mar. 8-27 From Apr. 12-16 From Jan. 5-6, 1997 Estimated

15303700 TATALINA RIVER NEAR TAKOTNA

LOCATION.--Lat $62^{\circ}53'06''$, long $155^{\circ}56'22''$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 12, T.32 N., R.36 W.(McGrath D-6 quad), Hydrologic Unit 19030405, at downstream side of bridge on right bank, 1.2 mi southeast of Tatalina Airstrip, and 8.1 mi southeast of Takotna.

DRAINAGE AREA. -- 76.9 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--May 1987 to current year (no winter record), except May only in 1989, and annual maximum in water year 1991.

GAGE.--Water-stage recorder, non-recording gage, and crest-stage gage. Elevation of gage is 450 ft above sea level, from topographic map. Prior to May 9, 1990 at site 20 ft downstream at same datum.

REMARKS.--Records fair, except for estimated daily discharges, which are poor. Precipitation gage and air temperature recorder at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 1,170 ft³/s, July 8, 1998, gage-height 10.97 ft; maximum gage height 11.46 ft, 1996, date and time unknown, backwater from ice, discharge not determined; minimum discharge not determined, occurs during winter.

EXTREMES FOR CURRENT PERIOD.-- October 2000 and May to September 2001: maximum discharge during period, $686~{\rm ft}^3/{\rm s}$, August 20, gage height $8.41~{\rm ft}$; maximum observed gage height $10.95~{\rm ft}$, May 13, backwater from ice, discharge not determined; minimum discharge not determined, occurs during winter.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

			,		DAII	LY MEAN V	ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	121							e100	413	67	180	123
2	e120							e110	368	66	138	115
3	e110							e120	332	68	123	110
4	e110							e130	296	79	112	125
5	e100							e140	263	70	106	168
_	- 1.00							-150	0.20	6.77	99	1 2 2
6	e100							e150	238	67		133
7	e95							e160	220	63	94	117
8	e90							e170	244	62	89	108
9	e85							e180	227	61	83	102
10	e80							e190	196	64	79	97
11	e75							e210	180	128	80	92
12	e70							e250	164	172	82	89
13	e65							e280	153	130	78	84
14	e60							e320	143	114	98	79
15	e55							e350	129	100	126	77
16	e50							e380	121	109	387	73
17	e48							e410	117	127	221	71
18	e46							e440	111	112	240	70
19	e44							e470	104	118	296	69
20	e42							e500	99	174	582	68
21	- 10							- 520	94	180	242	67
	e40							e530			343	
22	e38							e545	90	154	271	65
23	e36							e530	87	182	243	65
24	e34							494	88	144	226	64
25	e32							492	88	123	203	62
26	e30							520	81	117	184	61
27	e28							468	77	156	169	64
28	e26							526	75	130	157	64
29	e24							559	72	115	146	60
30	e22							522	69	132	137	59
31	e20							470		230	130	
moma r	1006							10716	4020	2614	5500	0601
TOTAL	1896							10716	4939	3614	5502	2601
MEAN	61.2							346	165	117	177	86.7
MAX	121							559	413	230	582	168
MIN	20							100	69	61	78	59
AC-FT	3760							21260	9800	7170	10910	5160
CFSM	.80							4.50	2.14	1.52	2.31	1.13
IN.	.92							5.18	2.39	1.75	2.66	1.26

e Estimated

15303700 TATALINA RIVER NEAR TAKOTNA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1992 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: July 1992 to current year (seasonal).

INSTRUMENTATION.--Electronic water-temperature recorder set for 1-hour recording interval.

REMARKS.--Records represent water temperature at the sensor within 0.5° C. Temperature at the sensor was compared with the stream average by cross sections on July 19 and September 6. No variation was found between mean stream temperature and sensor temperature.

EXTREMES FOR PERIOD OF RECORD.-- WATER TEMPERATURE.--Maximum recorded, 16.5° C, July 30 to August 2, and 4, 1997; minimum, 0.0° C, several days in October, May, and September most water years.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum, 11.5°C, June 23,29-30 and July 2; minimum, 0.0°C, several days in October and May.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	SAM- PLING METHOD, CODES (82398)	SAMPLE TYPE (CODE) (84164
JUL									
19	1616	33.0	4.0	4.44	121	8.5	17.0	10	8010
19	1618	33.0	12.0	4.44	121	8.5	17.0	10	8010
19	1620	33.0	20.0	4.44	121	8.5	17.0	10	8010
19	1622	33.0	28.0	4.44	121	8.5	17.0	10	8010
19	1624	33.0	33.0	4.44	121	8.5	17.0	10	8010
SEP									
06	1532	34.0	8.0	4.53	130	5.5	7.5	10	8010
06	1534	34.0	16.0	4.53	130	5.5	7.5	10	8010
06	1536	34.0	24.0	4.53	130	5.5	7.5	10	8010
06	1538	34.0	32.0	4.53	130	5.5	7.5	10	8010
06	1540	34.0	34.0	4.53	130	5.5	7.5	10	8010

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	VEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	.0.0.0.0	.0.0.0.0	.0.0.0.0	 	 	 	 		 	 	 	
6 7 8 9	.0.0.0.0	.0.0.0.0	.0.0.0.0	 		 	 		 	 		
11 12 13 14 15	. 0 	. 0 	.0 	 			 			 		
16 17 18 19 20	 	 	 	 	 	 	 		 	 	 	
21 22 23 24 25		 	 	====		 	 		 			
26 27 28 29 30 31				 		 	 		 	 		
MONTH												

SOUTHWEST ALASKA

15303700 TATALINA RIVER NEAR TAKOTNA--Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY			MARCH			APRIL			MAY	
1												
2 3												
4												
5												
6												
7 8												
9												
10												
11												
12 13												
14												
15												
16												
17												
18 19											. 0	
20										.5	.0	.0
21										1.0	. 0	.5
22										1.0	.0	.5
23 24										1.0 1.5	.0	. 5 . 5
25										1.0	.5	.5
26										1.5	. 0	.5
27										2.5	.5	1.5
28 29										3.5 4.0	1.0	2.5 3.0
30										4.0	2.5	3.0
31										4.0	3.0	3.5
MONTH												
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN		MIN SEPTEMBE	
DAY 1	MAX 4.5		MEAN	MAX 11.0		MEAN			MEAN			
1 2	4.5 5.0	JUNE 3.0 3.5	3.5 4.0	11.0 11.5	JULY 9.0 9.0	10.0 10.0	9.0 8.5	AUGUST 7.0 7.0	8.0 7.5	5.5 6.0	SEPTEMBE 5.0 5.0	R 5.0 5.5
1 2 3	4.5 5.0 5.0	JUNE 3.0 3.5 4.5	3.5 4.0 5.0	11.0 11.5 10.5	JULY 9.0 9.0 9.0	10.0 10.0 9.5	9.0 8.5 8.0	7.0 7.0 7.0 7.0	8.0 7.5 7.5	5.5 6.0 6.0	SEPTEMBE 5.0 5.0 5.5	F 5.0 5.5 6.0
1 2	4.5 5.0	JUNE 3.0 3.5	3.5 4.0	11.0 11.5	JULY 9.0 9.0	10.0 10.0	9.0 8.5	AUGUST 7.0 7.0	8.0 7.5	5.5 6.0	SEPTEMBE 5.0 5.0	R 5.0 5.5
1 2 3 4 5	4.5 5.0 5.0 5.5 5.5	JUNE 3.0 3.5 4.5 4.5 4.0	3.5 4.0 5.0 5.0 4.5	11.0 11.5 10.5 9.0 8.5	JULY 9.0 9.0 9.0 8.0 8.0	10.0 10.0 9.5 8.5 8.0	9.0 8.5 8.0 7.0 7.0	7.0 7.0 7.0 7.0 6.0 5.0	8.0 7.5 7.5 6.5 6.0	5.5 6.0 6.0 6.0	5.0 5.0 5.5 5.5 5.5	5.0 5.5 6.0 5.5 5.5
1 2 3 4 5	4.5 5.0 5.0 5.5 5.5 6.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5	3.5 4.0 5.0 5.0 4.5	11.0 11.5 10.5 9.0 8.5 8.5	JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5	10.0 10.0 9.5 8.5 8.0	9.0 8.5 8.0 7.0 7.0	7.0 7.0 7.0 7.0 6.0 5.0	8.0 7.5 7.5 6.5 6.0 7.0 7.5	5.5 6.0 6.0 6.0 6.0	5.0 5.0 5.5 5.5 5.5 5.5	S.0 5.5 6.0 5.5 5.5 5.5
1 2 3 4 5	4.5 5.0 5.0 5.5 5.5 6.5 4.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0	3.5 4.0 5.0 5.0 4.5 5.5 4.0	11.0 11.5 10.5 9.0 8.5 8.5 9.5	JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5	10.0 10.0 9.5 8.5 8.0 8.0 8.5 9.0	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0	7.0 7.0 7.0 7.0 6.0 5.0 6.0 6.5 7.5	8.0 7.5 7.5 6.5 6.0 7.0 7.5 8.5	5.5 6.0 6.0 6.0 6.0 6.0	SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 4.0	5.0 5.5 6.0 5.5 5.5 5.5 4.5 4.0
1 2 3 4 5	4.5 5.0 5.0 5.5 5.5 6.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5	3.5 4.0 5.0 5.0 4.5	11.0 11.5 10.5 9.0 8.5 8.5	JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5	10.0 10.0 9.5 8.5 8.0	9.0 8.5 8.0 7.0 7.0	7.0 7.0 7.0 7.0 6.0 5.0	8.0 7.5 7.5 6.5 6.0 7.0 7.5	5.5 6.0 6.0 6.0 6.0	5.0 5.0 5.5 5.5 5.5 5.5	S.0 5.5 6.0 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9	4.5 5.0 5.5 5.5 6.5 4.5 5.6	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5	3.5 4.0 5.0 5.0 4.5 5.5 4.0 4.5 5.0	11.0 11.5 10.5 9.0 8.5 8.5 9.5 10.5 9.0	JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 8.0	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0 9.5	7.0 7.0 7.0 7.0 6.0 5.0 6.0 6.5 7.5 8.0	8.0 7.5 7.5 6.5 6.0 7.0 7.5 8.5 9.0	5.5 6.0 6.0 6.0 6.0 6.0 4.5 4.5	5.0 5.0 5.5 5.5 5.5 5.5 5.3 4.0 4.0 3.5 3.0	5.0 5.5 6.0 5.5 5.5 5.5 4.5 4.0 3.5
1 2 3 4 5 6 7 8	4.5 5.0 5.0 5.5 5.5 6.5 4.5 5.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0 3.5	3.5 4.0 5.0 5.0 4.5 5.5 5.5 4.0 4.5	11.0 11.5 10.5 9.0 8.5 8.5 9.5 10.5 9.0	JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5	10.0 10.0 9.5 8.5 8.0 8.0 8.5 9.0 8.5	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0	7.0 7.0 7.0 7.0 6.0 5.0 6.0 6.5 7.5	8.0 7.5 7.5 6.5 6.0 7.0 7.5 8.5 9.0	5.5 6.0 6.0 6.0 6.0 6.0 4.5	5.0 5.0 5.5 5.5 5.5 5.0 4.0 4.0 3.5	5.0 5.5 6.0 5.5 5.5 5.5 4.0 4.0
1 2 3 4 5 6 7 8 9 10	4.5 5.0 5.5 5.5 6.5 5.5 6.5 6.5 6.5 6.5 6.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5 5.0 5.0	3.5 4.0 5.0 5.0 4.5 5.5 4.0 4.5 5.0 5.5	11.0 11.5 10.5 9.0 8.5 8.5 9.5 10.5 9.0 9.0	JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.0	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 9.0 8.5 7.5 7.5	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0 9.5 9.0	7.0 7.0 7.0 6.0 5.0 6.5 7.5 8.0 7.5 8.0	8.0 7.5 7.5 6.0 7.0 7.5 8.5 9.0 8.0 7.5	5.5 6.0 6.0 6.0 6.0 6.0 4.5 4.5 4.0 4.0	5.0 5.0 5.5 5.5 5.5 5.5 5.3 4.0 4.0 3.5 3.0 3.0	S.0 5.5 6.0 5.5 5.5 4.5 4.0 4.0 3.5 3.5 3.0 3.0
1 2 3 4 5 6 7 8 9 10	4.5 5.0 5.5 5.5 6.5 5.5 6.5 6.0 6.5 6.5 6.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 4.5 4.5 4.5	3.5 4.0 5.0 5.0 4.5 5.5 4.5 5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	11.0 11.5 10.5 9.0 8.5 9.5 9.5 9.0 9.0 8.5 7.5 8.5	JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 8.0 7.0 6.5 7.0	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 8.5 7.5 7.5	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0 9.5 9.0 8.0 8.5	7.0 7.0 7.0 6.0 5.0 6.5 7.5 8.0 8.0 7.5 7.5 8.0 9.0	8.0 7.5 6.5 6.0 7.0 7.5 8.0 7.5 8.0 9.5	5.5 6.0 6.0 6.0 6.0 5.0 4.5 4.5 4.0 4.0	SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 4.0 3.5 3.0 3.0 2.5 2.5 3.0	S.0 5.5 6.0 5.5 5.5 5.5 4.5 4.0 3.5 3.5 3.0 3.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4.5 5.0 5.5 5.5 6.5 5.5 6.5 6.5 6.5 6.5 6.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5 5.0 4.5 5.0 5.0 4.5	3.5 4.0 5.0 5.0 4.5 5.5 4.0 4.5 5.0 5.5 4.5 5.0	11.0 11.5 10.5 9.0 8.5 8.5 9.5 10.5 9.0 9.0 8.5 7.5 8.6 8.5	JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 8.0 7.0 7.5 7.5	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 9.0 8.5 7.5 7.5 8.0 8.0	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0 9.5 9.0 8.0 8.5 10.0	7.0 7.0 7.0 6.0 5.0 6.5 7.5 8.0 7.5 8.0 9.0	8.0 7.5 7.5 6.5 6.0 7.0 7.5 8.5 9.0 8.0 9.5 9.0	5.5 6.0 6.0 6.0 6.0 4.5 4.5 4.0 4.0 4.0 4.5 5.5	5.0 5.0 5.5 5.5 5.5 5.5 5.0 4.0 4.0 3.5 3.0 2.5 2.5 3.0	S.0 5.5 6.0 5.5 5.5 4.0 4.0 3.5 3.5 3.0 3.5 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4.5 5.0 5.5 5.5 6.5 5.5 6.5 6.0 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 4.5 5.0 5.0 5.5	3.5 4.0 5.0 5.0 4.5 5.5 4.0 4.5 5.0 5.0 5.0 7.0	11.0 11.5 10.5 9.0 8.5 9.5 9.0 9.0 8.5 7.5 8.5 8.5 8.5	JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 8.5 7.5 7.5 8.0 8.0	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0 9.5 9.0 8.0 8.5 10.0 10.0	7.0 7.0 7.0 6.0 5.0 6.5 7.5 8.0 8.0 7.5 7.5 8.0 9.0 9.0	8.0 7.5 6.5 6.0 7.0 7.5 8.0 7.5 8.0 9.5 9.0	5.5 6.0 6.0 6.0 6.0 5.0 4.5 4.5 4.0 4.0 4.0 4.5 5.5	SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.5 3.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5	S.0 5.5 6.0 5.5 5.5 5.5 4.0 4.0 3.5 3.5 3.0 3.5 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	4.50 5.05 5.55 6.55 6.55 6.55 6.55 6.55 6	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5 4.5 5.0 5.0 7.0	3.5 4.0 5.0 5.0 4.5 5.5 4.0 5.5 4.5 5.0 7.0 8.0	11.0 11.5 10.5 9.0 8.5 8.5 9.5 10.5 9.0 8.5 7.5 8.0 8.5 8.5	JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.0 6.5	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 8.5 7.5 7.5 8.0 8.0	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0 9.5 9.0 8.5 10.0 10.0 9.0	7.0 7.0 7.0 6.0 5.0 6.5 7.5 8.0 9.0 9.0 8.0 7.5 7.5	8.057.557.556.07.0558.007.558.009.059.009.059.009.5509.009.5507.55	5.5 6.0 6.0 6.0 6.0 4.5 4.5 4.0 4.0 4.5 5.5	5.0 5.0 5.5 5.5 5.5 5.5 5.5 5.0 4.0 4.0 3.5 3.0 2.5 2.5 3.0 4.0	S.0 5.5 6.0 5.5 5.5 4.5 4.0 3.5 3.5 3.0 3.5 4.5 4.0 3.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	4.500555555555566555685000000000000000000	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 4.5 5.0 5.0 5.0 7.0 8.0	3.5 4.0 5.0 5.0 4.5 5.5 4.5 5.0 5.5 6.0 5.5 6.0 5.0 7.0 8.0 8.0 8.5	11.0 11.5 10.5 9.0 8.5 9.5 9.0 9.0 8.5 7.5 8.5 8.5 8.5 8.5 8.5	JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0 9.5 9.0 8.0 8.5 10.0 10.0 9.0	7.0 7.0 7.0 6.0 5.0 6.5 8.0 8.0 7.5 7.5 8.0 9.0 9.0	8.0 7.5 6.5 6.0 7.0 7.5 8.0 7.5 8.0 9.5 9.0 9.5 9.0 9.5 7.5	5.5 6.0 6.0 6.0 6.0 5.0 4.5 4.0 4.0 4.0 4.5 5.5	SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 3.0 4.0	S.0 5.0 5.5 6.0 5.5 5.5 4.0 4.0 3.5 4.0 3.5 4.5 4.0 3.5 4.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	4.5.0 5.05 5.55 6.55 6.55 6.50 6.50 5.55 6.55 6	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5 4.5 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	3.5 4.0 5.0 5.0 4.5 5.5 4.0 5.5 5.0 5.5 4.5 5.0 7.0 8.0 8.0 8.5 9.0	11.0 11.5 10.5 9.0 8.5 10.5 9.5 10.5 9.5 10.5 9.0 8.5 7.5 8.0 8.5 8.5 8.0	JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.0 6.5 7.5 7.5 7.5 7.5	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 8.5 7.5 7.5 8.0 8.0 8.0 8.5	9.0 8.5 8.0 7.0 7.0 7.0 8.5 9.5 9.0 8.5 10.0 9.0 9.0 8.5 7.5 7.5	7.0 7.0 7.0 6.0 5.0 6.5 7.5 8.0 9.0 9.0 8.0 7.5 7.5 8.0	8.0 7.5 6.5 6.0 7.0 7.5 8.5 9.0 8.0 7.5 9.0 9.5 9.0 9.5 7.0 7.0	5.5 6.0 6.0 6.0 6.0 4.5 4.0 4.0 4.0 4.5 5.5 4.0 5.5	\$\frac{5.0}{5.0}\$ \$\frac{5.5}{5.5}\$ \$\frac{5.5}{5.5}\$ \$\frac{5.0}{4.0}\$ \$\frac{4.0}{3.5}\$ \$\frac{3.0}{3.0}\$ \$\frac{2.5}{3.0}\$ \$\frac{4.0}{4.0}\$ \$\frac{3.5}{3.0}\$ \$\frac{4.5}{4.5}\$	S.0 5.5 6.0 5.5 5.5 4.5 4.0 3.5 3.5 3.0 3.5 4.0 3.5 4.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	4.5 5.0 5.5 5.5 6.5 5.5 6.5 6.5 6.5 6.5 6.5 6.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 4.5 5.0 5.0 5.0 6.5 7.0 8.0 8.0 8.0	3.5 4.0 5.0 5.0 4.5 5.5 4.5 5.5 6.0 5.5 6.0 5.5 7.0 8.0 8.5 9.0 9.0	11.0 11.5 10.5 9.0 8.5 9.5 10.5 9.0 9.0 8.5 7.5 8.5 8.5 8.5 8.5	JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 8.5 8.5 8.5 8.0 7.5 8.0 8.0 7.5 8.0 8.0	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0 9.5 9.0 8.0 8.5 10.0 10.0 9.0 8.5 7.5 7.5	7.0 7.0 7.0 6.0 5.0 6.5 7.5 8.0 8.0 7.5 7.5 8.0 9.0 9.0 9.0	8.0 7.5 6.5 6.0 7.0 7.5 8.0 7.5 8.0 9.5 9.0 9.5 9.0 7.5 7.0 7.5	5.5 6.0 6.0 6.0 6.0 5.0 4.5 4.5 4.0 4.0 4.0 4.5 5.5 4.5 5.5	SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 3.0 4.5 4.5	S.0 5.0 5.5 6.0 5.5 5.5 4.0 4.0 3.5 4.0 3.5 4.5 4.0 3.5 4.5 4.0 4.0 3.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	4.5.0 5.05 5.55 6.55 6.55 6.50 6.50 5.55 6.55 6	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 5.0 5.0 6.5 7.0 8.0 8.0 8.0 8.0 8.5 9.0	3.5 4.0 5.0 5.0 4.5 5.5 4.0 5.5 5.0 5.5 4.5 5.0 7.0 8.0 8.0 8.5 9.0	11.0 11.5 10.5 9.0 8.5 10.5 9.5 10.5 9.5 10.5 9.0 8.5 7.5 8.0 8.5 8.5 8.0	JULY 9.0 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.0 6.5 7.5 7.5 7.5 7.5	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 8.5 7.5 7.5 8.0 8.0 8.0 8.5	9.0 8.5 8.0 7.0 7.0 7.0 8.5 9.5 9.0 8.5 10.0 9.0 9.0 8.5 7.5 7.5	7.0 7.0 7.0 6.0 5.0 6.5 7.5 8.0 9.0 9.0 8.0 7.5 7.5 8.0	8.0 7.5 6.5 6.0 7.0 7.5 8.5 9.0 8.0 7.5 9.0 9.5 9.0 9.5 7.0 7.0	5.5 6.0 6.0 6.0 6.0 4.5 4.0 4.0 4.0 4.5 5.5 4.0 5.5	\$\frac{5.0}{5.0}\$ \$\frac{5.5}{5.5}\$ \$\frac{5.5}{5.5}\$ \$\frac{5.0}{4.0}\$ \$\frac{4.0}{3.5}\$ \$\frac{3.0}{3.0}\$ \$\frac{2.5}{3.0}\$ \$\frac{4.0}{4.0}\$ \$\frac{3.5}{3.0}\$ \$\frac{4.5}{4.5}\$	S.0 5.5 6.0 5.5 5.5 5.5 4.0 3.5 3.5 3.0 3.5 4.0 3.5 4.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	4.5 5.0 5.5 5.5 6.5 6.5 6.5 6.0 6.5 6.5 6.5 9.0 9.0 9.5 10.0 11.0 11.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 4.5 5.0 5.0 4.5 3.5 5.7 0 8.0 8.0 8.0 8.5 9.5	3.5 4.0 5.0 5.0 5.0 4.5 5.5 4.5 5.0 5.5 6.0 5.5 4.5 5.0 7.0 8.0 8.5 9.0 9.5 9.0 9.5 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0	11.0 11.5 10.5 9.0 8.5 9.5 9.0 9.0 8.5 7.5 8.5 8.5 8.5 8.5 8.5 8.5	JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 8.0 7.0 6.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.5	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 8.5 7.0 7.5 8.0 8.0 7.5 8.0 8.5 8.0	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0 9.5 9.0 8.5 10.0 10.0 9.0 8.5 7.5 7.5 7.5 7.5 7.6	7.0 7.0 7.0 6.0 5.0 6.5 7.5 8.0 8.0 7.5 7.5 8.0 9.0 9.0 8.0 7.5 7.0 6.5	8.0 7.5 6.5 6.0 7.0 7.5 8.0 7.5 8.0 9.5 9.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	5.5 6.0 6.0 6.0 6.0 5.0 4.5 4.5 4.0 4.0 4.0 4.5 5.5 4.5 5.5 5.5 5.5	SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 3.5 4.5 4.5 3.5 4.5	S.0 5.0 5.5 6.0 5.5 5.5 4.0 4.0 3.5 4.0 3.5 4.5 4.0 5.0 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	4.5 5.0 5.5 5.5 6.5 4.5 5.6 6.0 6.5 6.5 6.5 6.5 9.0 9.0 9.5 10.0 11.5 10.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 5.0 5.0 6.5 7.0 8.0 8.0 8.0 8.0 8.5 9.0	3.5 4.0 5.0 5.0 4.5 5.5 4.5 5.0 5.5 4.5 5.0 7.0 8.0 8.0 8.5 9.0 9.5 10.0 10.0 9.5	11.0 11.5 10.5 9.0 8.5 8.5 9.0 9.0 8.5 7.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0	JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 7.5 7.5 8.0 8.0 8.0 8.0 7.5 8.0 8.0 8.5 8.0	9.0 8.5 8.0 7.0 7.0 7.0 8.5 8.5 9.0 9.5 9.0 8.5 10.0 9.0 9.0 8.5 7.5 7.5 7.5	7.0 7.0 7.0 6.0 5.0 6.5 7.5 8.0 9.0 8.0 9.0 8.0 7.5 7.5 8.0 9.0 6.5	8.0 7.5 6.5 6.0 7.0 7.5 9.0 8.0 7.5 9.0 9.5 9.0 7.5 6.5 7.0 7.5 6.5 7.0 7.5 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	5.5 6.0 6.0 6.0 6.0 4.5 4.0 4.5 4.0 4.5 5.5 4.0 5.0 5.5 5.5 5.0 6.0	SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.5 5.0 4.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 4.5 4.5	S. 0 5.5 6.0 5.5 5.5 5.5 4.0 3.5 3.5 3.0 3.0 3.5 4.0 5.0 5.0 4.0 5.0 5.0 5.0 4.0 3.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	4.5 5.0 5.5 5.5 6.5 6.5 6.5 6.0 6.5 5.0 6.5 8.5 9.0 9.0 9.5 10.0 11.5 10.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 4.5 5.0 6.5 7.0 8.0 8.0 8.5 9.5 8.5	3.5 4.0 5.0 5.0 4.5 5.5 4.5 5.0 5.5 6.5 4.5 5.0 7.0 8.0 8.5 9.0 9.5 10.0 9.5 10.0 9.5	11.0 11.5 10.5 9.0 8.5 9.5 10.5 9.0 9.0 8.5 7.5 8.5 8.5 8.5 8.5 8.5 8.0 8.0 8.5 8.0	JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 8.0 7.0 6.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.5 8.0	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 8.5 7.5 8.0 8.0 7.5 8.0 8.0 8.5 8.0 8.0 8.5 8.0 8.5 8.0 8.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0 9.5 9.0 8.5 10.0 10.0 9.0 8.5 7.5 7.5 7.5 7.5 7.5 7.6 6.0	7.0 7.0 7.0 6.0 5.0 6.5 7.5 7.5 8.0 9.0 9.0 8.0 7.5 7.5 7.0 6.5	8.0 7.5 6.5 6.0 7.0 7.5 8.0 7.5 8.0 9.5 9.0 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	5.5 6.0 6.0 6.0 6.0 5.0 4.5 4.5 4.0 4.0 4.0 4.5 5.5 4.5 5.5 5.5 5.5 5.5 5.5 5.5	SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 3.5 4.5 4.5 3.5 4.5 1.5 1.0 2.0	S.0 5.0 5.5 5.5 5.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 3.5 4.5 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27	4.5 5.0 5.5 5.5 6.5 6.5 4.5 6.0 6.5 6.5 6.5 6.5 9.0 9.0 9.5 10.0 11.5 10.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 5.0 5.0 7.0 8.0 8.0 8.0 8.5 9.0 9.5 8.5 8.5	3.5 4.0 5.0 5.0 4.5 5.5 4.5 5.0 5.5 6.0 5.5 5.0 7.0 8.0 8.5 9.0 9.5 10.0 9.5 10.0 9.5 9.5	11.0 11.5 10.5 9.0 8.5 9.5 9.0 9.0 8.5 7.5 8.0 8.0 8.0 8.0 8.0 8.0 9.0 9.0	JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 7.5 8.0 8.0 7.5 8.0 8.0 8.5 8.0 8.0 8.5 8.0 8.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	9.0 8.5 8.0 7.0 7.0 8.5 9.0 9.5 9.0 8.5 10.0 10.0 9.0 8.5 7.5 7.5 7.5 7.5 7.5 7.5 6.0 6.0	7.0 7.0 7.0 6.0 5.0 6.5 7.5 8.0 8.0 7.5 8.0 9.0 9.0 8.0 7.5 7.5 7.0 6.5 7.5 8.0 9.0	8.0 7.5 6.0 7.5 6.0 7.5 8.0 7.5 8.0 9.0 9.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	5.5 6.0 6.0 6.0 6.0 4.5 4.0 4.0 4.0 4.0 5.5 5.5 5.5 5.5 5.5 5.5 3.0 3.5	SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 2.5 3.0 4.0 3.5 3.5 4.5 4.5 1.5 1.0 2.0 2.5	8 5.0 5.5 6.0 5.5 5.5 4.5 4.0 3.5 3.0 3.0 5.0 5.0 4.5 4.0 5.0 5.0 4.5 2.0 2.5 2.5 2.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	4.5 5.0 5.5 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 9.0 9.5 10.0 11.5 10.5	JUNE 3.0 3.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5 4.0 5.0 6.0 8.0 8.0 8.0 8.5 9.5 8.5 8.5 8.5 8.5	3.5 4.0 5.0 4.5 5.5 4.5 5.5 4.5 7.0 8.0 8.5 9.0 9.5 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	11.0 11.5 10.5 9.0 8.5 9.5 10.5 9.0 9.0 8.5 7.5 8.5 8.5 8.5 8.5 9.0 8.5 8.0	JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 8.0 7.0 6.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.5 8.0 8.0 8.0	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 8.5 7.0 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0 9.5 9.0 8.5 10.0 10.0 9.0 8.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	7.0 7.0 7.0 6.0 5.0 6.5 7.5 7.5 8.0 9.0 9.0 8.0 7.5 7.0 6.5 7.5 7.0 6.5 7.5 7.0 6.5	8.0555566.0 7.55500 7.55500 8.05555 5.55555555555555555555555	5.5 6.0 6.0 6.0 6.0 5.0 4.5 4.5 4.0 4.0 4.0 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 3.5 4.5 4.5 3.5 1.5 1.0 2.0 2.5 1.5 1.5	S.0 5.0 5.5 5.5 5.5 4.0 4.0 3.5 4.0 3.5 4.5 4.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30	4.5 5.0 5.5 5.5 6.5 6.5 6.5 6.0 6.5 6.5 6.0 9.0 9.0 9.5 10.5 10.5 10.5 10.5 11.5	JUNE 3.0 3.5 4.5 4.5 4.0 5.0 4.5 4.5 4.5 5.0 5.0 6.5 5.0 6.6 6.6 6.7 6.7 6.0 6.7 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	3.5 4.0 5.0 5.0 4.5 5.5 4.5 5.0 5.5 6.0 5.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	11.0 11.5 10.5 9.0 8.5 9.5 9.0 9.0 8.5 7.5 8.6 8.0 8.0 8.0 8.0 8.0 9.0 9.0 9.0 9.0	JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 7.5 8.0 8.0 7.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	9.0 8.5 8.0 7.0 7.0 8.5 9.0 9.5 9.0 8.5 10.0 9.0 8.5 7.5 7.5 7.5 7.5 7.5 7.5 6.0 5.5 5.5	7.0 7.0 7.0 6.0 5.0 6.5 8.0 7.5 7.5 8.0 9.0 9.0 8.0 7.5 7.5 7.0 6.5 7.5 8.0 9.0 9.0 4.5	8.05.55.66.0 7.55.50 7.55.50 8.05.55.5 5.55.55.55.55.50	5.5 6.0 6.0 6.0 6.0 4.5 4.0 4.0 4.0 4.0 5.5 5.5 5.5 5.5 5.0 3.0 3.5 2.5 1.5	SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 2.5 3.0 4.0 3.5 3.5 4.5 4.5 1.5 1.0 2.0 2.5 1.5 1.0	S.0 5.0 5.5 6.0 5.5 5.5 5.5 4.0 3.5 4.0 3.5 4.0 3.5 4.0 5.0 5.0 4.0 2.5 2.0 2.5 2.0 1.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	4.5 5.0 5.5 5.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 9.0 9.5 10.0 11.5 10.5	JUNE 3.0 3.5 4.5 4.0 5.0 4.5 4.0 3.5 4.5 4.0 5.0 6.0 8.0 8.0 8.0 8.5 9.5 8.5 8.5 8.5 8.5	3.5 4.0 5.0 4.5 5.5 4.5 5.5 4.5 7.0 8.0 8.5 9.0 9.5 10.0 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5	11.0 11.5 10.5 9.0 8.5 9.5 10.5 9.0 9.0 8.5 7.5 8.5 8.5 8.5 8.5 9.0 8.5 8.0	JULY 9.0 9.0 8.0 8.0 7.5 7.5 7.5 8.0 7.0 6.5 7.5 7.5 7.5 7.5 7.5 8.0 8.0 8.5 8.0 8.0 8.0	10.0 10.0 9.5 8.5 8.0 8.5 9.0 8.5 8.5 7.0 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.5 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0 8.0	9.0 8.5 8.0 7.0 7.0 8.5 8.5 9.0 9.5 9.0 8.5 10.0 10.0 9.0 8.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	7.0 7.0 7.0 6.0 5.0 6.5 7.5 7.5 8.0 9.0 9.0 8.0 7.5 7.0 6.5 7.5 7.0 6.5 7.5 7.0 6.5	8.0555566.0 7.55500 7.55500 8.05555 5.55555555555555555555555	5.5 6.0 6.0 6.0 6.0 5.0 4.5 4.5 4.0 4.0 4.0 4.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	SEPTEMBE 5.0 5.0 5.5 5.5 5.5 5.0 4.0 3.5 3.0 3.0 2.5 3.0 4.0 3.5 3.5 4.5 4.5 3.5 1.5 1.0 2.0 2.5 1.5 1.5	S.0 5.0 5.5 5.5 5.5 4.0 3.5 4.0 3.5 4.0 3.5 4.5 4.0 5.0 5.0 5.0 5.0 5.5 5.5 5.5 5.5 5.5 5

15303900 KUSKOKWIM RIVER AT LISKYS CROSSING NEAR STONY RIVER

LOCATION.--Lat $62^{\circ}02'51''$, long $156^{\circ}12'42''$, in $NE^{1}/_{4}$ SE $^{1}/_{4}$ sec. 27, T. 23 N., R. 38 W. (Iditarod A-1 quad), Hydrologic Unit 19030405, on the downstream point of the first channel island located 0.25 mi above Lisky's house site (historic, house since destroyed), 22 mi northeast of the village of Stony River.

PERIOD OF RECORD.--May 1996 to current year (no winter record).

GAGE.--Water-stage recorder. Elevation of gage is 250 ft above sea level from topographic map.

REMARKS. -- GOES satellite telemetry at station.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed 33.80 ft, July 11, 1998, but may have been higher during a period of missing record. Minimum gage height observed 22.94 ft, October 11, 1997, but may have been lower during a period of missing record.

EXTREMES FOR CURRENT PERIOD.--October 1-13, 2000, June 7 to September 30 2001; Maximum gage height 32.89 ft, August 21; minimum gage height 24.95 ft, September 22.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

					DA.	ILY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	29.37									28.15	30.77	28.96
2	28.75									28.14	30.65	28.61
3	28.18									28.05	30.99	28.33
4	27.70									28.17	31.22	28.10
5	27.25									28.02	31.01	27.87
6	26.98									27.87	30.64	27.63
7	26.65								29.02	27.96	30.19	27.55
8	26.47								29.09	27.92	29.73	27.73
9	26.31								29.06	27.89	29.12	27.88
10	26.09								29.05	27.98	28.67	27.73
	20.05								23.03	27.50	20.07	27.75
11	25.81								29.15	27.88	28.39	27.37
12	25.55								29.03	27.68	28.23	27.03
13	25.47								28.65	27.46	28.06	26.85
14									28.45	27.48	27.95	26.57
15									28.32	27.69	27.80	26.34
16									28.21	27.85	27.99	26.10
17									28.14	27.81	28.23	26.00
18									28.08	27.68	29.12	25.84
19									27.83	27.67	30.83	25.61
20									27.89	27.83	32.32	25.46
0.1									07.00	28.03	20 70	05 33
21									27.83		32.79	25.33
22									28.08	28.37	32.83	25.26
23 24									28.31 28.36	28.89 29.51	32.59 32.27	25.37 25.43
24 25									28.36			
25									28.38	29.76	32.01	25.44
26									28.38	29.92	31.64	25.62
27									28.45	30.08	31.21	25.65
28									28.55	30.12	30.90	25.52
29									28.55	30.23	30.47	25.43
30									28.35	30.62	29.89	25.35
31										30.93	29.38	
MEAN										28.50	30.25	26.60
MAX										30.93	30.25	28.96
MIN										27.46	27.80	28.96
MITIM										27.40	2/.80	∠5.∠6

15304000 KUSKOKWIM RIVER AT CROOKED CREEK

LOCATION.--Lat $61^{\circ}52'16''$, long $158^{\circ}06'03''$, in $NE^{1}_{/4}$ Nec $^{1}_{/4}$ sec. 32, T. 21 N., R. 48 W. (Sleetmute D-6 quad), Hydrologic Unit 19030501, on right bank at village of Crooked Creek, 0.1 mi upstream from Crooked Creek.

DRAINAGE AREA. -- 31,100 mi², approximately.

PERIOD OF RECORD.--June 1951 to September 1994, October 1995 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 200 ft above sea level, from topographic map. Prior to August 6, 1977, non-recording gage at site 1,600 ft upstream at same datum. From August 6, 1977, to September 30, 1991, water-stage recorder at site 2,300 ft upstream at same datum. From October 1, 1991 to September 30, 1994, and October 1, 1995 to August 7, 1997 non-recording gage.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	76300 71300 67300 63800 60700	e29000 e28000 e28000 e27000 e27000	e22000 e21000 e21000 e21000 e21000	e16000 e16000 e16000	e12000 e12000	e11000 e11000 e11000 e11000 e11000	e9000 e9000 e9000 e9000	e30000 e30000 e28000 e27000	116000 113000 113000 113000 112000	75400 73300 71300 69500 68600	96700 97500 94000 91800 89800	81200 78100 74600 72200 71400
6 7 8 9 10	58700 57200 55200 52900 50600	e26000 e26000 e25000 e25000 e25000	e20000 e20000 e20000 e20000 e19000	e15000 e15000 e15000	e12000 e12000 e12000	e10000 e10000 e10000 e10000 e10000	e9500 e9500 e9500 e9500 e9500	e27000 e27000 e28000 e30000 e36000	114000 115000 117000 119000 118000	68100 68000 66600 64200 61900	85300 80700 76300 71700 68100	71800 74200 75500 73700 71600
11 12 13 14 15	48800 47600 46100 44400 41500	e26000 e27000 e27000 e27000 e27000	e20000	e15000 e15000 e15000 e15000 e14000	e12000 e12000 e12000	e10000 e10000 e10000 e10000 e10000	e9500 e9500 e10000 e10000 e10000	e75000	117000 116000 115000 112000 108000	61200 61700 63100 64200 64700	65300 62900 61000 60500 60200	69000 65700 62900 60400 58300
16 17 18 19 20	40900 40400 38800 39100 37500	e27000 e27000 e27000 e26000 e26000	e19000 e19000 e19000 e20000 e19000	e14000 e14000 e14000	e11000 e11000	e10000	e11000	e80000 e90000 e100000 e110000 118000	104000 99100 94000 89000 86300	64900 65500 67000 69400 70500	62600 70600 82500 90500 104000	56000 54200 52700 51000 49900
21 22 23 24 25	36300 e36000 e34000 e34000 e32000	e25000 e25000 e24000 e24000 e24000	e18000	e14000 e14000 e14000 e13000 e13000	e11000 e11000 e11000 e11000	e9500 e9500 e9500 e9500	e16000 e17000 e18000	124000 123000 122000 121000	85800 86300 86300	82600 87700	120000 114000 107000	45600 44600
26 27 28 29 30 31	e30000 e30000	e23000 e23000 e23000 e22000 e22000	e17000 e17000 e17000 e17000 e17000 e16000	e13000 e13000 e13000 e13000 e13000 e13000	e11000 e11000 e11000	e9500 e9500 e9500 e9500 e9500	e20000 e21000 e23000 e26000 e28000	120000	85400 83300 81000 79300 77300	90900 92900 95200 95300 92500 92400	103000 101000 96000 91900 86900 83000	43600 42800 42500 42400 41000
MEAN MAX MIN AC-FT	1394400 44980 76300 29000 2766000 1.45 1.67	29000 22000	590000 19030 22000 16000 1170000 .61 .71	882700	11540 12000 11000 640700	309500 9984 11000 9500 613900 .32 .37	13080 28000 9000		100900 119000 77300	74070 95300 61200	87510 122000 60200	58970 81200 41000
		STATIST	ICS OF MO	NTHLY MEAN	I DATA FOR	WATER	YEARS 1951	L - 2001,	BY WATER	YEAR (WY)#	
MEAN MAX (WY) MIN (WY)	44350 102000 1994 22650 1979	21300 36400 1991 12730 1981	15290 25000 1962 10000 1957	13020 22450 1991 8400 1966	11640 20710 1991 6900 1966	10720 19550 1991 6100 1966	14500 41000 1967 8600 1953	79880 161700 1957 22130 1964	82860 235100 1964 33880 1954	68170 119500 1980 40910 1997	76270 169800 1963 41840 1955	0 69430 0 150900 3 1951 0 30550 7 1976
SUMMARY	Y STATIST	ICS	FOR	2000 CALEI	NDAR YEAR		FOR 2001 V	WATER YEAR	R	WATER	YEARS 19	51 - 2001#
ANNUAI ANNUAI HIGHES LOWEST	L TOTAL L MEAN ST ANNUAL I ANNUAL	MEAN MEAN	1	4941200 40820			16447000 45060			42290 62120 28600		1963 1997
HIGHES LOWEST ANNUAL MAXIMU MAXIMU MAXIMU MAXIMU	ST DAILY DAILY M SEVEN-D JM PEAK F JM PEAK S TM DEAK S	MEAN EAN AY MINIMU LOW TAGE TAGE	М	110000 a9600 9600	May 3 Mar 16 Mar 16		124000 b9000 9140 125000 11.4	May 22 Apr 1 Mar 30 May 23 49 May 23	2 L) 3 3	391000 c6100 6100 392000	Jun Mar Mar Jun	5 1964 1 1966 1 1966 5 1964
INSTAN ANNUAI ANNUAI ANNUAI 10 PEF	TANEOUS L RUNOFF L RUNOFF L RUNOFF RCENT EXC	LOW FLOW (AC-FT) (CFSM) (INCHES) EEDS EEDS	2	29640000 1.3 17.8 78500 32000	1 7		32620000 1.4 19.6 102000 28000	45 57	3	6100 80640000 1.3 94000 26000	Mar 36	1963 1997 5 1964 1 1966 1 1966 5 1964 5 1964 1 1966
20 101	2110			,,,,,			20000			10000		

See Period of Record, partial years used in monthly computations

See Period of Record, partial years Mar. 1-31, 1966
Mar. 16 to Mar. 31
From floodmarks, backwater from ice Apr. 1 to Apr. 5
Estimated

From floodmarks, backwater from ice, at different site, same datum

15304060 KUSKOKWIM RIVER AT ANIAK

LOCATION.--Lat $61^{\circ}35'14''$, long $159^{\circ}32'54''$, in $SE^1/_4$ $SE^1/_4$ sec. 2, T. 17 N., R. 57 W. (Russian Mission C-2 quad), Hydrologic unit 19030502, on the left bank near the NW corner of the west end of the runway in the village of Aniak.

WATER-STAGE RECORDS

PERIOD OF RECORD. -- May 1996 to present (no winter record).

GAGE.--Water-stage recorder. A supplementary stage gage was installed April 23, 1998 approximately 1 mi upstream from gage of record. This gage records water elevation at the Aniak city dike system during ice break-up events. Elevation of the gage is 75 ft above sea level from topographic map.

REMARKS.--GOES satellite telemetry at station. Supplementary stage records are available from the computer files of the Alaska District.

EXTREMES FOR PERIOD OF RECORD.--Maximum gage height observed 26.55 ft, July 12,1998, but may have been higher during periods of missing record. Minimum gage height observed 15.33 ft, October 12, 1997, but may have been lower during periods of missing record.

EXTREMES FOR CURRENT PERIOD.--October 1-29, 2000 and June 5 to September 30, 2001: Maximum gage height observed 24.11 ft, June 9, but may have been higher during periods of missing record. Minimum gage height observed 14.37 ft, Oct. 27, but may have been lower during periods of missing record.

GAGE HEIGHT, FEET, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	18.74									20.01	20.84	20.62
2	18.31									19.83	21.05	20.75
3	17.96									19.66	20.93	20.40
4	17.68									19.55	20.68	20.12
5	17.48								23.24	19.44	20.51	19.94
6	17.30								23.41	19.33	20.28	19.90
7	17.12								23.59	19.24	19.97	20.00
8	16.92								23.82		19.65	20.12
9	16.77								24.07		19.32	20.01
10	16.64								23.97		19.01	19.80
11	16.47								23.77	18.70	18.74	19.61
12	16.28								23.60	18.77	18.52	19.36
13	16.03								23.40	18.90	18.35	19.09
14	15.96								23.11	18.99	18.25	18.86
15	15.87								22.77	19.03	18.24	18.65
16	15.61								22.45	19.07	18.41	18.44
17	15.45								22.16	19.14	18.70	18.23
18	15.39								21.85	19.14	19.44	18.09
19	15.20								21.51	19.26	20.21	17.94
20	15.22								21.23	19.53	21.00	17.68
21	15.15								21.08	19.64	22.19	17.67
22	15.12								21.03	19.75	22.84	17.55
23	15.06								20.99	19.96	22.91	17.48
24	14.84								21.00	20.13	22.44	17.39
25	14.65								20.98	20.33	22.03	17.28
26	14.63								20.89	20.61	21.63	17.16
27	14.62								20.72	20.77	21.49	17.06
28	14.48								20.49	20.89	21.31	16.97
29	14.56								20.30	20.96	20.99	16.90
30									20.16	20.86	20.84	16.79
31										20.75	20.54	
MEAN											20.36	18.66
MAX											22.91	20.75
MIN											18.24	16.79

15304060 KUSKOKWIM RIVER AT ANIAK--Continued

River ice break-up hydrograph for Kuskokwim River at Dike (supplementary gage) at Aniak, 2001.

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1998 to current year.

PERIOD OF DAILY RECORD. --

WATER TEMPERATURE: May 1998 to current year (seasonal).

INSTRUMENTATION.--Electronic water temperature recorder set for 1-hour recording interval.

REMARKS.--Records represent water temperature from sensor within 0.5°C No water temperature record October 31-May 15 and July 8-9 when water level dropped below probe. No water temperature record from May 16-June 4 with probe broken by shifting ice. Partial water temperature record on Oct.30,July 8,10,16-17, and August 3. A temperature cross section on September 20 found a variation of 1.0°C. Temperature from the sensor could not be compared with the cross section average for the river on September 20 because of a faulty sensor probe. The sensor probe gave faulty temperature record from August 4-September 30 and was not used.

EXTREMES FOR PERIOD OF RECORD. --

WATER TEMPERATURE: Maximum recorded, 15.5°C, July 22-24, 1998, may have been higher during periods of missing record; minimum, 0.0°C, May 14-15, 1999.

EXTREMES FOR CURRENT YEAR. --

WATER TEMPERATURE: Maximum recorded, 14.5°C, July 28-29, August 1-2, may have been higher during periods of missing record; minimum recorded, 1.5°C, October 30, may have been lower during periods of missing record.

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	GAGE HEIGHT (FEET) (00065)	TEMPER- ATURE WATER (DEG C) (00010)	SAM- PLING METHOD, CODES (82398)
SEP						
20	1240	1600	10.0	17.38	7.5	10
20	1242	1600	300	17.38	8.5	10
20	1244	1600	600	17.38	8.5	10
20	1246	1600	900	17.38	8.5	10
20	1248	1600	1200	17.38	8.5	10

15304060 KUSKOKWIM RIVER AT ANIAK --Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		N	OVEMBER		D	ECEMBER			JANUARY	
1	5.5	5.5	5.5									
2 3	5.5 5.0	5.0 5.0	5.0 5.0									
4	5.0	5.0	5.0									
5	5.0	5.0	5.0									
6	5.0	5.0	5.0									
7 8	5.0 4.5	4.5 4.0	5.0 4.5									
9	4.5	4.0	4.0									
10	4.0	4.0	4.0									
11	4.0	3.5	4.0									
12	4.0	3.5	3.5									
13 14	3.5 3.5	3.5 3.5	3.5 3.5									
15	3.5	3.0	3.0									
16	3.0	3.0	3.0									
17	3.0	3.0	3.0									
18	3.0	3.0	3.0									
19 20	3.0 3.0	3.0 3.0	3.0 3.0									
21 22	3.0 2.5	2.5 2.5	2.5 2.5									
23	2.5	2.5	2.5									
24	2.5	2.0	2.0									
25	2.0	2.0	2.0									
26	2.0	2.0	2.0									
27	2.0	2.0	2.0									
28 29	2.0	2.0	2.0									
30	2.0	1.5										
31												
MONTH												
			EMPERATURE									
DAY	MAX	MIN	EMPERATURE MEAN	, WATER	(DEG. C)	, WATER	YEAR OCTOR	BER 2000 MIN	TO SEPTE	EMBER 2001 MAX	MIN	MEAN
DAY	MAX						MAX			MAX	MIN SEPTEMBE	
1		MIN JUNE	MEAN	MAX 9.0	MIN JULY 8.5	MEAN 9.0	MAX 14.5	MIN AUGUST 13.0	MEAN 13.5	MAX	SEPTEMBE	R
1 2		MIN JUNE	MEAN	MAX 9.0 9.5	MIN JULY 8.5 9.0	MEAN 9.0 9.0	MAX	MIN AUGUST 13.0 13.5	MEAN	MAX	SEPTEMBE	R
1	 	MIN JUNE 	MEAN 	MAX 9.0	MIN JULY 8.5	MEAN 9.0	MAX 14.5 14.5	MIN AUGUST 13.0	MEAN 13.5 14.0	MAX : 	SEPTEMBE	R
1 2 3		MIN JUNE 	MEAN 	9.0 9.5 10.0	MIN JULY 8.5 9.0 9.5	9.0 9.0 10.0	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX :	SEPTEMBE	R
1 2 3 4	 	MIN JUNE 	MEAN	9.0 9.5 10.0 9.5	MIN JULY 8.5 9.0 9.5 8.5	9.0 9.0 10.0 9.5	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	13.5 14.0	MAX 	SEPTEMBE	R
1 2 3 4 5	 9.5 9.5	MIN JUNE 9.0 9.0 8.5	MEAN 9.0 9.0 9.0	9.0 9.5 10.0 9.5 8.5	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5	9.0 9.0 9.0 10.0 9.5 8.0	14.5 14.5 	MIN AUGUST 13.0 13.5 13.0	13.5 14.0 	MAX	SEPTEMBE 	R
1 2 3 4 5	 9.5 9.5 9.5 8.5	MIN JUNE 9.0 9.0 8.5 7.5	MEAN 9.0 9.0 9.0 8.0	9.0 9.5 10.0 9.5 8.5	MIN JULY 8.5 9.0 9.5 8.5 7.5	9.0 9.0 9.0 10.0 9.5 8.0	14.5 14.5 	MIN AUGUST 13.0 13.5 13.0	13.5 14.0 	MAX	SEPTEMBE 	R
1 2 3 4 5	 9.5 9.5	MIN JUNE 9.0 9.0 8.5	MEAN 9.0 9.0 9.0	9.0 9.5 10.0 9.5 8.5 9.0	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0	9.0 9.0 9.0 10.0 9.5 8.0 9.5	14.5 14.5 	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9	9.5 9.5 9.5 8.5 8.0	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0	MEAN 9.0 9.0 9.0 8.0 7.5 8.5	9.0 9.5 10.0 9.5 8.5 9.0 10.5	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0	9.0 9.0 10.0 9.5 8.0 9.5	14.5 14.5 	MIN AUGUST 13.0 13.5 13.0	13.5 14.0 	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10	 9.5 9.5 9.5 8.5 8.0 9.0	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.0	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0	9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5	14.5 14.5 	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10	9.5 9.5 9.5 8.5 8.0 9.0	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.0 8.5	9.0 9.0 10.0 9.5 8.0 9.5 8.5 8.5 9.0	14.5 14.5 14.5 	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10	 9.5 9.5 9.5 8.5 8.0 9.0	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.0	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0	9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	9.5 9.5 9.5 8.5 8.0 9.0 10.0 9.5 8.5 8.5	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.5 8.5 7.5 7.5 8.5	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5 9.0 8.0 8.0	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 9.5	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.0 8.5 9.0 9.5	9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5 9.0 9.0	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	9.5 9.5 9.5 8.5 8.0 9.0 10.0 10.0 9.5 8.5 8.5	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 7.5 8.5 10.0	MEAN 9.0 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.0 8.0 8.0 9.5 10.5	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 9.5 9.5	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.0 8.0 9.0 9.0	9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5 9.0 9.0 9.5	14.5 14.5 14.5 	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	9.5 9.5 9.5 8.5 9.0 10.0 10.0 9.5 8.5 10.0 11.0	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 7.5 8.5 10.0 10.5	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5 10.5 11.0	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 9.5 10.0 11.5	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 10.0 10.0	9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5 9.0 9.0 9.5	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	9.5 9.5 9.5 8.0 9.0 10.0 10.0 9.5 8.5 10.0 11.0	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 8.5 10.0 10.5	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.0 8.0 9.5 10.5 11.0	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 9.5	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 9.0 9.5	9.0 9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5 9.0 9.0 9.5	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	 9.5 9.5 9.5 8.5 9.0 10.0 10.0 9.5 8.5 10.0 11.0 11.0 11.5	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 10.5 10.5 10.5	MEAN 9.0 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.0 8.0 10.5 11.0 11.0 11.5	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 10.0 11.5	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.0 9.5 10.0 11.0	9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5 9.0 9.0 9.5 10.5 11.5	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	9.5 9.5 9.5 8.5 8.0 9.0 10.0 10.0 11.0 11.0 11.0 11.0 11.	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 7.5 10.0 10.5 10.5 11.5 12.0	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5 10.5 11.0 11.0 11.5 12.0	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 9.5 11.0 11.5 11.5 12.5	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.0 9.0 9.5 10.0 11.0 11.0	9.0 9.0 10.0 9.5 8.0 9.5 8.5 8.5 9.0 9.0 9.5 10.5 11.5	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	9.5 9.5 9.5 8.5 8.0 9.0 10.0 10.0 9.5 8.5 10.0 11.0 11.0 11.0 11.0	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 10.5 10.5 10.5 11.5 12.0 12.0	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.1 1.0 11.0 11.0 11.0 11.0 12.0	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 11.0 11.5 11.5 11.5 12.5	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 10.0 11.0 11.0 11.0	9.0 9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5 9.0 9.0 9.5 10.5 11.5	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	9.5 9.5 9.5 8.5 8.0 9.0 10.0 10.0 11.0 11.0 11.0 11.0 11.	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 7.5 10.0 10.5 10.5 11.5 12.0	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5 10.5 11.0 11.0 11.5 12.0	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 9.5 11.0 11.5 11.5 12.5	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.0 9.0 9.5 10.0 11.0 11.0	9.0 9.0 10.0 9.5 8.0 9.5 8.5 8.5 9.0 9.0 9.5 10.5 11.5	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25	9.5 9.5 9.5 8.5 8.0 9.0 10.0 10.0 9.5 8.5 10.0 11.0 11.0 11.0 11.0 12.0 12.0 12.0	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.0 8.0 9.5 10.5 11.0 11.0 11.0 11.0 11.0 9.5	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 10.0 11.5 11.5 11.5 12.5 12.0 13.0	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 10.0 11.0 11.0 11.0 11.5 12.0 13.0	MEAN 9.0 9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5 9.0 9.0 9.5 10.5 11.5 11.5 11.5 12.0 12.5 13.0	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27	9.5 9.5 9.5 9.0 10.0 10.0 11.0 11.0 11.0 11.0 11.0	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 7.5 10.0 10.5 10.5 10.5 10.5 10.5 9.0 9.0 9.5	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5 10.5 11.0 11.0 11.5 12.0 12.0 12.0 12.0 9.5	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 9.5 11.0 11.5 11.5 12.5 12.0 13.5	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.0 9.0 9.5 10.0 11.0 11.0 11.0 11.5 12.0 13.0	9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5 9.0 9.0 9.5 10.5 11.5 11.5 11.5 12.0 12.5 13.0	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	9.5 9.5 9.5 8.5 8.0 9.0 10.0 10.0 11.0 11.0 11.0 11.0 12.0 12	MIN JUNE 9.0 9.0 8.5 7.5 8.0 9.0 9.5 8.5 7.5 8.5 10.0 10.5 10.5 10.5 10.5 10.5 10.5 10	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.0 8.0 9.5 10.5 11.0 11.0 11.0 11.0 11.0 9.5	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 11.5 11.5 11.5 12.5 12.0 13.0 14.0	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 10.0 11.0 11.0 11.5 12.0 13.0 13.0	9.0 9.0 9.0 10.0 9.5 8.0 8.5 8.5 9.0 9.5 10.5 11.5 11.5 12.0 12.5 13.0 14.0	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27	9.5 9.5 9.5 9.0 10.0 10.0 11.0 11.0 11.0 11.0 11.0	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 7.5 10.0 10.5 10.5 10.5 10.5 10.5 9.0 9.0 9.5	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.5 10.5 11.0 11.0 11.5 12.0 12.0 12.0 12.0 9.5	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 10.0 11.5 11.0 11.5 12.5 12.0 13.0 14.0	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 10.0 11.0 11.0 11.0 11.0 11.5 12.0 13.0 13.0 14.0	9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5 9.0 9.0 9.5 10.5 11.5 11.5 11.5 12.0 12.5 13.0	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	9.5 9.5 9.5 9.5 8.0 9.0 10.0 10.0 9.5 8.5 10.0 11.0 11.0 11.5 12.0 12.0 12.0 10.0 11.0 11.0	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 10.0 10.5 10.5 10.5 10.5 10.5 10.5 10	MEAN 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.1 1.0 11.0 11.5 12.0 11.0 11.0 9.5	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 11.5 11.5 11.5 12.5 12.0 13.0 14.0	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.5 10.0 11.0 11.0 11.5 12.0 13.0 13.0	9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5 9.0 9.5 10.5 10.5 11.5 11.5 11.5 12.0 12.5 13.0 14.0 14.0	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30	9.5 9.5 9.5 9.5 8.5 8.0 9.0 10.0 11.0 11.0 11.0 11.0 12.0 12.0 12	MIN JUNE 9.0 9.0 8.5 7.5 7.5 8.0 9.0 9.5 8.5 7.5 10.0 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	MEAN 9.0 9.0 9.0 9.0 8.0 7.5 8.5 9.5 9.5 9.0 8.0 11.0 11.0 11.5 12.0 11.0 11.0 11.0 11.0 11.0 11.0 10.0	9.0 9.5 10.0 9.5 8.5 9.0 10.5 10.0 9.5 9.5 9.5 11.5 11.5 11.5 12.5 11.0 11.5 12.5 12.0 13.5 14.0	MIN JULY 8.5 9.0 9.5 8.5 7.5 7.5 9.0 10.0 8.0 8.0 8.5 9.0 9.0 9.5 10.0 11.0 11.0 11.0 11.5 12.0 13.0 13.0 14.0 13.0	9.0 9.0 10.0 9.5 8.0 8.0 9.5 8.5 8.5 9.0 9.0 9.5 10.5 11.5 11.5 12.0 12.5 13.0 14.0 14.0 13.5	MAX 14.5 14.5	MIN AUGUST 13.0 13.5 13.0	MEAN 13.5 14.0	MAX	SEPTEMBE	R

15320100 WADE CREEK TRIBUTARY NEAR CHICKEN

LOCATION.-- Lat $64^{\circ}07'06''$, long $141^{\circ}33'13''$, in $SE^{1}/_{4}$ sec. 18, T. 27 N., R. 20 E. (Eagle A-2 quad), Hydrologic Unit 19040104, on left bank, 600 ft upstream from Taylor Highway, 0.4 mi upstream from the culvert at mi 86.1 Taylor Highway and 12 mi northeast of Chicken.

DRAINAGE AREA. -- 4.24 mi².

PERIOD OF RECORD.--Annual maximum, water year 1995. May 1996 to current year (no winter records).

GAGE.--Water-stage recorder. Elevation of gage is 1970 ft above sea level, from topographic map. Prior to June 19, 1997, recording gage was at a site 700 ft downstream at a different datum.

REMARKS. -- No estimated daily discharges. Records poor.

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 236 ${\rm ft}^3/{\rm s}$, June 13, 1997, from rating curve extended above 14 ${\rm ft}^3/{\rm s}$ on basis of slope-area measurement of peak flow, gage height, 22.7 ft, from floodmarks; no flow most days during the winter.

EXTREMES FOR CURRENT PERIOD.--Maximum discharge, 127 ft³/s, July 24, gage height, 22.04 ft, no flow most days during the winter.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									16	. 47	15	1.4
2									9.5	.64	9.7	2.9
3 4									6.8 6.5	.79 2.9	7.1 7.0	5.2 5.2
4 5									6.5	4.1	7.0 5.5	5.2 4.5
5									0.0	4.1	3.3	4.5
6									4.8	6.2	4.6	13
7									4.5	16	3.5	6.6
8									5.5	8.7	2.4	3.5
9									4.3	5.1	2.1	2.4
10									3.3	3.9	1.8	1.6
11									2.6	3.8	1.6	1.2
12									2.6	3.1	2.0	.88
13									24	2.2	2.0	.68
14									19	1.8	1.6	.52
15									10	1.7	1.4	.45
1.0									F 0	1 6	1 2	7.0
16 17									5.8 3.8	1.6 1.3	1.3 1.7	.70 1.4
18									2.8	1.3	1.7	1.4
19									2.0	1.1	1.9	2.0
20									1.8	.91	1.8	2.0
20									1.0		1.0	2.0
21									1.8	.94	1.5	2.0
22								24	1.5	2.6	1.4	
23								26	1.3	26	1.4	
24								31	1.1	59	1.3	
25								27	1.0	20	1.3	
26								25	.80	16	1.5	
27								25	.44	14	1.6	
28								23	.42	10	1.8	
29								14	.45	8.4	1.5	
30								12	.42	11	2.0	
31								20		17	1.6	
TOTAL									151.63	252.45	92.6	
MEAN									5.05	8.14	2.99	
MAX									2.03	59	15	
MIN									.42	.47	1.3	
AC-FT									301	501	184	
CFSM									1.19	1.92	.70	
IN.									1.33	2.21	.81	

15356000 YUKON RIVER AT EAGLE (International Gaging Station)

LOCATION.--Lat $64^{\circ}47'22''$, long $141^{\circ}11'52''$, in $NW^{1}/_{4}$ sec. 31, T. 1 S., R. 33 E. (Eagle D-1 quad), Hydrologic Unit 19040401, on left bank at Eagle, 0.1 mi upstream from Mission Creek, 1.1 mi downstream from Castalia Creek, and 11 mi downstream from the international boundary.

DRAINAGE AREA. -- 113,500 mi², approximately.

PERIOD OF RECORD.--January 1911 to December 1913, June 1950 to current year. Monthly discharge only for some periods, published in WSP 1372.

GAGE.--Water-stage recorder. Elevation of gage is 850 ft above sea level, from topographic map. See WSP 1936 for history of changes prior to October 1, 1963. Nonrecording gage prior to June 26, 1982 at same site and datum.

REMARKS.--Records good except for the period May 18 to 21 and estimated daily discharges, which are poor. GOES satellite telemetry at station.

> DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

					211.		***************************************					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	197000 196000 190000 182000 174000	e66000 e62000 e59000 e56000 e54000	e45000 e45000 e44000 e44000 e43000	e33500 e33000 e33000 e32500 e32500	e27500 e27500 e27500 e27000 e27000	e23500 e23500 e23000 e23000 e23000	e21000 e21000 e21000 e21000 e21000	e26000 e28000 e30000 e32000 e34000	176000 194000 205000 215000 231000	193000 189000 188000 191000 198000		121000 121000 123000 128000 129000
6 7 8 9 10	167000 161000 156000 155000 152000	e52000 e51000 e51000 e52000 e53000	e43000 e42000 e42000 e41000 e41000	e32000 e32000 e32000 e31500 e31500	e27000 e26500 e26500 e26500 e26000	e23000 e23000 e23000 e22500 e22500	e21000 e21000 e21000	e37000 e41000 e45000 e50000	257000 270000 279000 286000 288000	206000 218000 232000 239000 242000	199000 195000 192000 188000 183000	128000 137000 147000 149000 147000
11 12 13 14 15	149000 148000 146000 143000 138000	e54000 e55000 e56000 e57000	e41000 e40000 e40000 e39000 e39000	e31500 e31000 e31000 e30500 e30500	e26000 e26000 e25500 e25500 e25500	e22500 e22500 e22500 e22500 e22000	e21000 e21000 e21000	e68000	286000 292000 305000 323000 333000	235000 227000 218000 208000 200000	178000 173000 167000 162000 157000	140000 135000 132000 129000 125000
16 17 18 19 20	134000 131000 128000 125000 121000	e57000 e56000 e56000 e55000 e54000	e39000 e38000 e38000 e38000 e37000	e30500 e30000 e30000 e30000 e29500	e25000 e25000 e25000 e24500 e24500	e22000 e22000 e22000 e22000 e22000	e21000	e105000 e115000 126000 122000 131000	341000 348000 360000 358000 353000	200000 206000 204000 204000 205000	153000 152000 151000 152000 152000	122000 119000 116000 115000 114000
21 22 23 24 25	118000 112000 109000 106000 103000	e53000 e52000 e51000 e50000 e49000	e37000 e36000 e36000 e36000 e35000	e29500 e29000 e29000 e29000 e28500	e24500 e24500 e24000 e24000 e24000	e22000 e21500 e21500 e21500 e21500	e21500 e21500	133000 e142000 153000 162000 165000	344000 335000 318000 297000 281000	205000 204000 208000 228000 268000	152000 147000 142000 137000 133000	115000 117000 121000 121000 120000
26 27 28 29 30 31	99500 e89000 e82000 e78000 e73000 e69000	e48000 e48000 e47000 e47000 e46000	e35000 e35000 e34500 e34000 e34000 e33500	e28500 e28500 e28000 e28000 e28000 e28000	e24000 e23500 e23500 	e21500 e21500 e21500 e21500 e21000	e23000 e23500 e24000 e25000	159000 155000 156000 154000 150000	265000 250000 231000 214000 200000	261000 282000 305000 305000 277000 246000	132000 131000 129000 128000 127000 123000	118000 116000 114000 111000 109000
MEAN MAX MIN	4131500 133300 197000 69000 8195000 1.17 1.35	1604000 53470 66000 46000 3182000 .47 .53	1205000 38870 45000 33500 2390000 .34 .39	942000 30390 33500 28000 1868000 .27 .31	713500 25480 27500 23500 1415000 .22 .23	688000 22190 23500 21000 1365000 .20 .23	21520 25000 21000	3044000 98190 165000 26000 6038000 .87 1.00	8435000 281200 360000 176000 16730000 2.48 2.76	6992000 225500 305000 188000 13870000 1.99 2.29	5112000 164900 229000 123000 10140000 1.45 1.68	3739000 124600 149000 109000 7416000 1.10 1.23
		STATIST	ICS OF MO	NTHLY ME	AN DATA FO	R WATER	YEARS 195	0 - 2001,	BY WATER	YEAR (W	Y)#	
MEAN MAX (WY) MIN (WY)	74500 133300 2001 45870 1959	38070 62500 1953 24000 1959	25650 38870 2001 13000 1951	21010 30390 2001 9000 1951	18780 28000 1977 7200 1951	17210 25480 1977 7800 1956	41530 1990 8650	124100 201500 1993 61770 1964		1992 108900		
SUMMAR	RY STATIS	TICS	FOR	2000 CAL	ENDAR YEA	R	FOR 2001	WATER YEA	AR	WATER	YEARS 195	0 - 2001
ANNUAL ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU MAXIMU MAXIMU ANNUAL	TOTAL MEAN T ANNUAL ANNUAL T DAILY DAILY SEVEN-D JM PEAK F JM PEAK S RUNOFF	MEAN MEAN MEAN EAN AY MINIMU LOW TAGE TAGE (AC-FT)	M	38480600 105100 320000 a16500 16500	Jun 2 Jun 2 Apr : Apr :	0 1 1	37251500 102100 360000 b21000 21000 362000 26 d33 73890000	Jun 1 Mar 3 Mar 3 Jun 1 .83 Jun 1		84230 110900 61020 545000 c7200 7200 545000 33.	Jun Feb Feb Jun 85 Jun	1964 1958 12 1964 1 1951 1 1951 12 1964
ANNUAL ANNUAL 10 PEF 50 PEF 90 PEF	RUNOFF CENT EXC CENT EXC CENT EXC	(CFSM) (INCHES) EEDS EEDS EEDS		12. 223000 57000 16600	93 61		12 228000 56000 22000	.90 .21		10 199000 45000 16000	.74 .08	

See Period of Record; partial years used in monthly statistics

See Period of Record, partial years From Apr. 1-20 From Mar. 30 - Apr. 21 Feb. 1-28, 1951 From floodmarks, backwater from ice c d

Estimated

15356000 YUKON RIVER AT EAGLE--Continued (International Gaging Station)

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1950-57, 1962-70, 1974-76, 1978-79, and 2001.

PERIOD OF DAILY RECORD.--SUSPENDED SEDIMENT: 1962 TO 1966.

DATE		TIME		SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN DIS- SOLVE (MG/L	CENT D SATUR) ATION	1) 5- L - ED			
JUN 04 04 04 04 20 20 20 20 20		1916 1918 1920 1925 1927 1415 1418 1446 1454	440.0 650.0 800.0 970.0 1190 1190 960.0 800.0 650.0 430.0	164 162 159 160 159 185 181 185 184	7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9 8.0	10.0 10.0 10.0 10.0 10.0 13.5 13.5 13.5 13.5	745 745 745 745 745 746 746 746 746	10.9 10.8 10.9 10.6 9.5 9.5 9.5	99 98 99 98 96 93 93 93 93				
11 11 11 11 AUG		1251 1253 1254 1256 1257	1190 960.0 800.0 650.0 430.0	201 201 202 202 206	8.0 8.0 8.0 8.0	14.0 14.0 14.0 14.0 14.0	747 747 747 747 747	9.2 9.2 9.0 9.1 9.1	91 91 90 90 90				
09 09 09 09 SEP		1248 1249 1250 1251 1252	430.0 650.0 800.0 960.0 1190	218 216 216 216 216 216	7.5 7.6 7.7 7.7	14.5 14.5 14.5 14.5 14.5	754 754 754 754 754	9.7 9.6 9.6 9.4 9.3	96 95 95 93 92				
11 11 11 11		1241 1244 1249 1251 1253	500.0 700.0 800.0 960.0 1150	188 187 187 187 186	8.0 8.0 8.1 8.0 8.1	8.5 8.5 8.5 8.5 8.5	751 751 751 751 751	11.0 11.1 11.1 11.0 10.7	96 96 96 96 93				
DATE	TIME	MEDIU CODE		STREAM WIDTH (FT) (00004)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)		TEMPERA TURE AIR (DEG C) (00020)	TEMP- ERATURE WATER (DEG C) (00010)
OCT 04	1530	9	9	1520	17.63	180000	20	3055	1	208	8.2	-1.0	1.0
MAR 23	1140	9	9	1120		21500	20	3060	30	244	7.4	-23.0	.00
JUN 04 20 JUL	1900 1330	9 9	9 9	1550 1540	19.95 26.50	219000 355000	20 20	3055 3055	100 100	163 184	7.9 7.9	16.5	10.0 13.6
11 AUG	1210	9	9	1550	20.87	230000	20	3055	30	202	8.0	18.0	14.0
09 SEP	1145	9	7	1550	18.09	188000	20	3055	100	216	7.6	17.5	14.6
11	1140	9	9	1380	15.03	140000	20	3055	30	187	8.1		8.4

YUKON ALASKA

15356000 YUKON RIVER AT EAGLE--Continued

DATE	TURBID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	UV ABSOR-BANCE 254 NM, WTR FLT (UNITS/ CM) (50624)	UV ABSOR- BANCE 280 NM, (UNITS/ CM) (61726)	BARO-METRIC PRES-SURE (MM OF HG)	OXYGEN DIS- OLVED (MG/L) (00300)	OXY- GEN, DIS- OLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CAL- CIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFL- TRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 04	32	42	.204	.151	750			100	27.3	8.00	2.2	76	.92
MAR 23	.7	4.2	.040	.028	767	10.8	73	120	34.1	9.21	2.7	99	1.16
JUN 04 20		180 270	.400 .173	.302 .129	745 746	10.8 9.5	98 93	81 92	22.1 25.2	6.12 7.09	1.8 1.7	55 65	1.08
JUL 11		.5			747	9.1	90	96	26.1	7.51	2.1	68	1.17
AUG 09 SEP			.108	.078	754	9.5	94	100	28.3	8.06	2.5	76	1.55
11		63	.192	.140	751	11.0	95	100	27.4	8.04	2.3	70	1.06
DATE OCT 04 MAR 23 JUN 04 20 JUL 11 AUG 09 SEP 11	BICAR-BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 93 121 67 78 81 92 84	CO3	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 76 99 55 64 66 76 69	SUL- FATE DIS- SOLVED (MG/L AS SO4) (00945) 29.7 30.7 19.5 26.2 28.9 31.5	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940) .5 .8 .4 .4	FLOU-RIDE DIS-SOLVED (MG/L AS F) (00950) E.1 E.1 E.1 E.1 E.1 E.1	SIL- ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 7.7 6.5 5.4 6.0 6.3 6.3 7.1	SOL- IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300) 141 153 114 130 128 130	ENTS, DIS- SOLVED (MG/L)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .008 .001 <.001 <.001	DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .007 .056 .004 .005 .007 <.002	NITRO- GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625) .31 .08 .68 .59 .41 E.38
DATE OCT 04 MAR 23 JUN 04	. 26	 .004 .931	<.006 <.006	.001 <.007 <.007	NITRO- GEN, TOTAL, SED- IMNT SUSP, (WEIGHT PERCNT) (62845)	.08	6.5 6.5	ALUMI - NUM, DIS- SOLVED (UG/L AS AL) (01106) 21 2	1.0	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095) .12 .10	ARSENIC SED, SUSP. (UG/G) (29818)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000) <2.0 .4 .6	BARIUM SED. SUSP. (UG/G) (29820) 960
OCT 04 MAR 23 JUN 04 20 JUL	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .18 E.06 .26 E.09	PHORUS TOTAL (MG/L AS P) (00665) .004 .931 .825	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.006 <.006	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .001 <.007 <.007	GEN, TOTAL, SED- IMNT SUSP, (WEIGHT PERCNT) (62845) .10 <.10 <.10	PHORUS SEDI- MENT SUSP. PER- CENT (30282)	NUM SED, SUS PER- CENT (30221) 6.5 6.5 6.7	NUM, DIS- SOLVED (UG/L AS AL) (01106) 21 2 45 25	MONY SED, SUSP. (UG/G) (29816) 1.0 1.5 1.6	MONY, DIS- SOLVED (UG/L AS SB) (01095) .12 .10 .14 .17	SED, SUSP. (UG/G) (29818) 8.9 12	DIS- SOLVED (UG/L AS AS) (01000) <2.0 .4 .6 .7	SED. SUSP. (UG/G) (29820) 960 930 910
OCT 04 MAR 23 JUN 04 20 JUL 11	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .18 E.06 .26 E.09	PHORUS TOTAL (MG/L AS P) (00665) .004 .931 .825 .503	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.006 <.006 .007 E.006	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .001 <.007 <.007 <.007	GEN, TOTAL, SED- IMNT SUSP, (WEIGHT PERCNT) (62845) .10 <.10 <.10	PHORUS SEDI- MENT SUSP. PER- CENT (30282) .08	NUM SED, SUS PER- CENT (30221) 6.5 6.5 6.7	NUM, DIS- SOLVED (UG/L AS AL) (01106) 21 2 45 25 30	MONY SED, SUSP. (UG/G) (29816) 1.0 1.5 1.6	MONY, DIS- SOLVED (UG/L AS SB) (01095) .12 .10 .14 .17	SED, SUSP. (UG/G) (29818) 8.9 12 11	DIS- SOLVED (UG/L AS AS) (01000) <2.0 .4 .6 .7	SED. SUSP. (UG/G) (29820) 960 930 910 830
OCT 04 MAR 23 JUN 04 20 JUL 11	GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623) .18 E.06 .26 E.09 .12 .11	PHORUS TOTAL (MG/L AS P) (00665) .004 .931 .825	PHORUS DIS- SOLVED (MG/L AS P) (00666) <.006 <.006	PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671) .001 <.007 <.007	GEN, TOTAL, SED- IMNT SUSP, (WEIGHT PERCNT) (62845) .10 <.10 <.10	PHORUS SEDI- MENT SUSP. PER- CENT (30282)	NUM SED, SUS PER- CENT (30221) 6.5 6.5 6.7	NUM, DIS- SOLVED (UG/L AS AL) (01106) 21 2 45 25	MONY SED, SUSP. (UG/G) (29816) 1.0 1.5 1.6	MONY, DIS- SOLVED (UG/L AS SB) (01095) .12 .10 .14 .17	SED, SUSP. (UG/G) (29818) 8.9 12	DIS- SOLVED (UG/L AS AS) (01000) <2.0 .4 .6 .7	SED. SUSP. (UG/G) (29820) 960 930 910

15356000 YUKON RIVER AT EAGLE--Continued

DATE	BAR- IUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM SED, SUSP. (UG/G) (29822)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON DIS- SOLVED (UG/L AS B) (01020)	CAD- MIUM SED. SUSP. (UG/G) (29826)	CAD- MIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM SED. SUSP. (UG/G) (29829)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT SEDI- MENT SUSP. (UG/G) (35031)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER SED. SUSP. (UG/G) (29832)	COP- PER, DIS- SOLVED (UG/L AS CU) (01040)	IRON SEDI- MENT SUSP. PERCENT (30269)
OCT 04	36.7	1	<.06	<16	.6	.04	95	E.6	13	.14	28	2.0	3.3
MAR 23 JUN	52.0		<.06	12		E.03		<.8		.06		.9	
04 20	33.4 39.5	2	<.06 <.06	E6 8	.7 .6	E.03	93 97	<.8 <.8	16 18	.12	33 35	3.6 2.5	3.8 3.8
JUL 11 AUG	36.0	2	E.04	8	.5	< .04	98	<.8	18	.07	35	2.2	3.8
09 SEP	40.0	1	<.06	E6	.5	< .04	94	<.8	17	.06	34	1.2	4.3
11	38.2	1	<.06	12	.6	E.02	110	E.4	15	.08	31	2.1	3.6
DATE	IRON DIS- SOLVED (UG/L AS FE) (01046)	LEAD SED. SUSP. (UG/G) (29836)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITH- IUM SEDI- MENT SUSP. (UG/G)	LITH- IUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE SED. SUSP. (UG/G) (29839)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MER- CURY SED, SUSP. (UG/G) (29841)	MOLYB- DENUM SED. SUSP. (UG/G) (29843)	MOLYB- DENUM, DIS- SOLVED (UG/LAS MO) (01060)	NICKEL SED. SUSP. (UG/G0 (29845)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM SED. SUSP. (UG/G) (29847)
OCT 04	30	11	E.04	22	<3.9	720	5.9	.05	<5	1.0	48	2.50	М
MAR 23 JUN	М		.10		2.3		1.5			1.3		.74	
04 20 JUL	100 30	14 10	E.05	22 27	1.6 2.0	850 840	7.2 5.1	.05	2 2	.7	46 47	2.02 1.35	M M
11 AUG	20	9.0	<.08	27	2.7	780	3.0	.06	3	1.0	51	.99	М
09 SEP	М	10	<.08	25	2.7	760	1.5	.01	2	1.3	49	.29	М
11	40	10	<.08	23	2.5	760	4.2	.03	4	1.1	56	.77	М
DATE	SELE- NIUM DIS- SOLVED (UG/L AS SE) (01145)	SILVER SED. SUSP. (UG/G) (29850)	SIL- VER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM SEDI- MENT SUSP, (UG/G)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM SUS SED (UG/G) (49955)	TITA- NIUM SEDI- MENT SUSP. PERCENT (30317)	VANA- DIUM SED, SUSP. (UG/G) (29853)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC SED. SUSP. (UG/G) (29855)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URA- NIUM SEDI- MENT SUSP. (UG/G) (35046)	URA- NIUM NATU- RAL DIS- SOLVED (UG/L AS U) (22703)
OCT 04	<2.4	<.500000	<1.0	350	129	<50	.410	120	<10.0	120	2	<50	.75
MAR 23	.7		<1.0		171				.6		3		1.02
JUN 04 20		.500000 1	<1.0 <1.0	330 320	102 108	<50 <50	.460 .490	130 130	.5 .5	110 110	1 1	<50 <50	.66 .67
JUL 11	E.2	4	<1.0	330	124	<50	.460	120	.5	100	5	<50	.75
AUG 09	.5	.500000	<1.0	360	136	<50	.460	120	. 4	97	<1	<50	.89
SEP 11	.4 <	.500000	<1.0	390	131	<50	.430	120	. 4	100	1	<50	.85

YUKON ALASKA

15356000 YUKON RIVER AT EAGLE--Continued

		CARBON,	CARBON,	CARBON,			NITRO-	SEDI-		SEDI-	SED	
	CARBON,	INOR-	ORGANIC	INORG +		CARBON,	GEN,	MENT		MENT,	SUSP.	
	ORGANIC	GANIC,	PARTICU-	ORGANIC		ORGANIC	PARTICU-	SUSP.,	SEDI-	DIS-	SIEVE	
	DIS-	PARTIC.	LATE	PARTIC.	CARBON	SUS-	LATE WAT	FLOW-	MENT,	CHARGE,	DIEM. %	
	SOLVED	TOTAL	TOTAL	TOTAL	SED,	PENDED,	FLT SUSP	THROUGH	SUS-	SUS-	FINER	
	(MG/L AS	(MG/L AS	(MG/L AS	(MG/L AS	SUSP.	TOTAL	(MG/L AS	CENTRIF	PENDED	PENDED	THAN	
	C)	C)	C)	C)	PERCENT	PERCENT	N)	(MG/L)	(MG/L)	(T/DAY)	.062 MM	
DATE	(00681)	(00688)	(00689)	(00694)	(30244)	(50465)	(49570)	(50279)	(80154)	(80155)	(70331)	
OCT												
04	E5.9	<.1	2.2	2.2	2.3	1.0	.186	175	187	90900	45	
MAR												
23	1.7	<.1	<.1	<.1			<.022		2	116		
JUN												
04	10.0	<.1	16.0	16.0	2.3	1.1	.628	817	883	522000	62	
20	4.5	1.8	5.5	7.3	2.1	.8	.253	831	873	837000	67	
JUL												
11	4.8	4.9	3.5	8.3	2.2	1.0	.174	521	554	344000	68	
AUG												
09	3.3	11.0	3.8	15.0	2.6	.6	E.162	723	730	371000	79	
SEP												
11	E6.0	E.2	E3.6	E3.9	2.2	1.0	E.116	205	207	78200	55	

15388960 PORCUPINE RIVER NEAR INTERNATIONAL BOUNDARY (International Gaging Station)

 $\texttt{LOCATION.--Lat } ~67^{\circ}25'27'', ~\texttt{long } ~140^{\circ}53'28'', ~\texttt{3.1} ~\texttt{mi } ~\texttt{upstream } ~\texttt{from old } ~\texttt{townsite } ~\texttt{of } ~\texttt{Ramparts } ~\texttt{House, } ~\texttt{at } ~\texttt{Alaska-Yukon } ~\texttt{long } ~\texttt{l$ Territory Boundary.

DRAINAGE AREA.--23,100 \mbox{mi}^{2} , approximately.

PERIOD OF RECORD. -- October 1987 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 600 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Differences between data published herein and corresponding data in the reports of the Water Survey of Canada are due to variations in automated program techniques. After December 1978, data published in reports of the Water Survey of Canada are in International System (SI) units, and have been converted to inch-pound units for this report. Because the Water Survey of Canada computes discharge records by calandar year, data reported here are one year prior to those reported for U.S. gages.

COOPERATION.--Discharge records furnished by the Water Survey of Canada.

		DISCH	ARGE, CUE	IC FEET F	PER SECOND,		YEAR OCT	OBER 1999	TO SEPTEM	MBER 2000		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e4450 e4100 e3740 e3530 e3440	e1430 e1400 e1370 e1350 e1320	e975 e971 e960 e946 e936	e802 e798 e798 e798 e794	e759 e759 e759 e756 e756	e727 e727 e727 e727 e727	e717 e717 e717 e720 e720	e759 e766 e780 e791 e798	89700 91500 90000 88600 84000	14600 13100 11800 11100 10800	29300 25900 21900 19100 16700	17700 16000 14100 12600 11300
6 7 8 9 10	e3390 e3320 e3200 e3200 e3170	e1310 e1290 e1280 e1270 e1250	e922 e918 e911 e904 e897	e794 e794 e794 e791 e791	e756 e752 e752 e752 e752	e727 e727 e724 e724 e724		e809 e823 e844 e865 e883	80900 79800 80500 81600 90000	12300 13900 13900 15200 19800	14200 12100 10600 9750 9390	10300 9530 8860 8440 e8190
11 12 13 14 15	e3060 e2560 e2320 e2250 e2230	e1220 e1200 e1180 e1160 e1140	e886 e883 e876 e869 e862	e791 e787 e787 e784 e784	e749 e749 e745 e745 e742	e724 e724 e724 e724 e724	e727 e727 e727	e929 e996 e1100 e1340 e1840	96400 93900 89300 80200 70300	21500 18900 15500 12900 11600	9640 9960 10100 11700 14100	e7870 e7630 e7380 e7060 e6570
16 17 18 19 20	e2250 e2320 e2370 e2380 e2380	e1130 e1120 e1110 e1090 e1080	e858 e851 e847 e844 e840	e780 e780 e777 e777 e773	e742 e742 e742 e738 e738	e724 e724 e724 e724 e724	e731 e734 e734	e6920	64600 65300 67100 66000 63600	12000 16800 22400 21800 18100	15400 42400 62500 51600 39900	e6180 e6070 e5930 e5680 e5540
21 22 23 24 25	e2330 e2290 e2230 e1920 e1780	e1060 e1050 e1030 e1020 e1020	e837 e826 e826 e823 e823	e773 e770 e770 e770 e770	e734 e734 e734 e734 e731	e724 e724 e724 e724 e724	e738 e738 e742	e17800 e23300 e30500 e38800 e49400	59700 52600 43800 36400 30600	14700 12900 17500 23200 21000	33100 30600 29300 27700 24800	e5400 e5330 e5260 e5080 e4840
26 27 28 29 30 31	e1720 e1660 e1600 e1550 e1500 e1460	e1010 e1010 e999 e989 e985	e819 e819 e816 e816 e812 e802	e770 e766 e766 e766 e763 e763	e731 e727 e727 e727 	e724 e720 e720 e720 e717	e742 e745 e745 e749 e756	e67100 e70600 e81200 e84700 e87200 89700	26700 23400 20500 18100 16100	17500 14800 14500 16100 18800 26200	21900 19400 17600 16700 17500 18500	e4700 e4590 e4450 e4270 e4060
TOTAL MEAN MAX MIN AC-FT CFSM IN.	79700 2571 4450 1460 158100 .11 .13	34873 1162 1430 985 69170 .05	26975 870 975 802 53500 .04 .04	24221 781 802 763 48040 .03 .04	21564 744 759 727 42770 .03 .03	22439 724 727 717 44510 .03 .04		692153 22330 89700 759 1373000 .97 1.11	1941200 64710 96400 16100 3850000 2.80 3.13	505200 16300 26200 10800 1002000 .71 .81	693340 22370 62500 9390 1375000 .97 1.12	230910 7697 17700 4060 458000 .33 .37
		STATIST	CS OF MC	NTHLY MEA	N DATA FOR	WATER	YEARS 19	88 - 2000	, BY WATER	R YEAR (W	Y)	
MEAN MAX (WY) MIN (WY)	4652 8241 1996 2571 2000	1781 3161 1999 1122 1997	1062 1479 1999 870 2000	788 991 1999 551 1997	661 855 1998 398 1997	631 852 1998 383 1997	768 1711 1998 562 1997	37330 63160 1990 5991 1997	43810 86470 1992 20410 1999	15030 29580 1994 6041 1999	18610 37940 1991 10090 1994	17150 34320 1995 7697 2000
SUMMAR	Y STATIST	'ICS	FOR	1999 CALE	ENDAR YEAR		FOR 2000	WATER YEA	R	WATER	YEARS 1988	- 2000
ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL ANNUAL	T ANNUAL MANUAL	EAN EAN Y MINIMUM OW AGE OW FLOW AC-FT) CFSM) INCHES)		671 4365000 .2 3.5	26		8518000 6	Mar 2 Jun 1 .89 Jun 1	0 8 1	369 250000 50. 470 8617000	Mar Mar Jun 76 Jun Mar	1995 1999 1 1992 3 1997 1 1997 1 1992 1 1992 19 1990
50 PER	CENT EXCE CENT EXCE CENT EXCE	EDS		18800 1180 701			34100 1190 727			33900 1980 614		

From Apr. 29 to May 7 From Mar. 30 to Apr.3 From Mar. 3 to 6, 1997 Estimated

15453500 YUKON RIVER NEAR STEVENS VILLAGE

LOCATION.--Lat $65^{\circ}52'32''$, long $149^{\circ}43'04''$, in $SE^{1}/_{4}SW^{1}/_{4}$ sec. 7, T. 12 N., R. 10 W. (Livengood D-6 quad), Hydrologic Unit 19040404, on right bank, 115 ft upstream from bridge at MP 56.0 on Dalton Highway, 0.5 mi downstream from Woodcamp Creek, 2.5 mi upstream from Ray River, and 21 mi southwest of Stevens Village.

DRAINAGE AREA.--196,300 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1976 to current year.

GAGE.--Water-stage recorder and supplementary water-stage recorder on bridge pier at same site and datum. Datum of gage is 240.00 ft above sea level.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge observed, 950,000 $\rm ft^3/s$, June 15-16, 1964, "at Rampart" (station 15468000), drainage area, 199,400 $\rm mi^2$, approximately.

> DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OC'	T NO	V DE	C JA	N FE	B M	AR AP	R MA	JU Y	JN JU	JL AU	G SEP
1 2 3 4 5	240000 244000 242000 237000 231000	e81000 e75000 e70000 e65000 e61000	e48000 e48000 e48000 e47000 e46000	e35000 e35000 e34000 e34000 e34000	e29000 e28500 e28500 e28500 e28000	e25000 e25000 e25000 e24500 e24500	e23000 e23000 e23000	e26500 e27000 e28000 e29000 e30000	436000 432000 421000 410000 407000	301000 288000 274000 258000 246000	340000 339000 322000 302000 286000	170000 165000 161000 156000 153000
6 7 8 9 10	225000 218000 209000 196000 190000		e46000 e45000 e45000 e44000	e34000 e33500 e33500 e33000 e33000	e28000 e28000 e27500 e27500 e27500	e24500 e24500 e24500 e24500 e24000	e23000 e23000 e23000 e23000 e23000	e32000 e34000 e36000 e39000 e42000	412000 426000 448000 475000 503000		275000 265000 257000 249000 241000	151000 153000 155000 156000 157000
	165000 163000	e59000 e60000		e33000 e32500 e32500 e32000 e32000	e27000 e27000 e27000 e26500 e26500	e24000 e24000 e24000	e23000 e23000	e45000 e49000 e55000 e61000 e68000	525000 541000 552000 550000 534000	293000	228000 222000 215000	163000 173000 182000 185000 181000
18 19		e59000 e59000 e58000		e31500 e31500 e31000 e31000 e31000	e26500 e26500 e26000 e26000 e26000	e23500	e23000 e23000 e23000		502000	279000 270000	207000 211000 219000	176000 173000 169000 163000 157000
22 23 24	e126000 e121000	e56000 e55000 e55000 e54000 e53000	e39000 e39000 e38000 e38000 e38000	e30500 e30500 e30500 e30000 e30000	e26000 e25500 e25500 e25500 e25500	e23500 e23500 e23500	e23000 e23500	e200000 e300000 e320000 314000 281000	474000 463000	255000 253000 247000 241000 237000	237000 247000 256000 255000 242000	152000 147000 143000 140000 139000
27 28	e111000 e106000	e52000 e51000 e51000 e50000 e49000	e37000 e37000 e37000 e36000 e36000 e36000	e30000 e29500 e29500 e29500 e29000 e29000	e25000 e25000 e25000	e23500 e23500	e24500 e25000 e25500 e26000	279000 297000 325000 376000 409000 428000	349000	235000 251000 288000 301000 307000 326000	211000 198000	139000 140000 140000 138000 136000
MEAN MAX MIN AC-FT1	164500 244000 87000 10120000 .84	49000 3461000 .30	41390 48000 36000 2545000 .21	.16	1486000 .14	23920 25000 23000 1471000 .12	1392000 .12	151600 428000 26500 9319000 .77	454000 552000 314000 27020000 2.31	268300 326000 232000 16500000 1.37	241100 340000 175000 14820000 1.23	157100 185000 136000 9348000 .80
IN.	.97	.33	.24	.19	.14	.14	.13 YEARS 197	.89	2.58	1.58	1.42	.89
MEAN MAX (WY) MIN (WY)	99620 164500 2001 75340 1993						22220 28170 1981 14800 1997					163100 229500 2000 116500 1989
SUMMAR		TICS	FOR	2000 CAL	ENDAR YEA	R	FOR 2001					
ANNUAI ANNUAI HIGHES LOWEST LOWEST ANNUAI MAXIMU MAXIMU	TOTAL T MEAN ST ANNUAL T ANNUAL T DAILY T DAILY M SEVEN-D JM PEAK T DINOSE	MEAN MEAN MEAN EAN AY MINIMUI LOW TAGE	М 1	53092800 145100 508000 a20000 20000	Jun 2 Apr Apr	3 5 5	50130000 137300 552000 b23000 23000 554000 50. 99430000 99323000 58000 23500	Jun 1 Mar 2 Mar 2 Jun 1 17 Jun 1	.3 29 29 3 3	119800 144400 93910 823000 c14000 14000 827000 593	Jun Apr Apr Jun .60 Jun	1992 1996 11 1992 14 1997 14 1997 11 1992 11 1992
ANNUAI ANNUAI 10 PEF 50 PEF 90 PEF	RUNOFF L RUNOFF RCENT EXC RCENT EXC	(CFSM) (INCHES) EEDS EEDS EEDS	1	10. 303000 60000 20200	74 06		9. 323000 58000 23500	70 50		278000 56000 22000	.61 .29	

From Apr. 5 to 20 From Mar. 29 to Apr. 22 From Apr. 14 to 25 Estimated

15453500 YUKON RIVER NEAR STEVENS VILLAGE--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1970-72, 1978, and 2001.

DATE	TIME	ATION, CROSS SECTION (FT FM R BK)	ANCE (US/CM)	WHOLE FIELD (STAND- ARD UNITS)		(MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	CENT SATUR- ATION)
JUN								
02	1820	350.0	123	7.4	9.0	762	10.2	88
02	1824	750.0	125	7.5	9.0	762	10.1	87
02	1827	1070	124	7.6	9.0	762	10.1	87
02	1835	1420	126	7.5	9.0	762	10.1	87
02	1839	1790	126	7.6	9.0	762	10.0	86
18	1657	340.0 644.0	180	7.8	14.5	764	9.5	93
18		644.0	178	7.8	14.5	764	9.5	93
18	1703		181	7.8	14.5	764	9.5	93
18	1706		181	7.8	14.5		9.5	93
18 JUL	1709	1708	181	7.8	14.5	764	9.5	93
13	1512	1710	205	7.6	15.5	761	9.0	90
13	1514	1320	206	7.6	15.5	761	8.9	90
13	1515	970.0	206	7.6	15.5	761	8.9	90
13		640.0	206	7.6	15.5	761	8.9	90
13	1519	340.0	206	7.6	15.5	761	8.9	89
AUG								
14	1642	1700	228	7.6	14.0		9.5	92
14	1644	1360	226	7.7	14.0		9.6	93
14	1646	1050	225	7.7	14.0		9.6	93
14		700.0	227	7.8	14.0		9.6	93
14	1652	350.0	228	7.8	14.0	762	9.4	91
SEP	1255	200 0	020	п. с	7 -	752	11 1	0.4
21 21	1355 1357		232 233	7.6 7.7	7.5 7.5	753 753	11.1 11.2	94 94
21	1357	1020	233	7.7	7.5	753 753	11.2	94
21		1350	233	7.8	7.5	753	11.1	94
21	1402	1670	233	7.8	7.5	753	11.1	94
22	1102	_0,0	200		,			

						DIS-			QUALITY		PH		
						CHARGE,			ASSUR-	SPE-	WATER		
						INST.			ANCE	CIFIC	WHOLE		
						CUBIC	SAM-		DATA	CON-	FIELD	TEMPERA	TEMP-
				STREAM	GAGE	FEET	PLING	SAMPLER	INDICA-	DUCT-	(STAND-	TURE	ERATURE
				WIDTH	HEIGHT	PER	METHOD,	TYPE	TOR	ANCE	ARD	AIR	WATER
		MEDIUM	SAMPLE	(FT)	(FEET)	SECOND	CODES	(CODE)	CODE	(US/CM)	UNITS)	(DEG C)	(DEG C)
DATE	TIME	CODE	TYPE	(00004)	(00065)	(00061)	(82398)	(84164)	(99111)	(00095)	(00400)	(00020)	(00010)
OCT													
02	1550	9	9	2020	35.44	260000	20	8010	30	206	8.1	-0.5	2.5
MAR													
21	1630	9	9	1950		23400	20	8010	30	267	7.2	-23.0	.00
JUN		_	_										
02	1800	9	9	2190	45.09	423000	20	3055	30	125	7.5	15.0	9.2
18	1620	9	7	2250	48.12	480000	20	3055	30	180	7.8	24.0	14.3
JUL													
13	1430	9	9	1970	38.25	296000	20	3055	100	206	7.6	21.0	15.5
AUG													
14	1515	9	9	2130	33.57	214000	20	3055	30	227	7.7		14.1
SEP													
21	1230	9	9	2100	28.96	152000	20	3055	100	233	7.7	15.0	7.5

15453500 YUKON RIVER NEAR STEVENS VILLAGE--Continued

DATE	TURBID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	UV ABSOR- BANCE 254 NM, WTR FLT (UNITS/ CM) (50624)	UV ABSOR- BANCE 280 NM, (UNITS/ CM) (61726)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN DIS- OLVED (MG/L) (00300)	OXY- GEN, DIS- OLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CAL- CIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFL- TRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 02	64	120			763	13.2	97	100	28.5	7.79	2.5	73	.91
MAR 21	1.9	3.7	.045	.032	787	8.5	56	150	42.3	10.1	2.8	113	1.13
JUN 02 18		150 180	.636 .236	.480 .174	762 764	10.1 9.5	88 93	66 89	19.7 25.7	3.98 5.92	.7 1.5	48 64	.89 .92
JUL 13 AUG		300	.178	.131	761	8.9	89	98	27.2	7.19	2.1		1.21
14 SEP		4.3	.120	.086	762	9.5	92	110	30.3	8.14	2.7	80	1.53
21		27	.167	.121	753	11.1	94	110	30.1	8.14	2.4	79	.94
DATE OCT	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CO3	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SUL- FATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLOU- RIDE DIS- SOLVED (MG/L AS F) (00950)	SIL- ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOL- IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOL- IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)
02 MAR	88	.0	72	28.1	.6	<.1	7.3	135	119	.001	.062	<.002	.42
21 JUN	138	. 0	113	33.1	1.1	E.1	6.8	173	166	.001	<.005	<.002	E.05
02 18 JUL	58 77	.0	47 64	12.9 22.1	. 5 . 4	E.1 <.2	3.2 4.6	115 121	71 99	.002	.021	.004	.92 .72
13 AUG				28.3	. 4	E.1	5.7	131	116	.002	.040	.003	. 29
14 SEP	95	. 0	78	33.5	.8	. 2	6.1	152	131	<.001	.029	.012	. 41
21	95	.0	78	35.2	.5	<.2	6.0	145	130	.001	.028	.002	. 23
DATE	NITRO- GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	NITRO- GEN, TOTAL, SED- IMNT SUSP, (WEIGHT PERCNT) (62845)	PHOS-PHORUS SEDI-MENT SUSP. PER-CENT (30282)	ALUMI - NUM SED, SUS PER- CENT (30221)	ALUMI- NUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY SED, SUSP. (UG/G) (29816)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC SED, SUSP. (UG/G) (29818)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM SED. SUSP. (UG/G) (29820)
OCT 02	.20	.313	E.003	<.001	.08	.09	6.6	22	. 9	.14	11	<2.0	850
MAR 21	E.07	.016	E.003	.070		.09		2		.09		.3	
JUN 02	.43	.590	.015	<.007	.13	.09	6.6	65	1.3	.11	11	.5	900
18 JUL	. 23	.523	.016	<.007	.12	.10	6.5	23	1.5	.19	12	.6	980
13 AUG	.14	.489	<.006	<.007	<.10	.10	6.4	26	1.7	.19	12	.6	800
14 SEP	. 22	.467	<.006	<.007	<.10	.10	6.7	20	1.9	.20	14	.6	760
21	.13	.161	<.006	<.007	<.10	.08	6.2	20	1.4	.15	11	.6	950

15453500 YUKON RIVER NEAR STEVENS VILLAGE--Continued

DATE	BAR- IUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM SED, SUSP. (UG/G) (29822)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON DIS- SOLVED (UG/L AS B) (01020)	CAD- MIUM SED. SUSP. (UG/G) (29826)	CAD- MIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM SED. SUSP. (UG/G) (29829)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT SEDI- MENT SUSP. (UG/G) (35031)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER SED. SUSP. (UG/G) (29832)	COP- PER, DIS- SOLVED (UG/L AS CU) (01040)	IRON SEDI- MENT SUSP. PERCENT (30269)
OCT 02	42.1	1	<.06	<16	. 5	E.03	96	E.5	17	.12	35	2.6	3.8
MAR 21	64.8		<.06	9		< .04		<.8		.07		.8	
JUN 02 18 JUL	32.6 44.3	2 2	<.06 <.06	E5 E6	.6 .6	E.02 E.03	100 99	<.8 <.8	15 18	.22	28 36	4.4 2.9	3.6 3.8
13 AUG	43.8	2	<.06	8	.6	E.03	96	<.8	18	.10	37	2.8	4.0
14 SEP	49.5	1	<.06	20	.6	< .04	96	<.8	17	.07	36	2.0	4.3
21	41.8	1	<.06	7	.7	<.04	100	<.8	15	.08	28	2.0	3.2
DATE	IRON DIS- SOLVED (UG/L AS FE) (01046)	LEAD SED. SUSP. (UG/G) (29836)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITH- IUM SEDI- MENT SUSP. (UG/G) (35050)	LITH- IUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE SED. SUSP. (UG/G) (29839)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MER- CURY SED, SUSP. (UG/G) (29841)	MOLYB- DENUM SED. SUSP. (UG/G) (29843)	MOLYB- DENUM, DIS- SOLVED (UG/LAS MO) (01060)	NICKEL SED. SUSP. (UG/G0 (29845)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM SED. SUSP. (UG/G) (29847)
OCT 02	50	10	E.04	24	<3.9	730	4.5	.04	<5	.9	53	2.03	М
MAR 21	10		<.08		2.5		8.9			1.1		. 25	
JUN 02 18 JUL	230 60	17 13	.14	32 33	2.4	720 840	18.5 4.8	.05 .15	2 2	. 4	48 54	3.15 1.49	M M
13 AUG	20	11	E.07	30	2.5	770	2.4	.08	3	.9	55	1.22	M
14 SEP	М	13	<.08	29	3.0	780	3.1	.04	3	1.2	52	.38	М
21	50	10	.17	24	2.9	740	6.2	.03	3	. 9	53	.93	М
DATE	SELE- NIUM DIS- SOLVED (UG/L AS SE) (01145)	SILVER SED. SUSP. (UG/G) (29850)	SIL- VER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM SEDI- MENT SUSP, (UG/G) (35040)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM SUS SED (UG/G) (49955)	TITA- NIUM SEDI- MENT SUSP. PERCENT (30317)	VANA- DIUM SED, SUSP. (UG/G) (29853)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC SED. SUSP. (UG/G) (29855)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URA- NIUM SEDI- MENT SUSP. (UG/G) (35046)	URA- NIUM NATU- RAL DIS- SOLVED (UG/L AS U) (22703)
OCT 02	<2.4	.500000	<1.0	310	127	<50	.420	120	<10.0	100	<1	<50	.75
MAR 21	.6		<1.0		176				.5		2		1.03
JUN 02 18 JUL		.500000	<1.0 <1.0	260 270	61.2 97.0	<50 <50	.440 .470	140 140	1.1	110 130	1 1	<50 <50	.37 .64
13 AUG	.4 M	I	<1.0	290	123	<50	.440	120	.5	110	1	<50	.75
14 SEP	<.3 <	.500000	<1.0	310	145	<50	.430	130	. 4	110	<1	<50	.84
21	.5 <	.500000	<1.0	350	128	<50	.400	120	. 5	110	2	<50	.76

15453500 YUKON RIVER NEAR STEVENS VILLAGE--Continued

	CARBON, ORGANIC DIS- SOLVED (MG/L AS	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS	CARBON, ORGANIC PARTICU- LATE TOTAL (MG/L AS	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS	CARBON SED, SUSP.	CARBON, ORGANIC SUS- PENDED, TOTAL	NITRO- GEN, PARTICU- LATE WAT FLT SUSP (MG/L AS	SEDI- MENT SUSP., FLOW- THROUGH CENTRIF	SEDI- MENT, SUS- PENDED	SEDI- MENT, DIS- CHARGE, SUS- PENDED	SED SUSP. SIEVE DIEM. % FINER THAN
DATE	C) (00681)	C) (00688)	C) (00689)	C) (00694)	PERCENT (30244)	PERCENT (50465)	N) (49570)	(MG/L) (50279)	(MG/L) (80154)	(T/DAY) (80155)	.062 MM
DAIL	(00681)	(00688)	(00689)	(00694)	(30244)	(50405)	(49570)	(50279)	(80154)	(80155)	(70331)
OCT											
02	E7.2				2.1	1.1	.059	305	302	212000	80
MAR											
21	1.9	<.1	.2	.3			<.022		11	695	
JUN											
02	17	2.2	5.1	7.3	2.2	1.5	.418	599	622	710000	71
18 JUL	6.6	2.4	5.7	8.1	2.2	1.3	.371	483	504	653000	79
13	5.9	1.1	6.1	7.2	2.6	1.1	.133	502	507	405000	79
AUG											
14	3.5	4.4	6.0	10	2.5	1.0	.184	453	466	269000	83
SEP											
21	5.0	.6	1.7	2.3	2.0	1.2	.077	164	168	68900	48

15477730 LIESE CREEK NEAR BIG DELTA

LOCATION.--Lat $64^{\circ}26'53''$, long $144^{\circ}52'59''$, in $SW^{1}/_{4}$ sec.25, T.5 S., R.14 E., (Big Delta B-2 quad), Hydrologic Unit 19040503, on right bank, 1.7 mi upstream from mouth, 1.5 mi east of Pogo Mine Camp site, and 34 mi northeast of Big Delta.

DRAINAGE AREA.--1.08 mi².

PERIOD OF RECORD. -- October 1999 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 2200 ft above sea level, from topographic map.

REMARKS.--Records fair except for discharges below 0.2 ${\rm ft}^3/{\rm s}$, estimated daily discharges and the period July 30 to September 24 which are poor.

		DISCHARG	E, CUBIC	FEET PER			YEAR OCTOBER	R 2000 T	O SEPTEMBEI	R 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
2 e 3 e 4 e	90 80 70 62	e.14 e.14 e.12	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.36 e.30 e.28 e.26 e.24	.89 .91 1.0 1.1	.80 .97 .58 .43	2.7 2.2 2.0 1.7 1.6	. 42 . 45 . 50 . 49 . 48
7 e 8 e 9 e	56 54 52 48	e.10 e.10 e.10	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.26 e.30 e.32 e.36 e.44	1.1 2.0 3.9 1.7	1.2 3.6 2.9 1.7	1.5 1.5 1.3 1.3	. 45 . 47 . 50 . 53 . 53
12 e 13 e 14 e	:.40 :.38 :.36 :.34	e.10 e.10 e.08	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.46 e.50 e.56 e.62 e.74	.84 .72 .61 .65	1.0 .87 .77 .78 .70	1.1 1.1 1.1 .78 .69	.53 .52 .50 .46
17 e 18 e 19 e	:.32 :.30 :.30 :.28	e.08 e.08 e.08	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00		e.80 e.84 e.96 e1.1 e1.6	.60 .55 .47 .41	.53 .42 .41 .42	.66 .58 .59 .58	. 43 . 43 . 44 . 42 . 43
22 e 23 e 24 e	26 24 22 22	e.06 e.06 e.06	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.02 e.04 e.06	e2.3 e3.5 e6.6 e4.6 e3.4	.27 .22 .19 .14	.41 .36 .35 .72	.54 .57 .49 .54	. 43 . 42 . 40 . 40 . 38
27 e 28 e 29 e 30 e	20 18 18 16 16	e.04 e.02 e.02 e.00	e.00 e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.10 e.20	e2.5 2.0 1.9 .99 .87	.08 .15 .27 .44 .86	.74 1.3 1.4 5.5 5.7 3.7	.59 .59 .57 .54 .53	.35 .31 .30 .31 .30
MEAN MAX MIN MED AC-FT CFSM	.62 .37 .90 .16 .32 .23 .35	.083	0.00 .000 .00 .00 .00 .00	0.00 .000 .00 .00 .00 .00	0.00 .000 .00 .00 .00 .00	0.00 .000 .00 .00 .00 .00	.042	40.86 1.32 6.6 .24 .80 81 1.22 1.41	23.62 .79 3.9 .08 .63 47 .73	41.44 1.34 5.7 .35 .78 82 1.24 1.43	30.41 .98 2.7 .44 .66 60 .91	13.00 .43 .53 .30 .43 .26 .40
STATISTICS	OF MON	THLY MEAN	DATA FOR	WATER YE	ARS 2000	- 2001	, BY WATER Y	EAR (WY)			
MAX (WY) 2 MIN .	.20 .37 001 032	.083 2001 .000	.000 .000 2000 .000 2000	.000 .000 2000 .000 2000	.000 .000 2000 .000 2000	.000 .000 2000 .000 2000	.021 .042 2001 .000 2000	1.47 1.62 2000 1.32 2001	1.55 2.31 2000 .79 2001	.86 1.34 2001 .39 2000	1.58 2.17 2000 .98 2001	.93 1.43 2000 .43 2001
SUMMARY ST	'ATISTICS	S	FOR 20	00 CALEND	AR YEAR		FOR 2001 WAT	ER YEAR		WATER YE	ARS 2000	- 2001
ANNUAL TOT ANNUAL MEA HIGHEST ANN HIGHEST DA LOWEST ANN HIGHEST DA LOWEST DAI ANNUAL SEV MAXIMUM PE MAXIMUM PE MAXIMUM PE ANNUAL RUN ANNUAL RUN ANNUAL RUN 50 PERCENT	N INUAL MEAN ILLY MEAN LY MEAN ILLY MEAN IEN-DAY INAK FLOW INAK STAGIOFF (ACTIONF (ING) IN EXCEDS EXCEDS	N N N N N N N N N N N N N N N N N N N		255.69 .70 7.0 a.00 .00 507 .65 8.81 2.4 .10	May 22 Jan 1 Jan 1		164.69 .45 6.6 b.00 .00 8.0 20.32 c22.2 327 .42 5.67 1.1 .16	May 23 Nov 30 Nov 30 Jul 29 Jul 29 May 23		.56 .66 .45 7.0 .00 .00 9.6 20.39 404 .52 7.01 1.6 .06	May Oct Oct Aug Aug	2000 2001 22 2000 30 1999 30 1999 13 2000 13 2000

Jan. 1 to May 7 Nov. 30 to Apr. 21 From floodmarks backwater from ice Estimated

15477740 GOODPASTER RIVER NEAR BIG DELTA

LOCATION.--Lat $64^{\circ}27'02''$, long $144^{\circ}56'32''$, in $SE^{1}/_{4}$ sec.27, T.5 S., R.14 E., (Big Delta B-2 quad), Hydrologic Unit 19040503, on left bank, 0.2 mi northwest of Pogo Mine Camp site, 7 mi upstream from Central Creek, and 34 mi northeast of Big Delta.

DRAINAGE AREA. -- 677 mi².

PERIOD OF RECORD. -- August 1997 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1350 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCHAN	.GE, CODI	C PEBI FER		MEAN VA	LUES	. 2000 10	OBF I BMD	EK ZUUI		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	844	e160	e130	e96	e86	e80	e74	e310	773	888	2730	591
2	682	e160	e130	e96	e86	e80	e74	e300	959	814	1940	579
3 4	606 580	e150 e140	e120 e120	e94 e94	e86 e84	e80 e78	e74 e74	e280 e270	1090 1090	708 594	1530 1310	796 834
5	e570	e140	e120	e94	e84	e78	e74	e260	1470	538	1150	785
6	e560	e140	e120	e94	e84	e78	e74	e260	1490	950	1040	772
7	e540	e130	e120	e92	e84	e78	e74	e260	1530	1740	939	778
8 9	e520 e500	e130 e130	e120 e120	e92 e92	e84 e84	e78 e78	e74 e74	e270 e280	2260 1380	1660 1310	850 787	772 757
10	e450	e140	e120	e92	e84	e78	e76	e290	1070	981	740	724
11	e410	e140	e120	e92	e82	e78	e76	e310	967	785	715	691
12	e390	e140	e110	e92	e82	e78	e76	e320	943	665	812	664
13	e380	e150	e110	e90 e90	e82	e78	e78	354	899	590	922	639
14 15	e360 e340	e150 e150	e110 e110	e90 e90	e82 e82	e76 e76	e78 e80	424 602	740 818	658 894	860 811	607 575
16	e320		e110	e90	e82	e76	e82	717	772	755	779	555
17	e310	e150 e150	e110	e90	e82	e76	e84	721	630	633	762	541
18	e290	e150	e110	e90	e82	e76	e86	781	578	561	744	524
19	e280	e150	e100	e90	e80	e76	e90	816	570	511	724	507
20	e270	e150	e100	e90	e80	e76	e96	906	542	477	701	492
21	e260	e150	e100	e90	e80	e76	e105	1030	489	461	663	483
22	e250	e150	e100	e90	e80	e74	e120	1130	450	506	634	470
23 24	e240 e230	e140 e140	e100 e100	e88 e88	e80 e80	e74 e74	e140 e150	1440 1450	432 400	524 837	623 633	460 443
25	e230	e140	e98	e88	e80	e74	e170	1020	362	1580	687	431
26	e220	e140	e98	e88	e80	e74	e200	836	332	1480	737	418
27	e210	△13N	_ Q Q	e88	e80	e74	e230	848	671	1220	707	404
28	e200	e130	e98 e98	e88 e88	e80	e74	e260	1120	643	1490	665	388
29 30	e190 e180	e130 e130	e98 e96	e88 e86		e74 e74	e290 e300	821 590	655 782	2170 3600	623 595	373 372
31	e170		e96	e86		e74		667		3260	588	
TOTAL	11582	4280	3392	2808	2302	2368	3533	19683	25787	33840	28001	17425
MEAN	374	143	109	90.6	82.2	76.4	118	635	860 2260	1092	903	581
MAX	844 170	143 160 130	130	96	86	80	300 74	1450	2260	3600	2730	834
MIN	170	130	96	86	2302 82.2 86 80 4570 .12	74		260	332	461	588	372
AC-FT CFSM	22970 .55	8490 .21	6730	5570	4570	4700	7010 .17	39040 .94	51150 1.27	67120 1.61	55540 1.33	34560 .86
IN.	.64	.24	.19	.15	.13	.13	.19	1.08	1.42	1.86	1.54	.96
		CTATTCTTCC	OF MONT	UIV MEAN I	NTN EOD W	.TED VE	DC 1007 _	2001 PV	MATED V	EAR (WY) #		
			OF MONI	DDI MEAN I	MIA FOR W	HIEK IEM	IKS 1997 -	2001, BI	WAIER I	EAR (WI) #		
MEAN	218	105 143 2001	77.3	54.9	42.8	39.6	109	830	991	735	983	596
MAX	374 2001	143	109 2001	90.6 2001	82.2 2001	76.4 2001	155	1262 2000	1993 2000	1092 2001	1651	985 2000
(WY) MIN	149	2001 90.1	2001 57 5	28.9	13.6	10.5	1998 73.1	635	468	419	2000 590	421
(WY)	2000	1999	2001 57.5 1999	1999	1999	1999	2000	2001	1998	1999	1999	1999
SUMMARY	STATIST:	ICS	FOR 2	000 CALENI	DAR YEAR	FO	R 2001 WAT	ER YEAR		WATER YEAR	S 1997	- 2001 #
ANNUAL	TOTAL			227564			155001					
ANNUAL	MEAN			622			425			406		
	ANNUAL I									595		2000
	ANNUAL M			7500	Aug 14		3600	Jul 30		272 7500	λιια	1999 14 2000
	DAILY ME			a29	Feb 18		b74	Mar 22		c10		8 1999
ANNUAL	SEVEN-DA	Y MINIMUM		29	Feb 18		74	Mar 22		10	Mar	8 1999
	PEAK FL						4120	Jul 30		10100		14 2000
	PEAK STAR			451400			15.86 307400	5 Jul 30		19.49 294400	Aug	14 2000
	RUNOFF (.92	?		.63	3		.60		
ANNUAL	RUNOFF (INCHES)		12.50			8.52	2		8.16		
	CENT EXCE			1630			929			981		
	CENT EXCE			195 31			220 78			180 33		
> 0 1 LIC				<i>3</i> ±			, 0			33		

See Period of Record; partial years used in monthly statistics

From Feb. 18 to Mar. 1 From Mar. 22 to Apr. 9 From Mar 8 to 24, 1999

Estimated

15477761 UPPER WEST CREEK NEAR BIG DELTA

LOCATION.--Lat $64^{\circ}25'01''$, long $144^{\circ}50'55''$, in SW $^{1}/_{4}$ sec.6, T.6 S., R.15 E., (Big Delta B-2 quad), Hydrologic Unit 19040503, on right bank, 5.1 mi upstream from mouth, 3.4 mi southeast of Pogo Mine Camp site, and 31 mi northeast of Big Delta.

DRAINAGE AREA.--1.64 mi².

PERIOD OF RECORD. -- October 1999 to current year.

 ${\tt GAGE.--Water-stage\ recorder.\ Elevation\ of\ gage\ is\ 1,900\ ft\ above\ sea\ level,\ from\ topographic\ map.}$

REMARKS.--Records fair except for estimated daily discharges, which are poor.

		DISCHA	RGE, CUBIC	FEET PER		WATER YE Y MEAN V		ER 2000 T	O SEPTEMB	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3	2.3 2.2 2.2	e1.6 e1.6	e.98 e.96 e.92	e.52 e.50 e.50	e.38 e.36 e.36	e.28 e.28 e.28	e.24 e.24 e.24	.44 .36 .35	.38 .37 .37	.72 .76 .75	1.6 1.4 1.4	1.2 1.3 1.2
4 5	2.2 e2.1	e1.5 e1.5	e.90 e.86	e.50 e.48	e.36 e.34	e.28 e.28	e.24 e.24	.33	.42 .52	.74 .75	1.3	1.2
6 7 8 9	e2.1 e2.1 e2.1 e2.0 e2.0	e1.5 e1.5 e1.4 e1.4		e.48 e.48 e.48	e.34 e.34 e.34	e.28 e.28 e.28	e.24 e.24 e.24 e.24	.38 .36 .43 .45	.47 .50 .61	.82 1.0 1.2 1.0	1.4 1.4 1.5 1.5	1.2 1.1 1.1
10 11	e2.0 e1.9	e1.4 e1.4	e.76 e.74	e.46 e.46	e.32 e.32	e.28 e.28	e.24 e.24	.42	.49	.91	1.5	1.1
12 13 14 15	e1.9 e1.9 e1.9 e1.9	e1.4 e1.4 e1.4 e1.4	e.72 e.72 e.70 e.68	e.46 e.44 e.44	e.32 e.32 e.32 e.32	e.26 e.26 e.26 e.26	e.24 e.24 e.24 e.26	. 42 . 48 . 48 . 47	.50 .51 .72 .73	.87 .87 .87 .87	1.5 1.5 1.5 1.5	1.1 1.1 1.0 1.0
16 17 18 19 20	e1.9 e1.9 e1.9 e1.9		e.66 e.66 e.64 e.62 e.62	e.44 e.44 e.42 e.42 e.42	e.32 e.30 e.30 e.30 e.30	e.26 e.26 e.26 e.26 e.26	e.26 e.26 e.26 e.26 e.26	.56 .50 .45 .53	.61 .57 .56 .56	.84 .83 .83 .83	1.5 1.5 1.4 1.4	.99 .96 .96 .95
21 22 23 24 25	e1.9 e1.8 e1.8 e1.8	e1.3 e1.2 e1.2 e1.2 e1.1	e.60 e.60 e.58 e.58 e.56	e.42 e.42 e.42 e.42 e.40	e.30 e.30 e.30 e.30 e.28	e.26 e.26 e.26 e.24 e.24	e.28 e.28 e.30 e.32 e.36	.84 .81 1.2 .77	.56 .58 .59 .60	.88 .89 .92 1.2 1.1	1.4 1.4 1.3 1.4	.92 .91 .91 .90
26 27 28 29 30 31	e1.7 e1.7 e1.7 e1.7 e1.7	e1.1 e1.1 e1.1 e1.0 e1.0	e.54 e.54 e.54 e.52	e.40 e.40 e.40 e.40 e.38 e.38	e.28 e.28 e.28	e.24 e.24 e.24 e.24 e.24	e.40 .54 .52 .55 .53	.48 .42 e.42 e.40 e.40 e.38	.62 .68 .68 .68	1.1 1.2 1.2 1.6 1.6	1.3 1.3 1.3 1.3 1.3	.87 .87 .86 .85 .83
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	59.6 1.92 2.3 1.7 1.9 118 1.17	39.8 1.33 1.6 1.0 1.3 79 .81	21.52 .69 .98 .52 .66 43 .42	13.68 .44 .52 .38 .44 .27 .27	8.92 .32 .38 .28 .32 .18 .19	8.12 .26 .28 .24 .26 .16 .16	9.00 .30 .55 .24 .26 .18 .18	15.42 .50 1.2 .33 .44 .31 .30	16.77 .56 .73 .37 .56 .33 .34	30.50 .98 1.6 .72 .88 60 .60	43.6 1.41 1.6 1.2 1.4 86 .86	30.60 1.02 1.3 .83 1.0 61 .62
		STATISTI	CS OF MONT	THLY MEAN	DATA FOR	WATER Y	EARS 2000	- 2001, 1	BY WATER	YEAR (WY)		
MEAN MAX (WY) MIN (WY)	1.24 1.92 2001 .55 2000	.87 1.33 2001 .41 2000	.52 .69 2001 .34 2000	.36 .44 2001 .28 2000	.28 .32 2001 .25 2000	.25 .26 2001 .23 2000	.28 .30 2001 .25 2000	.75 1.00 2000 .50 2001	1.11 1.67 2000 .56 2001	1.22 1.45 2000 .98 2001	2.12 2.83 2000 1.41 2001	2.04 3.06 2000 1.02 2001
SUMMARY	STATISTI	:CS	FOR 2	000 CALENI	AR YEAR	FC	OR 2001 WA	ATER YEAR		WATER YE	ARS 2000	- 2001
LOWEST	MEAN 'ANNUAL M ANNUAL ME	AN		457.32 1.25	Aug 30		297.53 .82 .92 1.03 .2000 .82 .2001					
LOWEST ANNUAL MAXIMUM MAXIMUM	DAILY MEA SEVEN-DAY PEAK FLO PEAK STA	AN MINIMUM W AGE		a.23 .23	b.24 Mar 24 .24 Mar 24 c1.8 Jul 29 c20.57 Jul 29 c20.69 Oct 1 590				.82 2001 4.6 Aug 30 2000 a.23 Mar 4 2000 .23 Mar 4 2000 5.0 Aug 30 2000 20.98 Aug 30 2000 20.98 Aug 30 2000 668			
ANNUAL ANNUAL 10 PERC 50 PERC 90 PERC	RUNOFF (C RUNOFF (I ENT EXCEE ENT EXCEE ENT EXCEE	CFSM) CNCHES) CDS CDS		.76 10.37 2.7 1.2 .23			.50 6.75 1.6 .62	2		.56 7.63 1.9 .54		

From Mar. 4 to Apr. 9 From Mar. 24 to Apr. 14 Maximum discharge 2.3 ${\rm ft}^3/{\rm s}$, Oct.1, gage height 20.69 ft, occurred on falling stage following peak of Aug. 30, 2000; maximum independent peak discharge, 1.8 ${\rm ft}^3/{\rm s}$, gage height 20.57 ft, Jul. 29 Estimated

15477768 SONORA CREEK ABOVE TRIBUTARY NEAR BIG DELTA

LOCATION.--Lat $64^{\circ}23'22''$, long $144^{\circ}46'40''$, in $SW^{1}/_{4}$ sec.16, T.6 S., R.15 E. (Big Delta B-2 quad), Hydrologic Unit 19040503, on right bank, 2.5 miles upstream from mouth, 6.3 miles southeast of Pogo Mine Camp site, and 35 miles northeast of Big Delta.

DRAINAGE AREA. -- 6.05 mi².

PERIOD OF RECORD. -- May, 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1650 ft above sea level, from topographic map.

EXTREMES FOR CURRENT YEAR. --

Water year 2000--Maximum discharge for period May through September, 34 ${
m ft}^3/{
m s}$, May 22, 2000 gage height 21.17 ft; minimum not determined, occurs during winter; minumum observed outside period of record, 0.58 ${
m ft}^3/{
m s}$ March 21, 2000 result of discharge measurement.

REMARKS.--Records good except for estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

					DAIL	TI MEDIA AL	CHORP					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1								e3.2	9.7	2.0	e2.4	10
2								e3.2	8.2	2.0	e2.4	11
3								e5.2	8.2 9.3	2.0	e2.3	11
								e5.2 e6.8		2.4	e2.3 e2.2	10
4									8.6			
5								e5.0	6.7	2.4	e2.2	9.6
6								e3.4	5.5	2.4	e2.2	9.5
7								e6.0	4.8	2.2	e2.3	9.3
8								e9.0	4.0	2.1	e2.3	9.5
9								e7.0	3.7	2.1	e2.4	9.2
10								e5.0	3.8	2.4	e2.6	9.2
11								e3.7	3.6	3.8	e3.8	9.6
12								e2.8	3.1	3.4	e9.0	9.6
13								3.8	2.8	2.8	e22	9.5
14								3.7	2.5	2.5	e16	9.5
15								3.4	2.4	2.5	e10	9.8
13								3.4	2.4	2.4	EIZ	9.0
16								4.1	2.5	2.3	9.6	9.6
17								5.5	2.4	2.4	8.1	9.5
18								8.3	2.5	2.4	8.8	9.3
19								9.1	3.0	2.8	11	9.1
20								16	2.6	3.3	9.7	8.9
21						10.6		17	2.4	e2.9	8.8	8.8
22								21	3.6	e2.6	9.8	8.9
23								17	3.9	e2.8	9.9	8.9
24								27	2.9	e3.0	9.1	8.7
25								21	2.5	e2.8	9.9	9.1
0.5				±0 =				- 4	0.4	0.5	1.0	1.0
26				‡0.7				14	2.4	e2.7	12	10
27								10	2.4	e2.6	10	9.5
28								7.6	2.4	e2.7	9.2	9.0
29								8.1	2.3	e2.5	8.8	8.6
30								9.1	2.1	e2.5	11	8.4
31								10		e2.4	11	
TOTAL								276.8	118.6	80.1	242.7	282.6
MEAN								8.93	3.95	2.58	7.83	9.42
MAX								27	9.7	3.8	22	11
MIN								2.8	2.1	2.0	2.2	8.4
MED								7.0	3.0	2.5	9.0	9.5
AC-FT								549	235	159	481	561
CFSM								1.48	.65	.43	1.29	1.56
IN.								1.70	.73	.49	1.49	1.74
								1				

[‡] Result of discharge measurement e Estimated

15477768 SONORA CREEK ABOVE TRIBUTARY NEAR BIG DELTA--Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAILY MEAN VALUES												
OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	
7.9 7.1 e6.6 e6.4 e6.4	e5.2 4.6 4.6 4.6 4.4	3.2 3.2 3.0 2.9 2.9	2.3 2.3 2.3 2.2 2.2	1.7 1.7 1.7 1.8 1.7	1.6 1.6 1.6 1.6	1.4 1.4 1.3 1.3	3.5 2.8 2.5 2.4 2.3	2.6 2.5 2.4 2.8 5.0	e4.2 e4.0 e3.4 e3.0 e3.0	7.7 6.3 5.8 5.4 5.1	4.3 4.6 4.7 4.6 e4.4	
e6.2 e6.2 e6.0 e6.0 e5.8	4.2 4.1 4.1 4.1 4.1	3.0 3.1 3.1 3.2 3.1	2.2 2.1 2.1 2.1 2.1	1.7 1.7 1.7 1.7	1.5 1.5 1.5 1.5	1.4 1.4 1.4 1.4	2.8 2.5 2.5 3.1 3.1	3.6 3.5 5.1 3.8 3.2	e3.6 e6.6 e8.2 e5.8 e4.6	4.9 4.7 4.5 4.4	e4.1 e4.1 e4.0 e3.9 e3.8	
e5.6 e5.4 e5.4 e5.6 e5.8	4.1 4.0 4.0 3.9 3.9	2.9 2.8 2.7 2.7 2.7	2.1 2.0 2.0 2.0 1.9	1.6 1.6 1.7 1.7	1.5 1.5 1.5 1.5	1.4 1.4 1.4 1.4	3.1 3.4 4.0 4.3 5.0	2.8 2.6 2.6 2.8 3.3	e4.2 e4.0 e3.8 e3.4 e3.2	4.5 4.8 4.7 4.7	e3.8 e3.7 e3.6 e3.6 e3.6	
e6.0 e6.2 e6.4 e6.4 e6.2	3.9 3.8 3.7 3.7	2.5 2.4 2.4 2.4 2.4	2.0 2.0 2.0 2.0 2.1	1.7 1.7 1.7 1.7	1.5 1.5 1.6 1.5	1.4 1.4 1.4 1.4	5.1 4.8 5.0 5.6 6.8	2.8 2.5 2.4 2.3 2.2	e3.0 e2.9 e2.8 e2.7 e2.8	4.7 4.6 4.5 4.5	e3.6 e3.5 e3.5 e3.5 e3.5	
e6.2 e6.2 e6.0 e6.0 e5.8	3.6 3.6 3.5 3.5	2.5 2.5 2.4 2.3 2.2	2.0 2.0 2.0 2.0 1.9	1.6 1.6 1.6 1.7	1.5 1.5 1.5 1.4	1.7 2.7 3.3 3.1 3.2	7.5 7.3 12 8.0 5.0	2.2 2.1 2.1 2.0 e1.9	e2.8 e2.8 e3.4 e6.2 5.6	4.4 4.3 4.5 4.8 4.7	e3.4 e3.4 e3.3 e3.3 e3.2	
e5.8 e5.6 e5.6 e5.4 e5.4 e5.2	3.4 3.3 3.2 3.2 3.2	2.1 2.2 2.2 2.2 2.1 2.2	1.9 1.9 1.8 1.8 1.8	1.6 1.6 1.6 	1.4 1.4 1.3 1.4 1.4	3.7 3.9 3.7 4.0 3.9	3.9 3.6 3.2 2.8 2.7 2.7	e1.9 e2.4 e2.8 e3.0 e4.0	5.1 5.8 6.2 7.8 8.9 8.2	4.6 4.5 4.5 4.4 4.4	3.1 3.1 3.0 3.0 3.1	
7.9 5.2	5.2 3.2	81.5 2.63 3.2 2.1 2.5 162 .43	62.9 2.03 2.3 1.8 2.0 125 .34	46.9 1.68 1.8 1.6 1.7 93 .28	46.1 1.49 1.6 1.3 1.5 91 .25	60.9 2.03 4.0 1.3 1.4 121 .34	133.3 4.30 12 2.3 3.5 264 .71	85.2 2.84 5.1 1.9 2.6 169 .47	142.0 4.58 8.9 2.7 4.0 282 .76 .87	148.6 4.79 7.7 4.3 4.6 295 .79	110.3 3.68 4.7 3.0 3.6 219 .61 .68	
	STATISTIC	S OF MONT	HLY MEAN	DATA FOR	WATER YE	ARS 2000	- 2001, B	Y WATER	YEAR (WY)#	:		
6.03 6.03 2001 6.03 2001	3.89 3.89 2001 3.89 2001	2.63 2.63 2001 2.63 2001	2.03 2.03 2001 2.03 2001	1.68 1.68 2001 1.68 2001	1.49 1.49 2001 1.49 2001	2.03 2.03 2001 2.03 2001	6.61 8.93 2000 4.30 2001	3.40 3.95 2000 2.84 2001	3.58 4.58 2001 2.58 2000	6.31 7.83 2000 4.79 2001	6.55 9.42 2000 3.68 2001	
STATIST	ICS			FOR 20	01 WATER	YEAR			WATER YE	ARS 2000	- 2001#	
MEAN ANNUAL M ANNUAL M DAILY ME DAILY ME SEVEN-DAY PEAK FLL ANEOUS L RUNOFF (RUNOFF (RUNOFF (ENT EXCEL ENT EXCEL	EAN EAN AN Y MINIMUM DW AGE DW FLOW AC-FT) CFSM) INCHES) EDS			1 2 242	3.35 .2 M. 11.3 M. 1.3 M. 4 M. 10.47 M. 10.47 M. 10.55 10.55		3.35 3.35 27 a1.3 1.3 34 21.17 c0.58 2420	May 2 Mar 2 Mar 3 May 2 May 2	2001 2001 24 2000 28 2001 30 2001 22 2000 22 2000 21 2000			
	7.9 7.1 e6.6 e6.4 e6.4 e6.4 e6.4 e6.2 e6.2 e6.0 e6.0 e5.8 e5.6 e5.4 e5.6 e5.4 e6.2 e6.2 e6.0 e6.0 e5.8 e5.66 e5.4 e6.1 e6.1 e6.1 e6.1 e6.1 e6.1 e6.1 e6.1	7.9 e5.2 7.1 4.6 e6.6 4.6 e6.6 4.6 e6.4 4.4 e6.2 4.2 e6.2 4.1 e6.0 4.1 e5.8 4.1 e5.8 4.1 e5.4 4.0 e5.4 4.0 e5.4 4.0 e5.6 3.9 e5.8 3.9 e6.0 3.9 e6.2 3.8 e6.4 3.7 e6.2 3.6 e6.2 3.6 e6.2 3.6 e6.3 3.7 e6.2 3.6 e6.4 3.7 e6.2 3.7 e7.9 6.2 3.6 e8.9 3.9	7.9 e5.2 3.2 7.1 4.6 3.2 e6.6 4.6 3.0 e6.4 4.6 2.9 e6.4 4.4 2.9 e6.2 4.1 3.1 e6.0 4.1 3.1 e6.0 4.1 3.1 e6.0 4.1 3.1 e5.6 4.1 2.9 e5.4 4.0 2.8 e5.4 4.0 2.7 e5.6 3.9 2.7 e5.8 3.9 2.7 e5.8 3.9 2.7 e6.0 3.9 2.7 e6.2 3.8 2.4 e6.4 3.7 2.4 e6.2 3.8 2.4 e6.4 3.7 2.4 e6.2 3.6 2.5 e6.0 3.6 2.5 e6.0 3.6 2.5 e6.0 3.6 2.5 e5.8 3.9 2.7 e6.1 3.7 2.4 e6.2 3.6 2.5 e6.2 3.8 2.4 e6.4 3.7 2.4 e6.2 3.6 2.5 e6.3 3.9 2.7 e6.3 3.9 2.7 e7.9 5.2 3.2 e8.8 3.4 2.1 e8.8 1.6 8 8 8.5 e8.9 2.7 e8.8 3.9 2.7 e9.9 3.9 2.9 e9.9 3.9 2.9 e1.0 3.8 2.1 e5.6 3.3 2.2 e5.8 3.9 2.7 e5.8 3.9 2.7 e6.0 3.8 2.4 e6.0 3.5 2.3 e5.8 3.5 2.2 e5.8 3.4 2.1 e5.6 3.3 2.2 e5.6 3.2 2.2 e5.4 3.2 2.2 e5.4 3.2 2.2 e5.5 3.2 2.2 e5.5 3.2 2.2 e5.4 3.2 2.2 e5.5 4 3.2 2.2 e5.5 5.2 3.2 2.1 e6.0 3.9 2.5 synthylogolubration of the complex of th	7.9 e5.2 3.2 2.3 7.1 4.6 3.2 2.3 e6.6 4.6 3.0 2.3 e6.6 4.6 2.9 2.2 e6.4 4.6 2.9 2.2 e6.4 4.4 2.9 2.2 e6.2 4.1 3.1 2.1 e6.0 4.1 3.1 2.1 e5.8 4.1 3.1 2.1 e5.8 4.1 3.1 2.1 e5.6 4.1 2.9 2.1 e5.4 4.0 2.8 2.0 e5.4 4.0 2.8 2.0 e5.4 4.0 2.7 2.0 e5.8 3.9 2.7 1.9 e6.0 3.9 2.7 2.0 e6.2 3.8 2.4 2.0 e6.4 3.7 2.4 2.0 e6.4 3.7 2.4 2.0 e6.4 3.7 2.4 2.0 e6.4 3.7 2.4 2.0 e6.5 3.8 2.4 2.0 e6.4 3.7 2.4 2.0 e6.5 3.9 2.7 1.9 e6.0 3.6 2.5 2.0 e6.1 3.7 2.4 2.0 e6.2 3.8 2.4 2.0 e6.4 3.7 2.4 2.0 e6.5 3.9 2.7 3.9 e7.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2	OCT NOV DEC JAN FEB 7.9 e5.2 3.2 2.3 1.7 7.1 4.6 3.2 2.3 1.7 e6.6 4.6 3.0 2.3 1.7 e6.4 4.6 2.9 2.2 1.8 e6.4 4.4 2.9 2.2 1.7 e6.2 4.2 3.0 2.2 1.7 e6.2 4.1 3.1 2.1 1.7 e6.0 4.1 3.1 2.1 1.7 e6.0 4.1 3.2 2.1 1.7 e5.8 4.1 3.1 2.1 1.7 e5.6 4.1 2.9 2.1 1.7 e5.6 3.9 2.7 2.0 1.7 e5.8 3.9 2.7 2.0 1.7 e6.0 3.9 2.5 2.0 1.7 e6.2 3.8 2.4 2.0 1.7 e6.4 3.7 2.4 2.0 1.7 e6.2 3.8 2.4 2.0 1.7 e6.4 3.7 2.4 2.0 1.7 e6.2 3.6 2.5 2.0 1.7 e6.2 3.6 2.5 2.0 1.6 e6.2 3.7 2.4 2.1 1.7 e6.2 3.6 2.5 2.0 1.6 e6.2 3.6 2.5 2.0 1.6 e6.2 3.6 2.5 2.0 1.6 e6.2 3.7 2.4 2.1 1.7 e6.8 3.9 2.7 2.9 1.9 e7.9 2.1 1.7 e8.8 3.4 2.1 1.9 1.6 e8.9 3.6 2.5 2.0 1.6 e8.1 3.5 2.2 1.9 1.7 e5.8 3.4 2.1 1.9 1.6 e6.0 3.6 2.4 2.0 1.7 e5.8 3.4 2.1 1.9 1.6 e6.0 3.6 2.4 2.0 1.7 e5.8 3.4 2.1 1.9 1.6 e6.0 3.6 2.4 2.0 1.7 e5.8 3.4 2.1 1.9 1.6 e6.0 3.6 2.4 2.0 1.7 e7.9 5.2 3.2 2.1 1.8 1.6 e5.4 3.2 2.2 1.9 1.7 e5.8 3.4 2.1 1.9 1.6 e5.8 3.8 2.4 2.0 1.7 e6.0 3.8 9 2.63 2.03 1.68 e5.4 3.2 2.2 1.9 1.7 e5.8 3.4 2.1 1.9 1.6 e5.4 3.2 2.1 1.8 1.6 e5.4 3.2 2.2 1.9 1.7 e5.8 3.4 2.1 1.9 1.6 e5.4 3.2 2.1 1.8 1.6 e5.4 3.3 1.68 e5.4 3.3 1.68 e5.4 3.3 1.68 e5.5 2.0 1.7 2.0 e5.8 3.8 2.0 3.0 3.0 3.0 3.0 3.0 3	OCT NOV DEC JAN FEB MAR 7.9 e5.2 3.2 2.3 1.7 1.6 e6.6 4.6 3.0 2.3 1.7 1.6 e6.6 4.6 3.0 2.3 1.7 1.6 e6.4 4.6 2.9 2.2 1.8 1.6 e6.4 4.4 2.9 2.2 1.7 1.6 e6.2 4.2 3.0 2.2 1.7 1.5 e6.0 4.1 3.1 2.1 1.7 1.5 e6.0 4.1 3.1 2.1 1.7 1.5 e5.8 4.1 3.1 2.1 1.7 1.5 e5.8 4.1 3.1 2.1 1.7 1.5 e5.6 4.1 2.9 2.1 1.7 1.5 e5.6 3.9 2.7 2.0 1.7 1.5 e5.6 3.9 2.7 2.0 1.7 1.5 e6.0 3.9 2.7 2.0 1.7 1.5 e6.2 3.8 2.4 2.0 1.7 1.5 e6.4 3.7 2.4 2.0 1.7 1.5 e6.4 3.7 2.4 2.0 1.7 1.5 e6.3 3.9 2.7 2.0 1.7 1.5 e6.6 3.9 2.7 1.9 1.7 1.5 e6.3 3.9 2.7 1.9 1.7 1.5 e6.4 3.7 2.4 2.0 1.7 1.5 e6.5 3.8 2.4 2.0 1.7 1.5 e6.6 3.3 2.2 2.1 1.7 1.5 e6.2 3.6 2.5 2.0 1.6 1.5 e6.3 3.6 2.5 2.0 1.7 1.5 e6.2 3.6 2.5 2.0 1.7 1.5 e6.2 3.6 2.5 2.0 1.6 1.5 e6.2 3.6 2.5 2.0 1.6 1.5 e6.3 3.2 2.2 1.9 1.7 1.5 e6.0 3.9 2.7 2.4 2.0 1.7 1.5 e6.0 3.9 2.7 2.4 2.0 1.7 1.5 e6.2 3.6 2.5 2.0 1.6 1.5 e6.2 3.6 2.5 2.0 1.6 1.5 e6.3 3.2 2.2 1.9 1.7 1.5 e7.0 2.0 1.7 1.5 e7.0 2.0 1.7 1.5 e8.8 3.4 2.1 1.9 1.6 1.4 e8.4 3.2 2.2 1.8 1.6 e8.3 3.4 2.1 1.9 1.6 1.4 e8.5 3.2 2.2 1.8 1.6 e8.4 3.2 2.2 1.8 1.6 e8.3 3.8 2.6 2.0 3 1.68 1.49 e8.4 3.2 2.2 1.8 1.6 1.3 e8.4 3.2 2.1 1.8 1.6 1.3 e8.5 4 3.2 2.1 1.8 1.6 1.3 e8.4 1.4 Many 1.3 1.8 1.6 e8.8 116.8 81.5 62.9 46.9 46.1 e8.8 116.8 81.5 62.9 46.9 46.1 e8.9 3.8 2.6 3 2.0 3 1.68 1.49 2001 2001 2001 2001 2001 2001 2001 STATISTICS FOR MONTHLY MEAN DATA FOR WATER YER e8.0 3 3.89 2.63 2.03 1.68 1.49 2001 2001 2001 2001 2001 2001 2001 STATISTICS FOR MONTHLY MEAN DATA FOR WATER YER e8.8 3.89 2.63 2.03 1.68 1.49 2001 2001 2001 2001 2001 2001 2001 STATISTICS FOR MONTHLY MEAN DATA FOR WATER YER e8.0 3 3.89 2.63 2.03 1.68 1.49 2001 2001 2001 2001 2001 2001 2001 STATISTICS FOR MONTHLY MEAN DATA FOR WATER YER e8.8 3.89 2.63 2.03 1.68 1.49 2001 2001 2001 2001 2001 2001 2001 STATISTICS FOR MONTHLY MEAN BATA FOR WATER YER e8.8 3.89 2.63 2.03 1.68 1.49 2001 2001 2001 2001 2001 2001 2001 STATISTICS FOR MONTHLY	OCT NOV DEC JAN FEB MAR APR 7.9 e5.2 3.2 2.3 1.7 1.6 1.4 7.1 4.6 3.2 2.3 1.7 1.6 1.4 e6.6 4.6 4.6 3.0 2.3 1.7 1.6 1.4 e6.6 4.4 6.6 2.9 2.2 1.8 1.6 1.3 e6.4 4.4 2.9 2.2 1.7 1.6 1.3 e6.2 4.1 3.1 2.1 1.7 1.5 1.4 e6.2 4.1 3.1 2.1 1.7 1.5 1.4 e6.0 4.1 3.1 2.1 1.7 1.5 1.4 e6.0 4.1 3.2 2.1 1.7 1.5 1.4 e6.0 3.9 2.7 2.0 1.7 1.5 1.4 e5.6 3.9 2.7 2.0 1.7 1.5 1.4 e5.6 3.9 2.7 1.9 1.7 1.5 1.4 e6.2 3.8 2.4 2.0 1.6 1.5 1.4 e6.4 3.7 2.4 2.0 1.7 1.5 1.4 e6.6 3.9 2.7 1.9 1.7 1.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.5 1.4 e6.2 3.8 2.4 2.0 1.7 1.5 1.4 e6.3 3.9 2.7 1.9 1.7 1.5 1.4 e6.4 3.7 2.4 2.0 1.7 1.5 1.4 e6.5 3.9 2.7 1.9 1.7 1.5 1.4 e6.6 3.9 2.7 1.9 1.7 1.5 1.4 e6.1 3.7 2.4 2.0 1.7 1.5 1.4 e6.2 3.8 2.4 2.0 1.7 1.5 1.4 e6.3 3.7 2.4 2.0 1.7 1.5 1.4 e6.6 3.9 2.7 2.9 1.7 1.5 1.4 e6.1 3.7 2.4 2.0 1.7 1.5 1.4 e6.2 3.6 2.5 2.0 1.6 1.5 1.7 e6.2 3.6 2.5 2.0 1.6 1.5 2.7 e6.2 3.6 2.5 2.0 1.6 1.5 3.3 e6.3 3.8 2.4 2.0 1.7 1.5 1.4 e6.2 3.6 2.5 2.0 1.6 1.5 2.7 e6.3 3.6 2.5 2.0 1.6 1.5 2.7 e6.0 3.9 2.7 2.4 2.1 1.7 1.5 1.4 e6.0 3.9 2.5 2.3 2.0 1.7 1.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.5 1.4 e6.1 3.7 2.4 2.0 1.7 1.5 1.4 e6.2 3.6 2.5 2.0 1.6 1.5 2.7 e6.2 3.7 2.4 2.1 1.7 1.5 1.4 e6.3 3.6 2.5 2.0 1.6 1.5 2.7 e6.3 3.6 2.5 2.0 1.6 1.5 2.7 e6.3 3.6 2.5 2.0 1.6 1.5 2.7 e6.0 3.6 2.5 2.0 1.6 1.7 2.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.9 1.7 2.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.9 1.7 2.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.9 1.7 2.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.7 2.5 1.4 e6.0 3.9 2.5 2.0 1.7 1.9 1.7 2.5 1.4 e6.0 3.0 3.8 2.2 2.1 1.8 1.6 1.4 3.7 e5.6 3.3 3.8 2.2 1.9 1.6 1.4 4.0 2.0 e6.0 3.6 2.5 2.0 1.6 1.5 2.7 e6.0 3.8 3.8 2.6 3 2.0 3 1.68 1.49 2.0 3 e6.0 3.8 8 2.6 3 2.0 3 1.68 1.49 2.0 3 e6.0 3 3.8 9 2.6 3 2.0 3 1.68 1.49 2.0 3 e7.9 5.2 3.2 2.1 1.8 1.6 1.9 3.8 3.8 ENDALLY MEAN 2	OCT NOV DEC JAN FEB MAR APR MAY 7.9 e5.2 3.2 2.3 1.7 1.6 1.4 3.5 6.6 4.6 3.2 2.3 1.7 1.6 1.4 2.8 6.6 4.6 3.0 2.3 1.7 1.6 1.3 2.4 6.6.4 4.6 2.9 2.2 1.8 1.6 1.3 2.4 6.6.4 4.6 2.9 2.2 1.7 1.6 1.3 2.4 6.6.2 4.2 3.0 2.2 1.7 1.6 1.3 2.4 6.6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 6.0 4.1 3.1 2.1 1.7 1.5 1.4 3.1 6.5 6 4.1 2.9 2.1 1.6 1.5 1.4 3.1 6.5 6 4.1 2.9 2.1 1.6 1.5 1.4 3.1 6.5 6 4.1 2.9 2.1 1.6 1.5 1.4 3.1 6.5 6 4.1 2.9 2.1 1.7 1.5 1.4 2.5 6.0 4.0 2.8 2.0 1.6 1.5 1.4 3.1 6.6 4 0.0 2.7 2.0 1.7 1.5 1.4 3.1 6.6 4 0.0 2.7 2.0 1.7 1.5 1.4 4.0 6.6 3.9 2.7 1.9 1.7 1.5 1.4 4.0 6.6 3.9 2.7 2.0 1.7 1.5 1.4 4.0 6.6 3.9 2.7 2.0 1.7 1.5 1.4 5.0 6.6 4 3.7 2.4 2.0 1.7 1.5 1.4 4.0 6.6 3.9 2.5 2.0 1.7 1.5 1.4 5.0 6.6 4 3.7 2.4 2.0 1.7 1.5 1.4 6.8 6.4 3.7 2.4 2.0 1.7 1.5 1.4 6.8 6.6 4 3.7 2.4 2.0 1.7 1.5 1.4 6.8 6.6 4 3.7 2.4 2.0 1.7 1.5 1.4 6.8 6.6 3.5 2.2 1.7 1.5 1.4 4.8 6.6 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.6 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.6 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.6 3.3 2.2 2.1 1.9 1.7 1.5 1.4 4.0 6.8 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.9 3.8 3.9 2.7 1.9 1.9 1.7 1.5 1.4 2.5 6.0 3.6 2.4 2.0 1.7 1.5 1.4 4.8 6.6 3.2 2.2 1.8 1.6 1.3 3.7 3.9 6.0 3.6 2.4 2.0 1.7 1.5 1.4 4.0 6.8 6.0 3.6 2.4 2.0 1.6 1.5 2.7 7.3 6.0 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.0 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.0 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.0 3.6 2.5 2.0 1.6 1.5 2.7 7.3 6.0 3.8 9 2.6 2.2 1.8 1.6 1.3 3.7 3.9 6.0 3.8 9 2.6 2.2 1.8 1.6 1.3 3.7 3.9 6.6 3.2 2.2 1.8 1.6 1.3 3.7 3.9 6.6 3.3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0 3 8.9 3 6.0 3 3.8 9 2.6 3 2.0 3 1.6 8 1.4 9 2.0	OCT NOV DEC JAN FEB MAR APR MAY JUN 7.9 e5.2 3.2 2.3 1.7 1.6 1.4 3.5 2.6 7.1 4.6 3.2 2.3 1.7 1.6 1.4 2.8 2.5 e6.4 4.6 3.0 2.2 1.7 1.6 1.3 2.5 2.4 e6.4 4.6 2.9 2.2 1.8 1.6 1.3 2.5 2.4 e6.4 4.1 2.9 2.1 1.7 1.5 1.4 2.8 3.6 e6.2 4.2 3.0 2.2 1.7 1.5 1.4 2.5 3.6 e6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 3.6 e6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 5.1 e6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 5.1 e5.8 4.1 3.1 2.1 1.7 1.5 1.4 2.5 5.1 e5.6 4.1 2.9 2.1 1.6 1.5 1.4 2.5 3.5 e5.6 3.9 2.7 2.0 1.6 1.5 1.4 3.1 2.8 e5.6 4.0 2.8 2.0 1.6 1.5 1.4 2.5 3.5 e5.6 3.9 2.7 2.0 1.7 1.5 1.4 3.1 2.8 e5.8 3.9 2.7 2.0 1.7 1.5 1.4 3.4 2.6 e5.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e5.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.0 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.1 3.8 2.4 2.0 1.6 1.5 1.4 4.3 2.8 e6.8 4 2.0 3.0 2.1 1.7 1.5 1.4 4.3 2.8 e5.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e5.8 3.9 2.7 1.9 1.7 1.5 1.4 4.3 2.8 e6.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.8 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.8 3.9 2.7 1.9 1.7 1.5 1.4 4.3 2.8 e6.9 3.9 2.7 2.0 1.7 1.5 1.4 4.3 2.8 e6.1 3.8 2.4 2.0 1.7 1.5 1.4 4.3 2.8 e6.2 3.8 2.4 2.0 1.7 1.5 1.4 4.3 2.8 e6.4 3.7 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.5 3.8 3.7 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.6 3.8 2.1 1.7 1.5 1.4 4.8 2.2 e6.6 3.8 2.1 1.7 1.5 1.4 4.8 2.2 e6.7 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.8 3.9 2.7 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.9 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.2 e6.0 3.6 2.5 2.0 1.6 1.5 2.7 7.3 2.1 e6.0 3.6 2.4 2.0 1.7 1.5 1.5 1.4 4.8 2.2 e6.0 3.6 2.5 2.0 1.6 1.5 2.7 7.3 2.1 e6.0 3.6 2.4 2.0 1.7 1.5 1.4 3.9 3.6 62.4 e6.0 3.8 2.2 2.2 1.8 1.7 1.9 1.6 1.4 3.9 3.9 2.9 e8.8 3.1 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1	OCT NOV DEC JAN FEB MAR AFR MAY JUN JUL 17.9 e5.2 3.2 2.3 1.7 1.6 1.4 2.8 2.5 e4.2 7.1 4.6 3.0 2.3 1.7 1.6 1.4 2.8 2.5 e4.2 6.6 6.4 4.6 2.9 2.3 1.7 1.6 1.3 2.5 2.4 e3.4 e6.6 4.4 6.2 2.9 2.2 1.8 1.6 1.3 2.5 2.4 e3.4 e6.6 4.4 6.2 2.9 2.2 1.7 1.5 1.5 1.3 2.5 2.4 e3.4 e6.4 4.4 2.9 2.2 1.7 1.5 1.5 1.4 2.8 3.0 6 e3.0 e6.2 4.1 3.1 2.1 1.7 1.5 1.4 2.8 3.6 e3.0 e6.2 4.1 3.1 2.1 1.7 1.5 1.4 2.8 3.6 e3.6 6.6 e6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.8 3.6 e3.6 e6.6 e6.0 4.1 3.1 2.1 1.7 1.5 1.4 2.5 3.5 5.6 e6.6 e6.0 4.1 3.2 2.1 1.7 1.5 1.4 3.1 3.8 e5.8 e5.8 e5.8 e5.8 e5.8 e5.8 e5.8 e5	OCT NOV DEC JAN FEB MAR AFR NAY JUN JUL AUG 7.9 e5.2 3.2 2.3 1.7 1.6 1.4 2.8 2.5 e4.0 6.3 e6.6 4.6 3.0 2.3 1.7 1.6 1.3 2.5 2.6 e4.2 7.7 e6.6 4.6 3.0 2.3 1.7 1.6 1.3 2.5 2.4 e3.4 5.8 e6.4 4.6 2.9 2.2 1.7 1.6 1.3 2.5 2.4 e3.4 5.8 e6.4 4.4 2.9 2.2 1.7 1.6 1.3 2.5 2.4 e3.4 5.8 e6.4 4.1 3.1 2.1 1.7 1.5 1.4 2.8 8.3 6.6 2.6 e4.9 e6.2 4.1 3.1 2.1 1.7 1.5 1.4 2.8 8.3 6.6 2.6 4.9 e6.2 4.1 3.1 2.1 1.7 1.5 1.4 2.5 3.5 e6.6 4.9 e6.8 4.1 3.1 2.1 1.7 1.5 1.4 2.5 3.5 e6.6 4.9 e6.8 4.1 3.1 2.1 1.7 1.5 1.4 2.5 3.5 e6.6 4.9 e6.8 4.1 3.1 2.1 1.7 1.5 1.4 3.1 3.2 2.6 e4.6 4.5 e5.8 4.1 3.1 2.1 1.7 1.5 1.4 3.1 3.2 2.6 e4.6 4.5 e5.6 4.1 2.9 2.7 1.6 1.5 1.4 3.1 3.2 2.6 e4.6 4.4 e5.6 4.1 2.9 2.7 1.1 1.7 1.5 1.4 3.1 3.2 2.6 e4.6 4.4 e5.6 4.1 2.9 2.1 1.6 1.5 1.4 3.1 3.2 2.6 e4.6 4.4 e5.6 4.1 2.9 2.1 1.6 1.5 1.4 3.1 3.2 2.6 e4.6 4.4 e5.6 4.1 2.9 2.1 1.6 1.5 1.4 3.1 3.2 2.6 e4.6 4.8 e5.6 3.9 2.7 2.0 1.7 1.5 1.4 3.1 3.2 2.8 e4.0 4.8 e5.6 3.9 2.7 2.0 1.7 1.5 1.4 3.0 3.3 e3.2 e4.6 e5.8 3.9 2.7 2.0 1.7 1.5 1.4 3.0 3.3 e3.2 e4.6 e6.4 3.7 2.4 2.0 1.7 1.5 1.4 4.8 2.9 2.8 e3.0 4.7 e6.2 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.9 2.8 e3.4 4.7 e6.2 3.8 2.4 2.0 1.7 1.5 1.4 4.8 2.9 2.9 e3.4 e3.4 e3.4 e3.4 e6.6 e5.8 e3.9 2.7 2.9 e3.6 e3.8 e3.4 e3.4 e3.4 e6.6 e5.8 e3.9 2.7 1.9 e3.7 e3.8 e3.8 e3.4 e3.4 e3.8 e3.4 e3.4 e3.4 e3.4 e3.4 e3.4 e3.4 e3.4	

[#] See Period of Record; partial years used in monthly statistics
a Mar. 28, 31, and Apr. 3-5
b Mar. 25 to Apr. 11
c Minimum observed outside period of record, result of discharge measurement
e Estimated

15477770 SONORA CREEK NEAR BIG DELTA

LOCATION.--Lat $64^{\circ}22'40''$, long $144^{\circ}48'41''$, in $SE^{1}/_{4}$ sec.20, T.6 S., R.15 E. (Big Delta B-2 quad), Hydrologic Unit 19040503, on left bank, 1.2 mi upstream from mouth, 6.5 mi southeast of Pogo Mine Camp site, and 34 mi northeast of Big Delta.

DRAINAGE AREA. -- 10.5 mi².

PERIOD OF RECORD. -- August 1997 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1450 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor.

REVISED RECORDS.--WDR AK-00-1: 1998 (M).

REVISIONS.-- The estimated maximum discharge for the water year 2000 has been revised to 61 ft^3/s , May 22, 2000, gage height undetermined. Revised daily discharges, in cubic feet per second, for the period May 20 to 26, 2000 are given below. These figures supersede those published in reports for 2000.

May 21...e31 May 22...e38 May 23...e31 May 24...e49 May 25...e38 May 26...e25

Dai	137	Discharges	,

May 20...e29

May	20629	May 21		May 22.	630	May 23	.esi me	ау 24с	a) May	23630	may .	20623
May	NTH 2000 ar 2000	TOTAL 507.9 1043.8		MEAN 16.4 5.91		AX 49 49	MIN 4.9 .60	1	C-FT 010 290	CFSI 1.5	б	IN 1.80 7.66
		DISCHAF	RGE, CUBI	C FEET PE		, WATER Y LY MEAN V	EAR OCTOBI ALUES	ER 2000 T	O SEPTEME	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e13 e11 e11 e10 e10	e6.2 e6.0 e5.8 e5.6 e5.4	e2.9 e2.9 e2.8 e2.8	e1.9 e1.9 e1.9 e1.9	e1.5 e1.5 e1.5 e1.5	e1.4 e1.4 e1.4 e1.4	e1.2 e1.2 e1.2 e1.2	e5.2 e4.4 e3.8 e3.6 e3.4	3.6 3.2 3.1 3.6 8.1	5.4 4.9 4.2 3.9 3.9	13 10 9.1 8.4 8.1	6.6 7.3 7.5 7.2 7.0
6 7 8 9 10	e9.8 e9.6 e9.6 e9.4 e9.2	e5.4 e5.2 e5.0 e4.9 e4.7	e2.7 e2.7 e2.6 e2.6 e2.5	e1.8 e1.8 e1.8 e1.8	e1.5 e1.5 e1.5 e1.5	e1.3 e1.3 e1.3 e1.3	e1.2 e1.2 e1.2 e1.2 e1.2	e3.6 e3.8 e4.0 e4.3 e4.8	5.6 5.5 9.4 6.4 4.8	4.7 7.8 13 9.2 7.1	7.6 7.2 6.9 6.8 6.7	6.9 7.0 7.0 6.9 6.7
11 12 13 14 15	e9.0 e8.8 e8.6 e8.6 e8.8	e4.6 e4.5 e4.4 e4.2 e4.1	e2.5 e2.5 e2.4 e2.4	e1.8 e1.7 e1.7 e1.7	e1.5 e1.5 e1.4 e1.4	e1.3 e1.3 e1.3 e1.3	e1.2 e1.2 e1.2 e1.3 e1.3	e5.4 e6.0 e6.8 8.3 9.3	4.0 3.6 3.5 3.8 4.8	6.0 5.4 5.3 5.2 4.9	6.9 7.6 7.2 7.2 7.0	6.7 6.6 6.3 6.1 6.0
16 17 18 19 20	e9.0 e9.2 e9.4 e9.2 e9.0	e4.0 e3.9 e3.8 e3.7 e3.7	e2.3 e2.3 e2.3 e2.2	e1.7 e1.7 e1.7 e1.6 e1.6	e1.4 e1.4 e1.4 e1.4	e1.3 e1.3 e1.3 e1.3	e1.3 e1.4 e1.5 e1.6 e1.9	9.2 8.9 8.9 10	3.8 3.3 3.0 2.9 2.8	4.7 4.4 4.3 4.2 4.5	7.2 7.0 6.9 6.8 6.6	6.0 5.9 5.7 5.7
21 22 23 24 25	e8.8 e8.6 e8.2 e8.0 e7.8	e3.6 e3.5 e3.4 e3.4 e3.3	e2.2 e2.2 e2.1 e2.1 e2.1	e1.6 e1.6 e1.6 e1.6	e1.4 e1.4 e1.4 e1.4	e1.3 e1.3 e1.3 e1.3 e1.2	e2.4 e3.0 e3.6 e4.6 e5.8	14 14 22 15 9.0	2.7 2.6 2.5 2.5 2.4	4.5 4.4 4.9 8.1 8.5	6.5 6.6 7.2 8.1 7.8	5.6 5.5 5.4 5.3
26 27 28 29 30 31	e7.6 e7.2 e7.0 e6.8 e6.6 e6.4	e3.2 e3.1 e3.1 e3.0 e3.0	e2.1 e2.0 e2.0 e2.0 e2.0 e2.0	e1.6 e1.6 e1.6 e1.5 e1.5	e1.4 e1.4 e1.4 	e1.2 e1.2 e1.2 e1.2 e1.2 e1.2	e6.2 e6.4 e6.6 e6.6 e6.4	6.4 5.5 4.9 4.1 4.0 3.9	2.4 3.3 3.7 3.8 5.1	7.6 8.9 9.8 13 15	7.6 7.3 7.1 6.8 6.7	5.1 5.0 4.9 5.0 5.0
TOTAL MEAN MAX MIN AC-FT CFSM IN.	275.2 8.88 13 6.4 546 .85	127.7 4.26 6.2 3.0 253 .41 .45	73.5 2.37 2.9 2.0 146 .23 .26	52.8 1.70 1.9 1.5 105 .16	40.4 1.44 1.5 1.4 80 .14	40.1 1.29 1.4 1.2 80 .12	77.5 2.58 6.6 1.2 154 .25	229.5 7.40 22 3.4 455 .71 .81	119.8 3.99 9.4 2.4 238 .38 .42	211.7 6.83 15 3.9 420 .65	232.6 7.50 13 6.5 461 .71 .82	183.2 6.11 7.5 4.9 363 .58
		STATISTIC	S OF MONT	CHLY MEAN	DATA FOR	R WATER YE	EARS 1997	- 2001, H	BY WATER	YEAR (WY)#	<u> </u>	
MEAN MAX (WY) MIN (WY)	3.81 8.88 2001 1.63 2000	2.15 4.26 2001 1.31 2000	1.36 2.37 2001 .98 1998	1.00 1.70 2001 .71 1998	.82 1.44 2001 .56 1998	.73 1.29 2001 .45 1998	1.61 2.58 2001 .91 1998	9.19 16.4 2000 4.27 1998	4.90 7.65 2000 1.74 1998	4.76 6.83 2001 3.11 1998	7.94 16.0 2000 4.29 1998	7.37 18.5 2000 2.69 1999

[#] See Period of Record; partial years used in monthly statistics

e Estimated

15477770 SONORA CREEK NEAR BIG DELTA--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR	YEAR	FOR 2001 WAT	ER YEAR	WATER YEARS	S 1997 - 2001#
ANNUAL TOTAL	2516.80		1664.0			
ANNUAL MEAN	6.88		4.56		3.88	
HIGHEST ANNUAL MEAN					5.91	2000
LOWEST ANNUAL MEAN					2.07	1998
HIGHEST DAILY MEAN	49 Ma	ay 24	22	May 23	e49	May 24 2000
LOWEST DAILY MEAN	a.60 Fe	eb 15	b1.2	Mar 25	.40	Mar 7 1998
ANNUAL SEVEN-DAY MINIMUM	.60 Fe	eb 15	1.2	Mar 25	.40	Mar 7 1998
INSTANTANEOUS PEAK FLOW			26	May 23	e61	May 22 2000
INSTANTANEOUS PEAK STAGE			29.05	May 23	С	-
INSTANTANEOUS PEAK STAGE			d30.04	Apr 21	de33.4	May 12 2000
ANNUAL RUNOFF (AC-FT)	4990		3300	_	2810	=
ANNUAL RUNOFF (CFSM)	.65		.43		.37	
ANNUAL RUNOFF (INCHES)	8.92		5.90		5.01	
10 PERCENT EXCEEDS	19		8.9		8.4	
50 PERCENT EXCEEDS	4.3		3.8		2.2	
90 PERCENT EXCEEDS	.60		1.3		.60	

[#] See Period of Record; partial years used in monthly statistics a From Feb. 15 to Apr. 14
b From Mar. 25 to Apr. 13
c Not determined
d Backwater from snow and ice
e Estimated

15477790 CENTRAL CREEK NEAR BIG DELTA

LOCATION.--Lat $64^{\circ}22'37''$, long $144^{\circ}56'35''$, in $SE^{1}/_{4}$ sec. 22, T. 6 S., R. 14 E. (Big Delta B-2 quad), Hydrologic Unit 19040503, on right bank, 0.5 mi upstream from mouth, 5 mi south of Pogo Mine Camp site, and 31 mi northeast of Big Delta.

DRAINAGE AREA.--115 mi².

PERIOD OF RECORD. -- August 1997 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1250 ft above sea level, from topographic map.

REMARKS.--Records fair except for estimated daily discharges, which are poor.

		DISCHAR	GE, CUBI	C FEET PEF		WATER YE MEAN VA	AR OCTOBER LUES	2000 TO	SEPTEMBI	ER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e90 e68 e66 e64 e62	e36 e36 e35 e34 e33	e23 e22 e22 e21 e21	e12 e12 e12 e12 e12	e9.6 e9.6 e9.6 e9.4 e9.4	e7.8 e7.8 e7.8 e7.6 e7.6	e6.4 e6.2 e6.2 e6.2 e6.2	36 32 29 25 23	e82 e84 85 81 172	174 143 143 85 68	282 187 145 126 117	66 66 82 82 77
6 7 8 9 10	e62 e60 e58 e52 e48	e32 e31 e31 e31 e31	e20 e20 e19 e19 e18	e12 e12 e12 e12 e12	e9.4 e9.2 e9.2 e9.2 e9.0	e7.6 e7.6 e7.4 e7.4 e7.4	e6.2 e6.2 e6.2 e6.2 e6.2	27 27 28 33 36	148 139 262 163 104	106 204 298 216 134	105 93 84 77 73	76 77 82 85 80
11 12 13 14 15	e44 e40 e38 e38 e40	e32 e32 e32 e33 e33	e18 e18 e17 e17 e17	e12 e12 e12 e12 e12	e9.0 e8.8 e8.8 e8.8 e8.6	e7.4 e7.4 e7.2 e7.2 e7.2	e6.4 e6.4 e6.6 e6.6 e6.8	33 34 47 61 85	75 62 56 78 116	95 73 61 59 82	70 80 85 82 77	75 71 67 63 61
16 17 18 19 20	e42 e42 e40 e39 e38	e33 e32 e32 e32 e31	e16 e16 e15 e15	e11 e11 e11 e11	e8.6 e8.6 e8.4 e8.4 e8.4	e7.2 e7.0 e7.0 e7.0 e7.0	e6.8 e7.0 e7.0 e7.2 e7.4	99 104 114 124 155	79 56 44 38 34	68 54 48 43 39	76 74 72 68 63	59 57 55 54 52
21 22 23 24 25	e38 e37 e37 e36 e36	e31 e30 e30 e29 e28	e15 e14 e14 e14 e13	e11 e11 e11 e11	e8.2 e8.2 e8.2 e8.2 e8.0	e6.8 e6.8 e6.6 e6.6	e7.8 e8.6 e11 e19 e26	190 228 348 311 193	30 27 25 23 21	40 44 47 92 141	60 59 59 102 103	52 50 49 47 46
26 27 28 29 30 31	e37 e38 e38 e36 e36	e27 e26 e25 e24 e24	e13 e13 e13 e13 e13	e10 e10 e10 e10 e9.8 e9.8	e8.0 e8.0 e8.0	e6.6 e6.4 e6.4 e6.4 e6.4	30 32 34 37 37	142 131 152 106 80 81	21 145 184 111 184	127 120 151 307 382 310	105 98 91 79 73 70	45 43 41 40 41
TOTAL MEAN MAX MIN AC-FT CFSM IN.	1437 46.4 90 36 2850 .40	926 30.9 36 24 1840 .27	518 16.7 23 13 1030 .15	349.6 11.3 12 9.8 693 .10	244.8 8.74 9.6 8.0 486 .08	220.0 7.10 7.8 6.4 436 .06	372.8 12.4 37 6.2 739 .11 .12	3114 100 348 23 6180 .87	2729 91.0 262 21 5410 .79 .88	3954 128 382 39 7840 1.11 1.28	2935 94.7 282 59 5820 .82 .95	1841 61.4 85 40 3650 .53 .60
	:	STATISTICS	OF MONT	HLY MEAN	DATA FOR I	WATER YE	ARS 1997 -	2001, BY	WATER Y	EAR (WY)#		
MEAN MAX (WY) MIN (WY)	24.0 46.4 2001 13.8 2000	11.6 30.9 2001 4.71 1999	5.42 16.7 2001 .75 1999	3.30 11.3 2001 .026 1999	2.41 8.74 2001 .000 1999	1.98 7.10 2001 .000 1999	10.1 12.4 2001 4.82 2000	138 241 2000 81.6 1998	88.6 170 2000 26.3 1998	73.0 128 2001 47.8 1999	114 237 2000 70.1 1998	73.2 170 2000 37.2 1999
SUMMARY	STATISTI	CS	FOR 2	2000 CALEN	DAR YEAR	FC	OR 2001 WAT	ER YEAR		WATER YEAR	RS 1997	- 2001#
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY PEAK FLC PEAK STA RUNOFF (A	AN AN AN AN MINIMUM W AGE AC-FT) FFSM) NCHES) EDS		29838.20 81.5 918 a.00 59180 .71 9.65 254 32	Aug 13 Feb 18 Feb 18		b6.2 6.2 535	Jul 29		46.5 75.5 26.8 918 c.00 d1340 45.43 33690 .40 5.49 118 21	Aug Jan Jan Aug	8 1999 8 1999 13 2000

See Period of Record; partial years used in monthly statistics From Feb. 18 to Apr. 19 From Apr. 02 to Apr. 10 No flow during winter months most years From rating extended above 395 ft³/s Estimated

Estimated

15478040 PHELAN CREEK NEAR PAXSON

LOCATION.--Lat $63^{\circ}14'27''$, Long $145^{\circ}28'03''$, in SW $^{1}/_{4}$ sec. 28, T. 19 S., R. 12 E. (Mt.Hayes A-3 quad), Hydrologic Unit 19020102, on left bank about 1 mi downstream from terminus of Gulkana Glacier and 14.5 mi north of Paxson, Alaska.

DRAINAGE AREA.--12.2 mi²

PERIOD OF RECORD.--October 1966 to September 1978, annual maximums, water years 1984-85, October 1989 to current year. Water year 1994 not published, daily mean values of discharge are available from the computer files of the Alaska Science Center. Prior to October 1968, published as Gulkana Creek near Paxson.

GAGE.--Water-stage recorder. Datum of gage is 3,690.67 ft above sea level.

REMARKS.--Records fair except for the period July 20 to 31 and estimated daily discharges, which are poor. Large fluctuations from ice melt and alternate damming and storage release during melt season. Streamflow augmented by Gulkana Glacier and other glaciers that cover 7.5 mi² and 1.1 mi², respectively, of the drainage basin. A recording air temperature and precipitation gage at 4,860 ft above sea level, plus 3 snow and ice balance measurement sites, are located in the basin. Combined snow, ice, and water balances of the basin are published in other reports of the Geological Survey. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCH	ARGE, CUB.	IC FEET P	DAII	, WAIER I LY MEAN V		5ER 2000	IO SEPIEM	BER ZUUI		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	23 22 21 20 20	10 10 9.8 9.8 9.6	5.9 5.8 5.9 5.9 6.0	4.5 4.5 4.4 4.3 4.3	3.3 3.1 3.0 3.0 3.1	2.6 2.5 2.4 2.4 2.5	2.2 2.2 2.2 2.2 2.1	2.7 2.6 2.5 2.4 2.5	72 66 56 65 78	264 276 244 226 253	338 277 250 238 210	101 100 87 67 53
6 7 8 9 10	20 19 17 17	9.5 9.4 9.3 8.7 8.6	5.9 5.8 5.8 5.7 5.8	4.3 4.3 4.2 4.1 3.9	3.1 3.0 2.8 2.8 2.8	2.5 2.5 2.5 2.5 2.5	2.2 2.2 2.2 2.2 2.2	2.5 2.4 2.6 2.6 2.6	100 104 88 90 101	206 181 166 150 162	210 203 196 191 198	35 31 27 27 30
11 12 13 14 15	16 15 15 14	8.5 8.1 8.1 8.0 7.7	5.7 5.5 5.3 5.4 5.4	4.0 4.1 3.9 3.9 4.0	2.8 2.8 2.9 e2.9	2.5 2.5 2.5 2.4 2.4	2.2 2.2 2.2 2.1 2.0	2.6 2.9 3.3 3.7 4.2	119 152 120 122 135	152 143 154 187 211	190 191 213 230 218	30 28 27 25 25
16 17 18 19 20	14 14 13 13 e13	7.9 7.6 7.6 7.4 7.4	5.3 5.3 5.2 5.2 5.1	3.7 3.5 3.5 3.6 3.5	2.9 2.9 2.8 2.7 2.7	2.4 2.2 2.3 2.3 2.3	2.0 2.0 2.1 2.1 2.2	5.3 6.9 8.7 13 e21	128 135 140 139 193	221 223 267 259 368	249 224 224 208 215	26 36 42 39 42
21 22 23 24 25	e13 12 12 12 12	7.3 6.9 6.9 6.7 6.6	5.1 4.7 4.9 4.9	3.5 3.5 3.5 3.4 3.3	2.7 2.6 2.6 2.5 2.6	2.3 2.2 2.2 2.2 2.2	2.2 2.3 2.4 2.3 2.4	e28 e23 e17 e14 13	244 222 253 252 225	477 616 598 573 505	282 269 202 198 185	38 27 25 23 21
26 27 28 29 30 31	12 e11 e11 e11 11	6.3 6.6 6.5 6.3 6.0	4.8 4.7 4.7 4.7 4.4 4.5	3.4 3.3 3.3 3.3 3.3 3.4	2.8 2.8 2.6 	2.2 2.2 2.2 2.2 2.2 2.1	2.5 2.5 2.5 2.5 2.7	14 16 23 24 28 47	319 293 302 250 259	477 425 371 422 602 541	159 148 155 152 142 130	20 19 19 19 17
TOTAL MEAN MAX MIN AC-FT CFSM IN.	464 15.0 23 11 920 1.23 1.41	239.1 7.97 10 6.0 474 .65	164.0 5.29 6.0 4.4 325 .43	117.7 3.80 4.5 3.3 233 .31 .36	79.5 2.84 3.3 2.5 158 .23 .24	72.9 2.35 2.6 2.1 145 .19	67.3 2.24 2.7 2.0 133 .18	344.0 11.1 47 2.4 682 .91 1.05	4822 161 319 56 9560 13.2 14.70	9920 320 616 143 19680 26.2 30.25	6495 210 338 130 12880 17.2 19.80	1106 36.9 101 17 2190 3.02 3.37

e Estimated

15478040 PHELAN CREEK NEAR PAXSON--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1967 - 2001, BY WATER YEAR (WY)# 10.8 17.4 1996 2.70 4.50 1972 61.1 129 1995 2.25 16.1 48.2 251 411 MEAN 5.67 4.06 3.21 2.36 305 5.32 1996 9.57 6.87 4.00 247 460 MAX (WY) 1996 1996 1971 1971 1995 1969 1976 1972 MIN 5.55 2 50 2.00 1978 1.48 1.00 1967 1.00 1967 1.00 2.39 72.9 1975 181 73.6 14.3 1999 1978 1967 1967 1991 1992 1992 (WY) FOR 2000 CALENDAR YEAR SUMMARY STATISTICS FOR 2001 WATER YEAR WATER YEARS 1967 - 2001# ANNUAL TOTAL 20922.7 23891.5 ANNUAL MEAN HIGHEST ANNUAL MEAN 57.2 65.5 67.9 91.6 1976 LOWEST ANNUAL MEAN 43.0 1973 570 Aug 13 1997 Jan 16 1967 HIGHEST DAILY MEAN LOWEST DAILY MEAN Jul 17 616 Jul 22 1330 c1.0 a2.8 b2.0 Apr 15 Apr 12 ANNUAL SEVEN-DAY MINIMUM Apr 12 2.1 Apr 13 1.0 Jan 16 1967 MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 897 97 Jul 22 9.32 Jul 22 Aug 13 1967 Aug 13 1967 2320 11.51 d10.78 May 21 df14.70 MAXIMUM PEAK STAGE Jun 1 1967 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 41500 47390 49180 5.37 72.85 5.56 75.60 4.69 63.80 ANNUAL RUNOFF (INCHES) 224 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 223 7.6 250 6.0

2.3

2.0

90 PERCENT EXCEEDS

3.0

See Period of Record From Apr. 12 to Apr. 28 From Apr. 15 to Apr. 17 For many days in the winter and spring during water years 1967, 1969, 1978, and 1991

Backwater from snow and Ice Estimated

Occurred in early Jun. as a result of flow over ice

15484000 SALCHA RIVER NEAR SALCHAKET

LOCATION.--Lat $64^{\circ}28'22''$, long $146^{\circ}55'26''$, in $NE^{1}/_{4}$ sec. 22, T. 5 S., R. 4 E. (Big Delta B-6 quad), Fairbanks North Star Borough, Hydrologic Unit 19040505, on right bank 0.2 mi upstream from bridge on Richardson Highway, 0.5 mi east of Sno-Shu Inn, 2 mi upstream from mouth, and 6 mi southeast of Salchaket.

DRAINAGE AREA.--2,170 mi², approximately.

PERIOD OF RECORD.--July 1909 to August 1910, published as "at mouth" (no winter records), October 1948 to current

GAGE.--Water-stage recorder. Datum of gage is 631.85 ft above sea level. Prior to August 10, 1910, nonrecording gage at site 1.5 mi downstream at different datum. October 1, 1948, to April 24, 1953, nonrecording gage, and April 25, 1953 to October 16, 1967, water-stage recorder at site 800 ft downstream at same datum.

REMARKS. -- Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP e440 e320 e27∩ e1100 1 3630 e920 e680 e370 2540 1470 8730 2130 2 3140 e880 e660 e440 e370e320 e270 e1100 2820 2130 6600 2100 e320 e1050 e840 e430 e270 3240 2350 5320 2120 2880 e660 e360 e820 e430 e320 e1000 4 2560 e660 e360 e270 3650 2290 4800 2190 5 2440 e780 e640 e420 e360 e320 e270e1000 3310 1990 4630 2160 2700 e760 e640 e360 e310 e270 e1000 4100 1870 4150 2110 6 e420 e740 e270 3670 2890 e640 e410 e360 e310 e1050 3960 4550 2070 e1100 3270 2750 e720 e640 e410 e350 e310 e270 5300 5490 2030 8 9 2570 e720 e640 e410 e350 e310 e280 e1150 6850 4300 2960 1990 e2400 e740 e350 e280 4440 2730 10 e620 e400 e310 e1200 3500 1960 11 2230 e760 e620 e400 e350 e310 e290 e1250 3320 2920 2580 1910 12 2060 e800 e620 e400 e350 e310 e300 e1300 2870 2460 2560 1840 e620 e400 13 1920 e840 e340 e310 e320 1360 2650 2130 3020 1780 14 2090 e880 e600 e390 e340 e310 e320 1500 2390 1950 3420 1740 15 e900 e580 e340 e310 e340 1690 2220 1680 e2000 e920 e580 e390 e340 e310 e340 2240 2370 2180 3600 1620 16 e1900 e390 e310 e360 2110 e920 e560 e340 2630 2160 3660 1570 17 18 e1800 e900 e560 e390 e330 e310 e380 2790 1860 1890 3650 1530 e1650 2980 1750 e900 e400 1490 e300 20 e1500 e880 e540 e330 3190 1600 1660 1450 e380 e440 3260 e1400 21 e860 e540 e380 e330 e290 e480 3670 1470 1540 3090 1420 2.2 e1300 e840 e520 e380 e330e290 e5504550 1350 1480 2890 1390 23 e1200 e820 e520 e380 e330 e290 e600 5140 1270 1620 2720 1360 e380 e500 24 e1160 e780 e330 e700 5790 1190 1950 2620 1340 e280 4970 25 e1120 e760 e490 e380 e330 e280e800 1130 2600 2570 1310 e740 e480 e850 3800 1070 3600 2560 26 e1100 e380 e330 e280 1280 e720 e470 e270 1000 3580 1260 27 e1080 e380 e330 e900 3300 2610 e700 e460 e320 e270 e1000 3490 1050 e700 29 e1040 e450 e370 e270 e1050 4150 1200 4350 2410 1190 --e1000 e370 --e270 3120 30 e680 e450 1400 9630 2280 e1100 1160 31 e960 e440 e370 e270 2480 10700 2200 TOTAL 59590 17620 12260 9610 9300 76140 95600 107760 24220 14240 75460 50410 343 370 2456 5790 3476 8730 MEAN 1922 807 568 395 300 475 2515 3084 1680 10700 920 1100 3630 680 440 320 6850 2190 MAX MIN 960 680 440 320 1000 1000 1470 1160 AC-FT 118200 48040 34950 24320 19060 18450 28250 151000 149700 189600 213700 99990 CFSM .37 .16 1.13 .26 .14 .22 1.16 1.42 1.60 .89 .18 IN. 1.02 .42 .21 .16 .16 .24 1.31 1.29 1.64 1.85 .86 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1949 - 2001, BY WATER YEAR (WY)# MEAN 1085 505 355 259 210 403 4235 3823 2642 3029 2436 190 449 1994 8666 1962 MAX 1969 1028 730 471 377 1373 8640 7330 13350 6186 1994 1992 1992 1993 1949 1952 (WY) 1994 1994 1964 1967 484 230 160 130 62.0 60.0 104 1564 963 568 717 636 MIN (WY) 1959 1954 1954 1954 1953 1953 1974 1964 1969 1958 1966 1966 SUMMARY STATISTICS FOR 2000 CALENDAR YEAR FOR 2001 WATER YEAR WATER YEARS 1949 - 2001# ANNUAL TOTAL 778940 552210 ANNUAL MEAN 1606 2128 1513 HIGHEST ANNUAL MEAN 2957 1967 LOWEST ANNUAL MEAN 1999 HIGHEST DAILY MEAN 25400 Aug 15 10700 Tul 31 94100 Aug 14 1967 1 1953 LOWEST DATLY MEAN a150 Mar 14 b270 Mar 27 c60 Mar ANNUAL SEVEN-DAY MINIMUM 150 Mar 14 Mar Mar Aug 14 1967 INSTANTANEOUS PEAK FLOW INSTANTANEOUS PEAK STAGE Jul 31 11200 97000 11.79 21.78 Aug 14 1967 Mar 1 1953 สน1 31 INSTANTANEOUS LOW FLOW 60 ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 1545000 1095000 1163000 .70 . 98 9.47 13.35 10.06 ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 6300 3400 3930

1000

310

646

170

90 PERCENT EXCEEDS

980

170

See Period of Record

From Mar. 14 to Mar. 22 From Mar. 27 to Apr. 8

Monthly mean published for Mar. 1953

Estimated

15485500 TANANA RIVER AT FAIRBANKS

LOCATION.--Lat $64^{\circ}47'34''$, long $147^{\circ}50'20''$, in $NE^{1}{}_{4}$ $SW^{1}{}_{4}$ $SW^{1}{}_{4}$ sec. 25, T. 1 S., R. 2 W. (Fairbanks D-2 quad), Fairbanks North Star Borough, Hydrologic Unit 19040507, on right bank at the end of Groin No. 1 on Corps of Engineers flood-protection levee, 1.0 mi south of Fairbanks International Airport, and 1.0 mi upstream from Chena River.

DRAINAGE AREA.--Undefined. Part of river flows through Salchaket Slough and is ungaged.

PERIOD OF RECORD. -- June 1973 to current year.

GAGE.--Water-stage recorder. Datum of gage is 400 ft above sea level. Prior to September 14, 1973, nonrecording gage, and September 14, 1973 to June 14, 1985, water-stage recorder, at site 2.8 mi upstream at same datum.

REMARKS. -- Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 16, 1967 reached a stage of 34.4 ft, from floodmarks at site then in use; discharge, about 125,000 ${\rm ft}^3/{\rm s}$, contained in reports of the Corps of Engineers.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

					DAI	LI MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAI	R APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	33900 32600 30400 28800 27200	e10000 e9200 e8800 e8600 e8400	e6800 e6600 e6600 e6600	e6000 e6000 e6000 e6000	e6000 e6000 e6000 e6000	e5800 e5800 e5800 e5800 e5800	e5600 e5600 e5600 e5600 e5600	e11500 e11500 e11500 e11500 e12000	21600 22200 23800 25800 27000	44400 43900 43400 43900 44900	78000 77700 74800 72700 71000	37200 35800 36300 42900 42100
6 7 8 9 10	26500 26600 26400 25900 25000	e8200 e8000 e7800 e7800 e8000	e6600 e6600 e6600 e6400 e6400	e6000 e6000 e6000 e6000	e6000 e5800 e5800 e5800 e5800	e5800 e5800 e5800 e5800	e5600 e5600 e5600 e5800 e5800	e12500 e13000 e14000 e14500 e15500	28900 30900 33700 36800 36600	45300 46400 48200 45100 43000	68600 65500 63700 63900 63700	39400 37600 34500 32700 31500
11 12 13 14 15	e24000 e23500 22600 22900 22700	e8400 e8600 e9000 e9200	e6400 e6200 e6200 e6200 e6200	e6000 e6000 e6000 e6000	e5800 e5800 e5800 e5800 e5800	e5800 e5800 e5800 e5800 e5800	e5800 e5800 e6000 e6000 e6200	e16000 17300 17900 17500 17200	35000 35100 36100 37500 38000	42000 40200 39600 39800 40800	62200 59600 57400 56300 57900	30500 29500 28500 27600 27600
16 17 18 19 20	21800 20500 19700 18700 16500	e9200 e9200 e9000 e8800 e8600	e6200 e6200 e6200 e6200 e6200	e6000 e6000 e6000 e6000	e5800 e5800 e5800 e5800 e5800	e5800 e5800 e5800 e5800 e5800	e6200 e6400 e6600 e6800 e7000	17800 18500 18900 19600 20400	37500 37300 37600 38500 40000	42300 43200 43700 44900 46900	61300 64200 65500 63800 61000	26800 26100 25400 24900 24400
21 22 23 24 25	e15000 e14500 e14500 e14500 e14000	e8400 e8200 e7800 e7400 e7200	e6200 e6200 e6200 e6200 e6200	e6000 e6000 e6000 e6000	e5800 e5800 e5800 e5800 e5800	e5800 e5800 e5800 e5800 e5600	e7200 e7400 e7800 e8200 e8600	22100 23500 24800 25700 26500	41100 42400 43700 44700 45200	50600 57700 60900 61500 63000	59500 59600 62900 56500 51500	24000 23700 23300 22900 22700
26 27 28 29 30 31	e13000 e13000 e13000 e12500 e11500 e10500	e7000 e6800 e6800 e6800 e6800	e6200 e6200 e6200 e6200 e6000 e6000	e6000 e6000 e6000 e6000 e6000	e5800 e5800 e5800 	e5600 e5600 e5600 e5600 e5600	e9200 e9600 e10000 e10500 e11000	25700 24300 23200 23200 23000 22000	45200 45400 45800 43000 42900	64500 66000 67900 69500 70400 74800	48500 46300 43800 41600 40300 39100	22400 21900 21300 20800 20300
MEAN MAX MIN	642200 20720 33900 10500 1274000	247200 8240 10000 6800 490300	195800 6316 6800 6000 388400	186000 6000 6000 6000 368900	163600 5843 6000 5800 324500	178400 5755 5800 5600 353900	208700 6957 11000 5600 414000	572600 18470 26500 11500 1136000	1099300 36640 45800 21600 2180000	1578700 50930 74800 39600 3131000	1858400 59950 78000 39100 3686000	864600 28820 42900 20300 1715000
		STATISTI	CS OF MON	THLY MEAN	N DATA FOR	WATER	YEARS 1973	- 2001,	BY WATER	YEAR (WY)#	
MEAN MAX (WY) MIN (WY)	13470 20720 2001 8669 1997	7627 10370 1986 5000 1977	6131 8090 1986 4500 1977	5586 7135 1986 4016 1974	5385 6700 1991 3207 1974	5331 6761 1993 3100 1974	7422 12700 1995 4230 1974	22230 36290 1991 14810 1998	36250 51350 1992 25120 1978	52600 66090 1992 39550 1996	48920 70080 1997 34680 1996	27270 44880 1990 16950 1976
SUMMAI	RY STATIS	TICS	FOR	2000 CAI	ENDAR YEA	R	FOR 2001	WATER YE	AR	WATER	YEARS 19	73 - 2001#
LOWEST HIGHEST LOWEST ANNUAL INSTANT ANNUAL 10 PERO 50 PERO	MEAN F ANNUAL ANNUAL M F DAILY ME DAILY ME SEVEN-DA FANEOUS P	EAN EAN AN Y MINIMUM			Aug 16 Mar 7 Mar 7		7795500 21360 78000 55600 5600 79000 25.1 15460000 49300 11500 5800	Aug Mar 2 Mar 2 Aug	1 5 5 2 2	20030 22690 16080 92400 33100 3100 96400 26. 14510000 50000 50000	Feb Feb Jul	1990 1996 22 1986 14 1974 14 1974 22 1986 14 1997

See Period of Record, partial years used in monthly statistics From Mar. 7 to Apr. 10 From Mar. 25 to Apr. 8 From Feb. 14 to Mar. 31,1974 Estimated

15493000 CHENA RIVER NEAR TWO RIVERS

LOCATION.--Lat $64^{\circ}54'10''$, long $146^{\circ}21'25''$, in $NE^1/_4$ sec. 20, T. 1 N., R. 7 E. (Big Delta D-5 quad), Fairbanks North Star Borough, Hydrologic Unit 19040506, on left bank about 200 ft upstream from bridge at mi 39.5 on the Chena Hot Springs Highway, 15 mi upstream from South Fork Chena River, 22 mi east of Two Rivers, and 41 mi east of Fairbanks.

DRAINAGE AREA. -- 937 mi².

PERIOD OF RECORD. -- October 1967 to current year.

GAGE.--Water-stage recorder. Datum of gage is 719.7 ft above sea level from datum used by Alaska Department of Transportation and Public Facilities. Prior to April 25, 1994, water stage recorder at site 2.5 mi downstream at datum of 700 ft.

REMARKS.--Records fair except for estimated daily discharges, which are poor. Corps of Engineers meteor-burst and GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 13, 1967 reached a stage of 26.6 ft at site and datum of gage in use prior to April 25, 1994, from floodmarks, discharge not determined.

		DISCHA	RGE, CUBI	C FEET PEF		WATER Y	YEAR OCTOBE	ER 2000 TO	O SEPTEME	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	1780 1670 1460 1410 1510	e390 e380	e280 e280 e280	e190 e190 e190 e190 e190	e160 e160 e160 e160 e160	e150 e150 e150 e150 e140	e120 e120 e120	e335 e325 e320 e315 e350		721 1020 1200 946 844	2020 1600 1400 1640 1680	1180 1130 1110 1070 1030
6 7 8 9 10	1560 1460 1390 1300 1080	e380 e370 e360 e350 e380	e270 e270 e270 e270 e270	e180 e180 e180 e180 e180	e160 e160 e160 e150 e150	e140 e140 e140 e140 e140	e120 e120 e120 e120 e125		1010 1110 2260 2240 1360	1760 2690 1940 1410 1110	1480 1290 1150 1050 985	1010 979 962 961 947
11 12 13 14 15	e900 e880 e970 1140 1100	e400 e460 e500 e550	e260 e250	e180	e150 e150 e150 e150 e150	e140 e140 e140 e140 e140	e125 e130 e135 e140 e145	675 687 699 802 1060	1040 906 843 792 739	909 795 715 758 1050	976 1140 1370 1360 1830	918 891 865 834 804
16 17 18 19 20	1030 923 e760 e720 e680	e520 e500 e490	e230 e230 e220	e170 e170 e170 e170	e150 e150 e150 e150 e150	e140 e140 e135 e135 e135	e150 e160 e175 e190 e200	1260 1280 1330 1410 1600	705 625 565 527 515	1020 824 718 645 591	2290 3090 2700 2660 2380	778 764 745 727 712
21 22 23 24 25	e650 e620 e600 e580 e600	e480 e440 e420 e380 e340	e220 e220 e210 e210 e210	e170 e170 e170 e170 e170	e150 e150 e150 e150 e150	e130 e130 e125 e125 e120	e210 e230 e240 e255 e270	1780 2070 2390 2160 1830	491 454 426 407 385	555 545 608 664 662	2070 1820 1660 1690 1730	696 682 669 660 641
28	e680 e640 e580 e520 e460 e450	e320 e320 e310 e300 e290	e200 e200 e200	e170 e160 e160 e160 e160 e160	e150 e150 e150 	e120 e120 e120 e120 e120 e120	e285 e295 e310 e325 e340	1520 1380 1570 1260 946 842	364 352 364 360 372	741 788 843 2460 3640 2680	1640 1530 1430 1330 1250 1210	626 613 597 580 566
TOTAL MEAN MAX MIN AC-FT CFSM IN.	30103 971 1780 450 59710 1.04 1.20	12510 417 550 290 24810 .45 .50	7470 241 290 190 14820 .26 .30	5410 175 190 160 10730 .19 .21	4280 153 160 150 8490 .16 .17	4175 135 150 120 8280 .14 .17	184 340 120 10940	32634 1053 2390 315 64730 1.12 1.30	23591 786 2260 352 46790 .84 .94	35852 1157 3640 545 71110 1.23 1.42	51451 1660 3090 976 102100 1.77 2.04	24747 825 1180 566 49090 .88 .98
			CS OF MON	THLY MEAN	DATA FOR	WATER	YEARS 1968	- 2001, 1	BY WATER	YEAR (WY)	
MEAN MAX (WY) MIN (WY)	570 1656 1987 260 1969	274 617 1987 120 1969	187 369 1994 85.5 1977	132 242 1994 38.1 1970	107 246 1994 20.2 1970	93.8 171 1991 21.9 1970	226 578 1989 68.3 1982	1845 4210 1971 625 1998	1364 4038 1992 323 1969	1027 2505 1984 380 1976	1271 3207 1969 437 1976	1134 2702 1990 455 1976
SUMMAR	Y STATIST	ICS	FOR 2	2000 CALENI	DAR YEAR	1	FOR 2001 WA	TER YEAR		WATER Y	EARS 1968	- 2001
LOWEST HIGHES' LOWEST ANNUAL MAXIMUI MAXIMUI ANNUAL ANNUAL ANNUAL 10 PER	MEAN I ANNUAL M ANNUAL M I DAILY ME SEVEN-DA; M PEAK FLO M PEAK ST RUNOFF (2 RUNOFF (2 RUNOFF (2 RUNOFF (3	EAN EAN AN Y MINIMUM OW AGE AC-FT) CFSM) INCHES) EDS		330930 904 9530 a92 92 656400 .96 13.14 2310	Aug 14 Mar 17 Mar 17		9.44 1510	Jul 30 Mar 25 Mar 25 Jul 30 Jul 30		10.0 1620		1971 1997 3 1992 6 1970 6 1970 3 1992 3 1992
	CENT EXCEI CENT EXCEI			486 96			426 140			325 82		

From Mar. 17 to Mar. 26 From Mar. 25 to Apr. 9 From Feb. 6 to Mar. 12, 1970 At site and datum then in use c d

Estimated

15511000 LITTLE CHENA RIVER NEAR FAIRBANKS

LOCATION.--Lat $64^{\circ}53'10''$, long $147^{\circ}14'50''$, in $SW^1/_4$ NE $^1/_4$ sec. 25, T. 1 N., R. 2 E. (Fairbanks D-1 quad), Fairbanks North Star Borough, Hydrologic Unit 19040506, on downstream side of left bridge abutment at mi 11.9 Chena Hot Springs Highway, 22.5 mi upstream from mouth, and 14 mi northeast of Fairbanks.

DRAINAGE AREA.--372 mi².

PERIOD OF RECORD. -- August 1966 to current year.

GAGE.--Water-stage recorder. Datum of gage is 458.79 ft above sea level.

REMARKS.--Records good except for estimated daily discharges, which are poor. Corps of Engineers meteor-burst and NOAA telephone telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

					DAIL	II MEMIN AV	LIUED					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	486	e170	e120	e90	e80	e70	e50	e130	190	150	344	399
2	e440	e160	e120	e90	e80	e70	e50	e120	183	181	298	381
3	e410	e150	e120	e90	e80	e70	e50	e120	177	210	270	370
4	e380	e150	e120	e90	e80	e70	e50	e120	172	198	271	361
5	e360	e140	e120	e90	e80	e70	e50	e120	168	194	276	344
6	e370	e140	e120	e90	e80	e70	e50	e130	171	218	265	333
7	e380	e140	e120	e90	e75	e70	e50	e140	236	310	248	321
8	e380	e130	e120	e90	e75	e70	e50	e150	674	300	233	310
9	e370	e130	e110	e90	e75	e65	e50	e160	894	254	221	307
10	e340	e130	e110	e85	e75	e65	e50	e180	528	224	212	297
11	e310	e140	e110	e85	e75	e65	e50	e200	400	202	218	288
12	e300	e150	e110	e85	e75	e65	e55	e220	326	190	258	281
13	e310	e160	e110	e85	e75	e65	e55	232	314	175	349	272
14	e320	e160	e110	e85	e75	e65	e55	263	317	190	366	263
15	e320	e170	e110	e85	e75	e65	e55	290	274	241	539	255
16	e300	e170	e110	e85	e75	e65	e60	296	240	234	707	248
17	e290	e160	e110	e85	e75	e65	e60	289	215	203	851	243
18	e270	e160	e110	e85	e75	e65	e60	277	195	187	763	238
19	e260	e160	e110	e85	e75	e60	e65	277	181	175	752	232
20	e240	e150	e110	e85	e75	e60	e70	301	180	165	687	228
21	e230	e150	e100	e85	e75	e60	e75	309	178	159	606	225
22	e220	e150	e100	e85	e70	e60	e80	323	164	156	544	220
23	e210	e150	e100	e85	e70	e55	e85	350	154	155	503	217
24	e200	e140	e100	e85	e70	e55	e95	369	147	154	495	213
25	e200	e140	e95	e85	e70	e55	e110	384	140	150	507	207
26	e210	e140	e95	e85	e70	e55	e110	390	135	148	518	204
27	e220	e130	e95	e80	e70	e50	e120	328	131	150	482	199
28	e210	e130	e95	e80	e70	e50	e120	306	130	158	450	195
29	e200	e130	e95	e80		e50	e130	273	128	284	424	191
30	e190	e130	e90	e80		e50	e130	231	127	524	401	188
31	e180		e90	e80		e50		203		411	389	
TOTAL	9106	4410	3335	2655	2095	1920	2140	7481	7469	6650	13447	8030
MEAN	294	147	108	85.6	74.8	61.9	71.3	241	249	215	434	268
MAX	486	170	120	90	80	70	130	390	894	524	851	399
MIN	180	130	90	80	70	50	50	120	127	148	212	188
AC-FT	18060	8750	6610	5270	4160	3810	4240	14840	14810	13190	26670	15930
CFSM	.79	.40	.29	.23	.20	.17	.19	.65	.67	.58	1.17	.72
IN.	.91	.44	.33	.27	.21	.19	.21	.75	.75	.67	1.34	.80

e Estimated

15511000 LITTLE CHENA RIVER NEAR FAIRBANKS--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1966 - 2001, BY WATER YEAR (WY)# 70.7 176 47.4 112 551 1217 MEAN 194 104 35.4 31.0 90.7 289 382 318 270 264 2147 490 74.8 72.0 932 665 686 MAX (WY) 1987 1994 1986 1987 2001 1993 1993 1991 1992 1981 1967 1985 MIN 69.8 1967 32.0 1967 22.5 1978 7 90 6.00 1970 3.23 1967 19.1 1970 147 1998 99.2 85.0 124 107 1970 1998 1997 1966 1997 (WY) FOR 2000 CALENDAR YEAR SUMMARY STATISTICS FOR 2001 WATER YEAR WATER YEARS 1966 - 2001# ANNUAL TOTAL 94881 68738 ANNUAL MEAN HIGHEST ANNUAL MEAN 259 188 207 414 1967 LOWEST ANNUAL MEAN 103 1997 HIGHEST DAILY MEAN LOWEST DAILY MEAN 1430 May 25 Mar 16 894 Jun 9 12000 Aug 13 1967 Mar 11 1967 c.00 Mar 27 b50 a24 .00 .00 d17000 ANNUAL SEVEN-DAY MINIMUM 24 50 Mar 27 Mar 11 1967 MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE 9 9 Aug 13 1967 Aug 13 1967 1110 Jun 18.23 f19.66 Jun MAXIMUM PEAK STAGE Oct ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) 188200 149600 136300 .70 9.49 .51 6.87 .56 7.54 ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 639 369 466 150 120

65

25

90 PERCENT EXCEEDS

25

See Period of Record; partial years used in monthly statistics
From Mar. 16-29
From Mar. 27 to Apr. 11
From Mar. 11 to Apr. 15, 1967
From rating curve extended above 3,000 ft 3/s on basis of contracted-opening determination of peak flow Estimated
Backwater from ice

15514000 CHENA RIVER AT FAIRBANKS

LOCATION.--Lat 64°50'45", long 147°42'04", in NW¹/₄ sec. 11, T. 1 S., R. 1 W. (Fairbanks D-2 quad), Fairbanks North Star Borough, Hydrologic Unit 19040506, on right bank 100 ft downstream from Steese Highway Bridge, 800 ft upstream from Wendell Street bridge, 0.3 mi upstream from Noyes Slough, 11 mi upstream from mouth, and 11 mi downstream from Chena Slough.

DRAINAGE AREA. -- 1,995 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--July 1947 to September 1948 (no winter records), October 1948 to current year.

GAGE.--Water-stage recorder and supplementary gage. Datum of gage is 422.92 ft above sea level. Supplementary gage, Chena River at Lathrop Street (15514003), 1.6 mi downstream on left bank, used during winter period. See WSP 1936 and 2136 for history of changes prior to April 27, 1968.

REMARKS.--Records are good except for estimated daily discharges, which are fair. Regulation during high-flow periods began July 9, 1981 at Moose Creek Dam 31.8 mi upstream. Flows were not regulated this year. GOES satellite telemetry at station.

EXTREMES OUTSIDE PERIOD OF RECORD--Outstanding floods occurred in early May 1905 and 1911, late August 1930, and May 11-14, 1937. See WDR AK-90-1 for more information.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

					DAI	LY MEAN V	/ALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	3640	e920	e715	e490	e440	e390	e330	e960	1570	847	4080	2380
2	3300	e840	e710	e490	e440	e390	e330	975	1470	910	3560	2320
2	3070	e810	e705	e480	e440	e390	e330	920	1430	1200	3060	2250
4	2850	e780	e700	e480	e430	e390	e330	895	1420	1450	2740	2190
5	2760	e760	e700	e470	e430	e390	e330	900	1410	1470	2690	2150
6	2840	e730	e700	e470	e430	e390	e330	904	1400	1430	2770	2080
7	2870	e700	e700	e470	e430	e390	e330	934	1470	1600	2630	2020
8	2800	e680	e700	e470	e430	e390	e330	972	1670	2680	2410	1960
9	2650	e700	e700	e470	e430	e390	e340	988	2800	2650	2220	1910
10	2410	e780	e695	e460	e420	e390	e340	1050	3310	2280	2070	1890
11 12	2130 1910	e880	e695 e695	e460 e460	e420 e420	e390 e390	e350 e350	1150 1230	2620 2180	1970 1740	1960 1910	1860 1820
13	1910	e940 e1000	e695	e460	e420 e410	e390	e360	1230	1930	1570	1910	1770
14	2030	e1040	e695	e450	e400	e390	e360	1350	1810	1450	2280	1720
15	2180	e1100	e680	e450	e400	e390	e370	1430	1700	1500	2430	1670
16	2160	e1100	e660	e450	e400	e390	e380	1540	1600	1610	2960	1620
17	1990	e1060	e640	e450	e400	e390	e390	1690	1500	1670	3580	1570
18	1780	e1040	e615	e450	e400	e390	e410	1750	1400	1530	4340	1530
19	1580	e1020	e600	e450	e390	e380	e420	1780	1320	1410	4280	1500
20	e1400	e1000	e590	e460	e390	e380	e430	1830	1240	1330	4220	1460
21	e1300	e980	e580	e460	e390	e370	e460	1960	1190	1250	3950	1430
22	e1250	e970	e580	e460	e390	e360	e500	2120	1150	1180	3610	1410
23	e1200	e940	e580	e460	e390	e360	e560	2350	1090	1150	3350	1380
24	e1150	e860	e570	e460	e390	e350	e620	2650	1040	1150	3130	1350
25	e1100	e840	e560	e460	e390	e350	e700	2760	992	1190	3040	1330
26	e1200	e820	e550	e460	e390	e350	e760	2620	953	1230	3040	1300
27	e1300	e760	e545	e450	e390	e340	e800	2380	928	1290	2970	1280
28	e1200	e740	e530	e450	e390	e340	e840	2150	894	1370	2850	1250
29	e1100	e720	e515	e450		e340	e900	2150	866	1460	2730	1230
30	e1000	e700	e510	e450		e330	e930	2020	851	2380	2590	1200
31	e960		e500	e450		e330		1750		4180	2460	
TOTAL	61060	26210	19610	14300	11470	11600	14210	49448	45204	50127	91900	50830
MEAN	1970	874	633	461	410	374	474	1595	1507	1617	2965	1694
MAX	3640	1100 680	715 500	490 450	440 390	390 330	930 330	2760 895	3310 851	4180	4340	2380 1200
MIN	960 1950	850	660	460	400	330	330 375	1540	1420	847 1450	1910 2850	1640
MED	121100	51990	38900	28360	22750	23010	28190	98080	89660	99430	182300	100800
AC-FT CFSM	.99	.44	.32	.23	.21	.19	.24	.80	.76	.81	1.49	.85
IN.	1.14	.49	.32	.23	.21	.22	.24	.92	.76	.93	1.71	.95
IIV.	1.14											.95
		STATISTIC	CS OF MON	THLY MEAN	DATA FOR	WATER YE	EARS 1948	- 2001,	BY WATER	YEAR (WY)	#	
MEAN	1202	593	448	343	283	261	469	3635	2565	2029	2458	2158
MAX	2413	1231	922	595	509	445	1406	10250	6721	6133	13120	5735
(WY)	1962	1994	1994	1987	1968	1968	1993	1948	1949	1949	1967	1962
MIN	461	297	194	163	120	120	209	1050	816	665	682	615
(WY)	1967	1959	1977	1977	1953	1958	1977	1998	1969	1958	1957	1957

15514000 CHENA RIVER AT FAIRBANKS--Continued

SUMMARY STATISTICS	FOR 2000 CALENI	DAR YEAR	FOR 2001 WAT	TER YEAR	WATER YEAR	S 1948 - 2001#
ANNUAL TOTAL	629589		445969			
ANNUAL MEAN	1720		1222		1387	
HIGHEST ANNUAL MEAN					5119	1948
LOWEST ANNUAL MEAN					713	1958
HIGHEST DAILY MEAN	8620	Aug 16	4340	Aug 18	64600	Aug 15 1967
LOWEST DAILY MEAN	a230	Mar 11	b330	Mar 30	c120	Feb 1 1953
ANNUAL SEVEN-DAY MINIMUM	230	Mar 11	330	Mar 30	120	Feb 1 1953
INSTANTANEOUS PEAK FLOW			4460	Aug 18	74400	Aug 15 1967
INSTANTANEOUSPEAK STAGE			4.80	Aug 18	d18.82	Aug 15 1967
ANNUAL RUNOFF (AC-FT)	1249000		884600		1005000	
ANNUAL RUNOFF (CFSM)	.86		.61		.70	
ANNUAL RUNOFF (INCHES)	11.74		8.32		9.45	
10 PERCENT EXCEEDS	4060		2640		3140	
50 PERCENT EXCEEDS	1100		953		725	
90 PERCENT EXCEEDS	250		390		240	

See Period of Record Mar. 11 to Mar.17 Mar. 30 to Apr. 8 Monthly means published for Feb. 1953 and Mar. 1958 Site then in use Estimated

15514000 CHENA RIVER AT FAIRBANKS--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1948-58, 1962-72, 1974-76, 1983-84, and 2001.

PERIOD OF RECORD.--SUSPENDED SEDIMENT DISCHARGE. 1962-71.

DATE	TIME	STREAM WIDTH (FT) (00004)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)	SEDI- MENT, SUS- PENDED (MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)
MAY 11 25	1630 1220	205	 6.46	1160 2780	10	3007 3007	1.5	1.5	18 174	56 1310	81 75

15515500 TANANA RIVER AT NENANA

LOCATION.--Lat $64^{\circ}33'55''$, long $149^{\circ}05'30''$, in $SE^{1}/_{4}$ sec. 14, T. 4 S., R. 8 W. (Fairbanks C-5 quad), Hydrologic Unit 19040507, on left bank on east end of Alaska Railroad dock in Nenana, and 0.3 mi upstream from Nenana River.

DRAINAGE AREA. -- 25,600 mi², approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1962 to current year.

REVISED RECORDS.--WSP 2136: Drainage area.

GAGE.--Water-stage recorder. Datum of gage is 338.50 ft above sea level. Prior to March 10, 1965, on right bank 280 ft downstream from railroad bridge 0.5 mi upstream at present datum. March 10, 1965 to March 23, 1968, nonrecording gage on railroad bridge 0.5 mi upstream at present datum.

REMARKS.--Records fair. GOES satellite telemetry at station.

EXTREMES OUTSIDE PEROD OF RECORD.--Flood of May 1948 reached a stage of 15.9 ft, discharge, about 135,000 $\rm ft^3/s$, contained in reports of Corps of Engineers.

		DISCH	ARGE, CUI	BIC FEET	PER SECON	D, WATER ILY MEAN		DBER 2000	TO SEPTEM	MBER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42700	e15000	e8800	e7800	e7700	e7600	e7400	e13500	27300	54800	93300	48100
2	40700	e14000	e8800	e7800	e7700	e7600	e7400	e13500	28000	55200	92900	46000
3	37900	e13000	e8800	e7800	e7700	e7600	e7400	e13500	29700	54800	90300	45000
4	35800	e12000	e8600	e7800	e7700	e7600	e7400	e13500	30100	54700	88100	48400
5	35000	e11000	e8600	e7800	e7700	e7600	e7400	e14000	31600	55000	86200	51800
6	34300	e11000	e8600	e7800	e7700	e7600	e7400	e15000	34500	55000	81600	49900
7	33900	e10500	e8600	e7800	e7700	e7600	e7400	e16000	38100	55600	77200	47700
8	33500	e10500	e8600	e7800	e7700	e7600	e7500	e16500	41100	56600	74000	44500
9	32800	e11000	e8400	e7800	e7700	e7600	e7500	e17500	43800	54900	72800	41600
10	31900	e11000	e8400	e7800	e7700	e7600	e7500	e18000	47400	52000	71300	39500
11	31200	e11500	e8400	e7800	e7700	e7600	e7500	e18500	47300	50800	69600	38000
12	29900	e11500	e8200	e7800	e7700	e7600	e7600	e19000	48400	49900	67700	36800
13	28500	e11500	e8200	e7800	e7700	e7600	e7800	e19500	47400	49200	65600	35600
14	e27000	e12000	e8200	e7800	e7600	e7600	e7900	20000	46900	48500	65100	34200
15	e26500	e12000	e8200	e7800	e7600	e7600	e8000	19600	46500	48400	66700	33000
16	e26500	e12500	e8200	e7800	e7600	e7600	e8200	20500	47700	49900	70100	32100
17	e26000	e12500	e8000	e7800	e7600	e7600	e8300	22000	49000	51000	73400	31000
18	e25000	e12000	e8000	e7700	e7600	e7600	e8400	23000	49400	52000	74600	30000
19	e24000	e12000	e8000	e7700	e7600	e7600	e8600	23800	50300	52800	73300	29100
20	e23000	e11500	e8000	e7700	e7600	e7500	e8800	25200	52100	55200	71100	28500
21 22 23 24 25	e22000 e21000 e20000 e19000 e19000	e11000 e10500 e10500 e10000 e9600	e8000 e8000 e8000 e8000	e7700 e7700 e7700 e7700 e7700	e7600 e7600 e7600 e7600 e7600	e7500 e7500 e7500 e7500 e7500	e9000 e9400 e9800 e10000 e10500	26900 28300 29300 30300 30900	53400 53600 54600 55700 55400	59700 64300 68200 68800 68400	69000 67700 69400 68100 62800	27800 27300 26900 26400 26000
26 27 28 29 30 31	e18500 e18500 e18000 e18000 e17000 e16000	e9400 e9200 e9000 e9000 e8800	e8000 e8000 e7800 e7800 e7800 e7800	e7700 e7700 e7700 e7700 e7700	e7600 e7600 e7600 	e7400 e7400 e7400 e7400 e7400 e7400	e11000 e11500 e12000 e12500 e13000	30200 29000 28300 28500 28900 27800	56100 56800 57200 55200 53200	70500 72600 76700 78100 81500 88500	59600 56900 54100 51700 50600 49400	25700 25300 24900 24300 23700
TOTAL	833100	335000	254800	240400	214100	233800	264100	680500	1387800	1853600	2184200	1049100
MEAN	26870	11170	8219	7755	7646	7542	8803	21950	46260	59790	70460	34970
MAX	42700	15000	8800	7800	7700	7600	13000	30900	57200	88500	93300	51800
MIN	16000	8800	7800	7700	7600	7400	7400	13500	27300	48400	49400	23700
MED	26500	11000	8200	7800	7600	7600	8100	20500	48000	55000	69600	32600
AC-FT	1652000	664500	505400	476800	424700	463700	523800	1350000	2753000	3677000	4332000	2081000
CFSM	1.05	.44	.32	.30	.30	.29	.34	.86	1.81	2.34	2.75	1.37
IN.	1.21	.49	.37	.35	.31	.34	.38	.99	2.02	2.69	3.17	1.52
		STATIST	ICS OF MO	NTHLY ME	AN DATA FO	OR WATER	YEARS 196	2 - 2001,	BY WATER	YEAR (WY	()#	
MEAN	16930	9261	7369	6744	6530	6463	8741	30790	47630	59950	56830	33500
MAX	26870	14070	10770	9065	8171	8161	15090	62210	87390	76770	98210	57690
(WY)	2001	1986	1986	1986	1986	1993	1995	1963	1962	1988	1967	1990
MIN	11420	5517	4532	4694	4421	4071	5870	16030	29750	44920	41510	21710
(WY)	1977	1977	1977	1977	1974	1974	1974	1964	1970	1996	1996	1976

e Estimated

15515500 TANANA RIVER AT NENANA--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR	YEAR	FOR 2001 WATER	YEAR	WATER YEARS 19	962 - 2001#
ANNUAL TOTAL	9725800		9530500			
ANNUAL MEAN	26570		26110		24120	
HIGHEST ANNUAL MEAN					29310	1967
LOWEST ANNUAL MEAN					19530	1970
HIGHEST DAILY MEAN	87800	Aug 16	93300	Aug 1	183000	Aug 18 1967
LOWEST DAILY MEAN	a6000	Mar 6	b7400	Mar 26	c4000	Mar 6 1974
ANNUAL SEVEN-DAY MINIMUM	6000	Mar 6	7400	Mar 26	4000	Mar 6 1974
INSTANTANEOUS PEAK FLOW			94200	Aug 1	186000	Aug 18 1967
INSTANTANEOUS PEAK STAGE			12.47	Aug 1	d18.90	Aug 18 1967
ANNUAL RUNOFF (AC-FT)	19290000		18900000		17480000	
ANNUAL RUNOFF (CFSM)	1.04		1.02		.94	
ANNUAL RUNOFF (INCHES)	14.13		13.85		12.80	
10 PERCENT EXCEEDS	58400		59600		59000	
50 PERCENT EXCEEDS	17000		13500		12000	
90 PERCENT EXCEEDS	6000		7600		6200	

[#] See Period of Record, partial years used in monthly statistics a From Mar. 6 to Apr. 11
b From Mar. 26 to Apr. 7
c From Mar. 6 to Mar. 20, 1974
d At site then in use
e Estimated

15515500 TANANA RIVER AT NENANA--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1954-57, 1963-64, 1966-75, 1978-1995, and 2001.

PERIOD OF RECORD.--WATER TEMPERATURE: 1954 to 1956 (seasonal).

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
MAY								
31	1845	624.0	217	7.8	10.0	758	10.2	91
31	1846	520.0	216	7.8	10.0	758	10.4	93
31	1847	450.0	216	7.8	10.0	758	10.3	92
31	1848	350.0	216	7.9	10.0	758	10.4	93
31	1849	230.0	217	7.8	10.0	758	10.3	92
22	1529	131.0	240	7.8	17.0	764	8.8	91
22	1532	258.0	239	7.8	17.0	764	8.8	91
22	1534	356.0	239	7.8	17.0	764	8.8	91
22	1543	442.0	239	7.8	17.0	764	8.7	90
22	1545	541.0	239	7.8	17.0	764	8.7	90
JUL								
09	1523	663.0	224	8.0	12.5	759	10.2	96
09 09	1524 1526	568.0 463.0	223 225	8.0 8.0	12.5 12.5	759 759	10.2 10.3	96 97
09	1528	383.0	225	8.0	12.5	759 759	10.3	96
09	1530	283.0	225	8.0	12.5	759	10.2	96
AUG	1000	203.0	223	0.0	12.0	, 33	20.2	, ,
02	1718	120.0	207	7.7	13.5		10.2	
02	1720	220.0	207	7.8	13.5		10.0	
02	1722	300.0	207	7.8	13.5		10.0	
02	1723	400.0	208	7.7	13.5		10.0	
02	1724	540.0	208	7.7	13.5		9.9	
SEP 13	1654	100.0	257	7.5	8.5	752	10.9	95
13	1655	170.0	257	7.6	8.5	752	10.9	94
13	1656	205.0	257	7.6	8.5	752	10.9	94
13	1657	260.0	257	7.6	8.5	752	10.8	94
13	1659	365.0	257	7.6	8.5	752	10.8	94

						DIS-			QUALITY		PH			
						CHARGE,			ASSUR-	SPE-	WATER			
						INST.			ANCE	CIFIC	WHOLE			
						CUBIC	SAM-		DATA	CON-	FIELD	TEMPERA	TEMP-	
				STREAM	GAGE	FEET	PLING	SAMPLER	INDICA-	DUCT-	(STAND-	TURE	ERATURE	
				WIDTH	HEIGHT	PER	METHOD,	TYPE	TOR	ANCE	ARD	AIR	WATER	
		MEDIUM	SAMPLE	(FT)	(FEET)	SECOND	CODES	(CODE)	CODE	(US/CM)	UNITS)	(DEG C)	(DEG C)	
DATE	TIME	CODE	TYPE	(00004)	(00065)	(00061)	(82398)	(84164)	(99111)	(00095)	(00400)	(00020)	(00010)	
OCT														
03	1600	9	9	874	6.09	36600	20	3055	1	242	7.9	.00	.00	
MAR	7.5.40		•			5550		2011	100	000		2 2	0.0	
20 MAY	1640	9	9	685		7550	20	3044	100	287	7.2	-9.0	.00	
31	1820	9	7	E830	4.78	27500	20	3055	30	216	7.8	12.5	10.0	
JUN	1020	,	,	E030	4.70	27300	20	3033	30	210	7.0	12.5	10.0	
22	1500	9	9		8.10	53400	20	3055	30	239	7.8		17.2	
JUL														
09	1440	9	9	773	8.21	54400	20	3055	30	224	8.0	18.0	12.5	
AUG														
02	1630	9	9	760	12.37	98800	20	3055	30	207	7.7		13.5	
SEP		_	_											
13	1510	9	7	560	5.84	35200	20	3055	100	257	7.6		8.5	

15515500 TANANA RIVER AT NENANA--Continued

DATE	TURBID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	UV ABSOR- BANCE 254 NM, WTR FLT (UNITS/ CM) (50624)	UV ABSOR- BANCE 280 NM, (UNITS/ CM) (61726)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN DIS- OLVED (MG/L) (00300)	OXY- GEN, DIS- OLVED (PER- CENT SATUR- ATION)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CAL- CIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFL- TRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
OCT 03	57	98			762	13.3	91	120	34.4	8.38	3.9	83	1.40
MAR 20	4.5	3.7	.029	.021	775	9.6	65	150	45.8	9.28	4.0	120	2.28
MAY 31		89	.243	.182	758	10.3	92	100	30.2	6.87	3.3	77	1.64
JUN 22		640	.065	.047	764	8.8	91	110	31.4	7.72	3.3	74	2.12
JUL 09 AUG		550	.075	.054	759	10.2	96	100	28.8	7.04	3.4	66	1.78
02 SEP		730	.415	.104	758	10.0	96	94	27.4	6.22	2.9	67	1.89
13		67	.110	.080	752	10.9	94	120	35.6	8.68	3.8	91	1.68
								SOL-	SOL-				
DATE	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CARBOR- NATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SUL- FATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLOU- RIDE DIS- SOLVED (MG/L AS F) (00950)	SIL- ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOL- IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)
OCT 03	BONATE WATER DIS IT FIELD MG/L AS HCO3	NATE WATER DIS IT FIELD MG/L AS CO3	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3	FATE DIS- SOLVED (MG/L AS SO4)	RIDE, DIS- SOLVED (MG/L AS CL)	RIDE DIS- SOLVED (MG/L AS F)	ICA, DIS- SOLVED (MG/L AS SIO2)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L)	GEN NITRITE DIS- SOLVED (MG/L AS N)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N)
OCT 03 MAR 20	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	NATE WATER DIS IT FIELD MG/L AS CO3 (00452)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	FATE DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)
OCT 03 MAR 20 MAY 31	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	NATE WATER DIS IT FIELD MG/L AS CO3 (00452)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	FATE DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)
OCT 03 MAR 20 MAY 31 JUN 22	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	NATE WATER DIS IT FIELD MG/L AS CO3 (00452)	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	FATE DIS- SOLVED (MG/L AS SO4) (00945)	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)
OCT 03 MAR 20 MAY 31 JUN	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 101 148 93	NATE WATER DIS IT FIELD MG/L AS CO3 (00452) .0 .0	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 83 121 76	FATE DIS- SOLVED (MG/L AS SO4) (00945) 38.1 33.2 27.6	RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 10.1 14.4 8.7	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .002	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .171 .162 .066	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .010 .048	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)
OCT 03 MAR 20 MAY 31 JUN 22 JUL 09	BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453) 101 148 93 90	NATE WATER DIS IT FIELD MG/L AS CO3 (00452) .0 .0 .0	LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086) 83 121 76 89	FATE DIS- SOLVED (MG/L AS SO4) (00945) 38.1 33.2 27.6 38.7	RIDE, DIS- SOLVED (MG/L AS CL) (00940) 1.5 1.3 1.4	RIDE DIS- SOLVED (MG/L AS F) (00950)	ICA, DIS- SOLVED (MG/L AS SIO2) (00955) 10.1 14.4 8.7 6.6	IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	IDS, SUM OF CON- STITU- ENTS, DIS- SOLVED (MG/L) (70301)	GEN NITRITE DIS- SOLVED (MG/L AS N) (00613) .001 .002 .001	GEN NO2+NO3 DIS- SOLVED (MG/L AS N) (00631) .171 .162 .066 .085	GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608) .010 .048 <.002	GEN, AMMO- NIA + ORGANIC TOTAL (MG/L AS N) (00625)

15515500 TANANA RIVER AT NENANA--Continued

DATE	NITRO- GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	NITRO- GEN, TOTAL, SED- IMNT SUSP, (WEIGHT PERCNT) (62845)	PHOS- PHORUS SEDI- MENT SUSP. PER- CENT (30282)	ALUMI - NUM SED, SUS PER- CENT (30221)	ALUMI- NUM, DIS- SOLVED (UG/L AS AL) (01106)	ANTI- MONY SED, SUSP. (UG/G) (29816)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC SED, SUSP. (UG/G) (29818)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM SED. SUSP. (UG/G) (29820)
OCT 03	.17	.509	E.005	.005	.03	.06	6.2	18	.8	.20	9.9	<2.0	710
MAR 20	.10	.028	<.006	<.007				1		.16		.5	
MAY 31	.19	.331	.007	<.007	<.10	.06	6.4	19	1.2	.19	12	1.0	710
JUN 22	<.10	1.15	E.005	<.007	<.10	.08	8.0	21	1.6	.35	19	1.1	950
JUL 09	E.07	.695	E.003	<.007	<.10	.07	7.2	17	1.5	.28	14	. 9	820
AUG 02	.14	1.86	E.004	<.007	<.10	.08	7.4	20	1.7	.36	18	1.1	870
SEP 13	E.12	E.512	E.003	<.007	<.10	.07	6.5	12	1.1	.22	12	.9	760
DATE	BAR- IUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM SED, SUSP. (UG/G) (29822)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON DIS- SOLVED (UG/L AS B) (01020)	CAD- MIUM SED. SUSP. (UG/G) (29826)	CAD- MIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO-MIUM SED. SUSP. (UG/G) (29829)	CHRO-MIUM, DIS-SOLVED (UG/L AS CR)	COBALT SEDI- MENT SUSP. (UG/G) (35031)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER SED. SUSP. (UG/G) (29832)	COP- PER, DIS- SOLVED (UG/L AS CU) (01040)	IRON SEDI- MENT SUSP. PERCENT (30269)
OCT 03	27.9	1	<.06	23	. 3	E.03	87	<.8	14	.20	29	2.9	3.2
MAR 20	47.3		<.06	20		E.02		<.8		.21		.8	
MAY 31	29.4	1	<.06	19	. 2	E.02	89	E.5	15	.15	33	3.9	3.5
JUN 22	34.8	2	<.06	25	.2	<.04	110	E.5	22	.08	55	1.7	4.6
JUL 09	30.0	2	<.06	19	. 3	E.03	90	<.8	19	.10	46	1.8	4.0
AUG 02	31.4	2	<.06	15	. 4	E.02	91	<.8	18	.12	42	2.8	4.1
SEP 13	32.5	1	<.06	18	.3	E.02	88	<.8	15	.14	35	2.6	3.4
DATE	IRON DIS- SOLVED (UG/L AS FE) (01046)	LEAD SED. SUSP. (UG/G) (29836)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITH- IUM SEDI- MENT SUSP. (UG/G) (35050)	LITH- IUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE SED. SUSP. (UG/G) (29839)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MER- CURY SED, SUSP. (UG/G) (29841)	MOLYB- DENUM SED. SUSP. (UG/G) (29843)	MOLYB- DENUM, DIS- SOLVED (UG/LAS MO) (01060)	NICKEL SED. SUSP. (UG/G0 (29845)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM SED. SUSP. (UG/G) (29847)
OCT 03	80	10	E.06	18	E2.9	670	30.0	.02	<5	1.0	42	1.40	M
MAR 20	40		<.08		2.8		86.0	.02	<5 	1.1	42	.76	M
MAY 31	130	14	.09	19	2.5	730	20.5	.03	3	.8	44	. 40	М
JUN 22	10	18	<.08	31	4.2	890	3.3	.09	2	1.1	54	.47	M
JUL 09	M	15	.14	27	3.6	750	10	.06	2	1.0	49	.56	М
AUG 02	20	15	E.06	23	3.4	760	14.5	.05	2	1.0	44	.67	М
SEP 13	40	13	.11	20	3.5	700	25.4	.02	2	1.0	42	.19	М

15515500 TANANA RIVER AT NENANA--Continued

DATE	SELE NIUM DIS- SOLVE (UG/ AS SE	M - S: ED : L S	ILVER SED. SUSP. UG/G)	SIL- VER, DIS- SOLVE (UG/I AS AG	TIUM SEDI D MENT L SUSP	TIUM, DIS- SOLVED, (UG/L AS SR)	THAL- LIUM SUS SED (UG/G) (49955)	TITA- NIUM SEDI- MENT SUSP. PERCENT (30317)	VANA- DIUM SED, SUSP. (UG/G) (29853)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC SED. SUSP. (UG/G) (29855)	ZINC, DIS- SOLVEI (UG/L AS ZN)	SUSP.	URA- NIUM NATU- RAL DIS- SOLVED (UG/L AS U) (22703)
OCT 03	<2.4	<.50	0000	<1.0	240	157	<50	.390	100	<10.0	68	<1	<50	.72
MAR 20 MAY	.7			<1.0		192				.6		<1		.69
31 JUN	. 4	<.50	0000	<1.0	230	137	<50	.390	100	.6	77	<1	<50	.64
22 JUL	. 5	<.50	0000	<1.0	210	144	< 50	.460	140	.5	110	<1	<50	.89
09 AUG	. 4	<.50	0000	<1.0	220	132	<50	.430	110	. 5	98	<1	<50	.77
02 SEP	. 4	<.50	0000	<1.0	240	120	<50	.440	130	.5	96	2	<50	.77
13	. 5	<.50	0000	<1.0	250	158	<50	.410	110	.6	79	1	<50	.80
DATE	ORG DI SOI (MG)	BON, ANIC IS- LVED /L AS C) 681)	CARB INO GANI PART TOT (MG/I C)	R- (IC, P IC. AL L AS (CARBON, ORGANIC ARTICU- LATE TOTAL MG/L AS C)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON SED, SUSP. PERCENT (30244)	CARBON, ORGANIC SUS- PENDED, TOTAL PERCENT (50465)	PARTIC LATE WA FLT SU (MG/L	MEI U- SUSI AT FLO SP THRO AS CENT (MG,	NT P., S W- M UGH S RIF PI /L) (!	EDI- ENT, SUS- ENDED MG/L) 0154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED SUSP. SIEVE DIEM. % FINER THAN .062 MM
OCT 03	E5.6	б					.50	. 4	.03	3 6	560	802	79300	24
MAR 20	1 .	. 1	<.1		. 2	.3			<.02	2		16	326	
MAY 31	6.5	5	<.1		2.0	2.1	.70	.5	.24	2 4	129	484	35900	36
JUN 22	1.9	•	1.1		4.2	5.3	.60	.5	.30	5 13	390	1440	208000	74
JUL 09	2.2	2	.8		4.7	5.5	.60	. 4	.24	9 14	170	1550	227000	65
AUG 02	3.9	9	2.0		9.5	12	.30	. 4	.69	4 28	310	2890	771000	65
SEP 13	E3.4	4	E.3		E2.0	E2.3	.60	.5	E.05	9 7	756	709	67400	

15518020 HEALY CREEK AT SUNTRANA NEAR HEALY

LOCATION.--Lat $63^\circ51'10''$, long $148^\circ50'26''$, in SW $^1/_4$ sec. 24, T. 12 S., R. 7 W. (Healy D-4 quad), Hydrologic Unit 19040508, on right bank 0.8 mi upstream from Suntrana Creek, 3.8 miles upstream of mouth, and 5.8 miles east-southeast of Healy, Alaska.

DRAINAGE AREA. -- apporoximately 110 mi².

PERIOD OF RECORD. -- September 1998 to current year (discontinued).

GAGE.--Water-stage recorder. Elevation of gage is 1500 ft above sea level, from topographic map.

EXTREMES FOR WATER YEAR 1998-- Maximum discharge for period September 1-30, 1998, 227 ${\rm ft}^3/{\rm s}$ September 21, gage height 18.81 ${\rm ft}$; minimum not determined, occurs during the winter.

 ${\tt REMARKS.--Records\ poor.\ GOES\ satellite\ telemetry\ at\ station.}$

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1997 TO SEPTEMBER 1998 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1												e200
2												e190
3												e180
4												174
5												171
3												1/1
6												171
7												172
8												167
9												163
10												160
10												100
11												156
12												156
13												166
14												178
15												174
13												1/4
16												173
17												186
18												189
19												180
20												186
0.1												100
21												190
22												174
23												170
24												172
25												171
26												170
27												166
28												161
29												155
30												150
31												
TOTAL												5171
MEAN												172
MAX												200
MIN												150
AC-FT												10260

e Estimated

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1998 TO SEPTEMBER 1999 DAILY MEAN VALUES APR DAY OCT NOV DEC JAN FEB MAR MAY JUN JUL AUG SEP e70 e110 e55 e60 e75 180 133 146 143 2 140 e110 e90 e70 e55 e50 e60 e70 167 110 131 138 3 139 e105 e85 e70 e55 e50 660 e65 166 111 114 218 e60 e105 e55 e60 116 5 139 e105 e85 e70 e55 e50 e55 e55 232 130 102 177 6 140 e105 e85 e65 e55 e50 e55 414 200 99 179 137 127 e100 e80 e65 e55 e50 e55 e60 589 152 87 169 e65 e55 e50 138 8 e100 e80 e55 e65 630 98 164 e125 e100 e80 e55 e50 e70 104 97 10 e125 e95 e80 e65 e55 e50 e55 e80 421 104 81 147 11 136 e95 e80 e65 e55 e50 e60 102 367 96 78 142 12 13 131 131 344 378 194 127 91 652 138 137 e90 e75 e65 e55 e50 e60 279 e75 e65 e55 e50 488 e90 e65 14 132 e90 e75 e55 e50 e70 531 345 97 304 134 15 132 e85 e75 e65 e55 e50 e75 645 256 84 431 131 16 131 e85 e75 e60 e55 e55 e80 611 382 93 360 127 17 128 e90e75 e60 e55 e55 e95 514 427 110 233 e126 128 18 e90 e75 e60 e55 e60 e110 440 264 193 e124 e80 e60 1 0 130 e95 e55 e60 e130 328 167 90 144 123 2.0 128 e95 e80 e60 e55 e65 e150 277 155 82 131 114 21 125 e95 e80 e60 e50 e65 e110 240 133 238 124 116 2.2 e120 e90e80 e60e50e65 e85 231 160 388 122 115 23 274 312 117 128 e126 e90 e75 e60 e50 e65 e65 140 e65 24 136 e90 e75 e60 e50 e70 285 137 563 302 122 25 e75 e75 403 118 131 e85 e60e50e65 120 849 355 407 26 118 e85 e75 e60 e50 e65 680 548 162 244 113 2.7 e110 e85 e75 e50 e65 e85 227 162 285 200 e60e110 e110 e85 e75 e50 e60 131 425 29 e105 e85 e70 e60 ___ 660 e95 105 142 253 159 91 e70 30 e105 e90 e60 --e60 e85 100 194 254 147 e105 ___ 31 e60 7602 5776 TOTAL 3955 2820 2425 1955 1500 1740 2305 8152 6490 4106 128 94.0 78.2 63.1 53.6 76.8 245 272 209 186 137 MEAN 56.1 218 MAX 144 110 90 70 55 65 150 645 630 849 652 MIN 105 85 70 55 50 50 55 55 120 82 78 91 7840 5590 4810 3880 2980 3450 4570 15080 16170 12870 11460 8140 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1998 - 1999, BY WATER YEAR (WY)# MEAN 128 94.0 78.2 53.6 56.1 76.8 245 272 209 186 155 94.0 1999 78.2 1999 63.1 1999 53.6 1999 56.1 1999 MAX 128 76.8 245 272 209 186 172 1999 1999 1999 1999 1999 (WY) 1999 MIN 128 94.0 78.2 63.1 53.6 56.1 76.8 245 272 209 186 137 1999 1999 1999 1999 1999 1999 1999 (WY) 1999 1999 1999 1999 1999 SUMMARY STATISTICS FOR 1999 WATER YEAR WATER YEARS 1998 - 1999# ANNUAL TOTAL 48826 ANNUAL MEAN HIGHEST ANNUAL MEAN 134 134 1999 134 LOWEST ANNUAL MEAN 134 1999 HIGHEST DAILY MEAN 849 Jul 25 Feb 21 849 Jul 25 1999 LOWEST DAILY MEAN a50 Feb 21 1999 50 ANNUAL SEVEN-DAY MINIMUM 50 Feb 21 50 Feb 21 1999 MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE Aug 13 1999 Aug 13 1999 1210 Aug 13 1210 13 21.69 21.69 Aug b22.13 MAXIMUM PEAK STAGE b22.13 Dec 16 1998 ANNUAL RUNOFF (AC-FT) 96850 96910 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 275 95 102

55

55

90 PERCENT EXCEEDS

See period of record, partial years used in monthly statistics From Feb. 21 to Mar. 15
Backwater from ice

Estimated

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES

					DAIL	Y MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	122 119 121 114 e111	e65 e65 e65	e65 e60 e60 e60	e60 e60 e65 e55	e60 e60 e60	e65 e65 e65	e70 e70 e70 e70 e70	e95 102 100 88 68	e270 e360 e500 e700 e1000	192 204 249 207 230	121 115 117 122 119	e550 e480 e420 e380 e340
6	108	e65 e65	e60	e55	e60 e60	e65 e65	e70 e70	79	e1000 e850	230	143	e400
7 8 9 10	e104 e104 e100 90	e65 e65 e65 e65	e60 e60 e60 e60	e55 e55 e55 e55	e60 e60 e60 e60	e65 e65 e65 e65	e70 e70 e70 e70	107 116 90 75	e600 e400 e500 e600	200 188 183 266	148 183 245 215	e420 e460 e420 e380
11 12 13 14 15	e85 e85 e80 e80 e80	e65 e65 e65 e70 e70	e60 e60 e60 e60 e60	e55 e55 e55 e55 e55	e60 e60 e60 e60 e60	e65 e65 e65 e65	e70 e70 e70 e70 e70	e65 e60 e65 e80 e95	e700 e500 e440 e400 329	498 402 241 196 191	686 e2500 e1500 e900 e700	e360 e340 e330 e320 e300
16 17 18 19	e80 e75 e75 e75	e70 e70 e75	e60 e60 e60	e55 e60 e60	e60 e60 e60	e65 e65 e65	e70 e70 e70 e70	122 145 188 191	257 244 266 270	165 151 135 128	e500 e440 560 530	e270 e250 e240 e240
20 21 22 23 24	e75 e75 e70 e70 e70	e75 e75 e75 e70 e70	e65 e65 e65 e65	e60 e65 e65 e65	e60 e60 e60 e60	e65 e65 e65 e65	e75 e75 e75 e75 e80	160 116 e130 e150 e130	218 207 339 307 318	125 124 121 119 119	415 395 442 395 384	e260 e300 e360 e350 e340
25 26 27	e70 e70 e70	e70 e70 e65	e65 e65 e65	e65 e65 e65	e60 e60 e65	e65 e65 e65	e80 e80 e80	e110 e100 e110	308 259 265	125 120 129	450 435 418	e320 e310 278
28 29 30 31	e70 e65 e65 e65	e65 e65 e65	e65 e65 e65 e60	e65 e65 e65 e60	e65 e65 	e65 e65 e70 e70	e85 e85 e90	e120 e130 e150 e170	227 219 213	168 237 149 131	457 627 e1100 e700	311 286 274
TOTAL MEAN MAX MIN AC-FT	2643 85.3 122 65 5240	2035 67.8 75 65 4040	1920 61.9 65 60 3810	1845 59.5 65 55 3660	1755 60.5 65 60 3480	2025 65.3 70 65 4020	2210 73.7 90 70 4380	3507 113 191 60 6960	12066 402 1000 207 23930	5910 191 498 119 11720	16062 518 2500 115 31860	10289 343 550 240 20410
		STATISTIC	S OF MON	THLY MEAN	DATA FOR	WATER Y	YEARS 1998	- 2000,	BY WATER	YEAR (WY)#	ŧ	
MEAN MAX (WY) MIN (WY)	106 128 1999 85.3 2000	80.9 94.0 1999 67.8 2000	70.1 78.2 1999 61.9 2000	61.3 63.1 1999 59.5 2000	57.1 60.5 2000 53.6 1999	60.7 65.3 2000 56.1 1999	75.2 76.8 1999 73.7 2000	179 245 1999 113 2000	337 402 2000 272 1999	200 209 1999 191 2000	352 518 2000 186 1999	217 343 2000 137 1999
SUMMARY	STATIST	ics	FOR	1999 CALEN	NDAR YEAR		FOR 2000 W	ATER YEAR		WATER YE	ARS 1998	- 2000#
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL 10 PERC 50 PERC	MEAN ANNUAL MANNUAL MANNUAL MAILY MAILY MAILY MAILY MAILY MAILY MEA	EAN EAN AN Y MINIMUM OW AGE AC-FT) EDS EDS		46224 127 849 a50 50 91690 275 75 55	Jul 25 Feb 21 Feb 21		62267 170 e2500 b55 55 c5500 28.48 123500 401 75 60	Aug 12 Jan 4 Jan 4 Aug 12 3 Aug 12		152 170 134 e2500 a50 50 c5500 28.48 110100 343 90 60	Feb Feb Aug	2000 1999 12 2000 21 1999 21 1999 21 1999 12 2000 12 2000

[#] See period of record, partial years used in monthly statistics
a From Feb. 21 to Mar. 15
b From Jan. 4 to Jan. 16
c From rating curve extended above 450 ft³/s on basis of slope-area measurement of peak flow e Estimated

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DIBCHA	KGE, CODI	C PEET F	DAIL'		VALUES	3EK 2000	TO DEFTEME.	EK 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	265	e170	e120	e100	e95	e95	e75	e200	309	161	517	150
2	265			e100			e75	e190	463	170	372	162
3	247	e170	e120		e95	e95	e75	e180	588	162	487	597
4	258	e170	e120 e120 e110	e100 e100	e95 e95 e95	e95 e95 e95	e75	e160	706	172	523	355
5	261	e160	e110	e100	e95	e95	e75	e150	698	176	325	306
6	257			e100	e95	e95	e75	e160	764	369	377	310
7	253	e160	e110	e100	e95	e95	e75	e170	417	466	308	273
8	257	e160	e110	e100	e95	e95	e75	e200	194	298	256	265
9	244	e160	e110 e110	e100	e95	e95	e75	e230	238	219	262	263
10	241	e160	CIIO	e100	e95	e95	e75	e230	279	173	261	239
11	236	e160	e110 e105	e100 e100	e95	e95	e80	e220	305	176	289	228
12	230	e160	e105	e100	e95	e95	e80	e200	488	143	276	219
13	248	e150	e105 e105	e100 e100	e95	e95	e80	e220	306	134	259	214
14 15	256 252		e105 e105	e100 e100	e95 e95 e95	e95	e80	e260 e320	233 219	143 138	237 230	206 201
13	252					e90	e80	e320	219	138		201
16	239	e150	e105 e105 e105 e105 e105	e100 e100 e100 e100	e95 e95 e95 e95	e90 e85 e85 e80 e80	e80 e80 e80 e80 e85	e250	267	142	259	198
17 18	235	e150	e105	e100	e95	e85	e80	e170	325 365	144 158	240 208	196 199
19	225 224	e140 e140	0105	0100	e95	080	280	179 235	334	151	208	199
20	210	e140	e105	e100	e95	e80	e85	301	296	147	208	186
21	201			e100	e95	e75	e90	304	294	140	229	184
22	e200	e140	e105	e100	e95	e75	e100	276	278	135	281	182
23 24	e195 e190	e130 e130	e105	e100	e95	e75 e75	e110 e120	2//	314 252	150 205	321 371	175 172
25	e200	e130	e105 e105 e105	e100 e100 e100	e95 e95 e95 e95	e75	e130	276 277 223 182	230	345	264	170
26	189	e130	e105 e105 e105 e100 e100	e95 e95 e95 e95 e95	e95 e95 e95	e75	e140	176 231 298 233 212	194	456	192	167
27	173	e120	e105	e95	e95	e75	e150	231	164	635	212	164
28	e180	e120 e120	e105	e95	e95	e75	e160	298	166	443	188	162
29 30	e180 e180	e120 e120	e100	e95		e75 e75	e180 e190	233	220 232	620 1000	180 178	158 146
31	e170		e100	295		e75		201	232	806	157	140
TOTAL	6961	4410	3325 107	3070 99.0 100	2660 95.0 95 95	2665	2925 97.5 190	6838 221	10138	8777	8669	6637
MEAN	225	147	107	99.0	95.0	86.0	97.5	221	338	283	280	221
MAX	265	170		100 95	95	95	190	320 150	764 164	1000	523 157	597
MIN AC-FT	170 13810	120 8750	100 6600	6090	5280	2665 86.0 95 75 5290	75 5800	13560	20110	134 17410	17190	146 13160
		CTATTCTT(TO OF MONT	TUIV MEN	N DATA FOR		VENDC 1000			TND (MV)#		
				INDI MEA	N DATA FOR	WAIEK	IEARS 1990	- 2001,	DI WAIEK I	EAR (WI)#		
MEAN	146	103	82.5 107 2001 61.9	73.9	69.6	69.1		193	337	228	328	218
MAX	225	147	107	99.0	95.0	86.0	97.5	245	402	283	518	343
(WY)	2001	2001	2001	2001	2001	2001	2001	1999	2000	2001	2000	2000
MIN	85.3	67.8	61.9	59.5	53.6	56.1	73.7	113	272	191	186	137
(WY)	2000	2000	2000	2000	1999	1999	2000	2000	1999	2000	1999	1999
SUMMARY	Y STATIST	ICS	FOR 2	2000 CAL	ENDAR YEAR		FOR 2001 W	NATER YEA	R	WATER YE	ARS 1998	- 2001#
ANNUAL				70365			67075					
ANNUAL				192			184			163		
	r annual									184		2001
	ANNUAL M			0500	. 10		1000	T 1 2	0	134		1999
	DAILY M DAILY ME.			2500	Aug 12 Jan 4		1000	JUL 3	U 1	2500 a50	Aug	21 1000
		AN Y MINIMUM		a55 55	Jan 4 Jan 4		b75 75	Mar 2	<u>+</u> 1	50	ren Feh	21 1999
	M PEAK FL			55	Juli 1		1160	Jul 3	0	d5500	Aug	12 2000
	M PEAK ST.						21.5	6 Jul 3	0	28.48	Aug	12 2000
	RUNOFF (.			139600			133000			117800		
	CENT EXCE			401			305			320		
	CENT EXCE			121			158		0 1 1 0 0	106		
90 PERG	CENT EXCE	EDS		60			90			60		

See period of record, partial years used in monthly statistics From Jan. 4 to Jan. 16 From Mar. 21 to Apr. 10 From Feb. 21 to Mar. 15, 1999 From rating curve extended above 450 ft³/s on basis of slope-area measurement of peak flow Estimated

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1975 to 1978, 1998 to current year

				DIS-						SEDI-	SED.
				CHARGE,						MENT,	SUSP.
				INST.					SEDI-	DIS-	SIEVE
				CUBIC	SAM-		TEMPER-	TEMPER-	MENT,	CHARGE,	DIAM.
		STREAM	GAGE	FEET	PLING	SAMPLER	ATURE	ATURE	SUS-	SUS-	% FINER
DATE	TIME	WIDTH	HEIGHT	PER	METHOD,	TYPE	WATER	AIR	PENDED	PENDED	THAN
		(FT)	(FEET)	SECOND	CODES	(CODE)	(DEG C)	(DEG C)	(MG/L)	(T/DAY)	.062 MM
		(00004)	(00065)	(00061)	(82398)	(84164)	(00010)	(00020)	(80154)	(80155)	(70331)
MAY											
17	1620	68.0	18.84	162	10	3001	4.5	12.5	646	283	46
JUN											
28	1354	41.0	19.03	146	10	3001	11.5	16.5	93	37	33
AUG											
30	1554	73.0	19.02	173	10	3001	9.5	17.5	34	16	

15518080 LIGNITE CREEK ABOVE MOUTH NEAR HEALY

LOCATION.--Lat $63^{\circ}54'17''$, long $148^{\circ}59'01''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 6, T. 11 S., R. 7 W. (Healy D-4 quad), Hydrologic Unit 19040508, on right bank 300 ft downstream from culverts on access road to Usibelli Coal Mine office, 1,000 ft upstream from mouth, and 3.5 mi north of Healy.

DRAINAGE AREA. -- 48.1 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1985 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 1,300 ft above sea level, from topographic map. Prior to May 22, 1987 on left bank, 400 ft upstream at same datum. From May 22, 1987 to September 30, 1997 on left bank, 300 ft upstream at same datum.

REMARKS.--Records fair except for estimated daily discharges which are poor. Precipitation gage at station; daily values of precipitation are available from the computer files of the Alaska District. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	24	e28	e21	e16	e15	e14	e11	e46	37	21	121	28
2	e26	e27	e20	e16	e15	e14	e11	e42	40	21	69	29
3	e31	e27	e20	e16	e15	e14	e11	e36	39	21	87	50
4	e36	e27	e20	e16	e15	e14	e11	e40	40	21	118	36
5	e35	e27	e20	e16	e15	e14	e11	76	38	23	69	34
6	e32	e27	e19	e16	e15	e14	e11	60	35	45	56	36
7	e30	e27	e19	e16	e15	e14	e11	53	36	64	48	33
8	e29	e27	e19	e16	e15	e14	e11	62	34	50	44	38
9	e28	e26	e19	e16	e15	e14	e11	78	31	33	41	34
10	e27	e26	e19	e16	e15	e14	e12	75	33	26	39	30
11	e26	e26	e19	e16	e15	e14	e12	54	32	23	46	30
12	e26	e26	e18	e16	e15	e14	e12	56	49	21	56	29
13	e27	e26	e18	e16	e15	e14	e12	77	41	21	47	28
14	e28	e26	e18	e16	e15	e14	e12	110	34	22	41	28
15	e30	e26	e18	e16	e15	e14	e12	98	31	20	39	26
16	e34	e26	e18	e16	e15	e14	e12	82	29	19	42	26
17	e36	e26	e18	e16	e15	e13	e12	44	28	23	44	26
18	e35	e26	e18	e16	e15	e13	e13	49	27	28	43	24
19	e34	e25	e17	e16	e15	e12	e14	88	27	22	39	24
20	e32	e25	e17	e16	e15	e12	e15	89	26	20	40	24
21	e31	e24	e17	e16	e15	e12	e16	70	24	20	44	24
22	e30	e24	e17	e16	e14	e11	e17	64	23	22	41	24
23	e30	e23	e17	e16	e14	e11	e19	67	22	22	46	23
24	e29	e23	e17	e16	e14	e11	e20	53	21	50	47	23
25	e29	e22	e17	e16	e14	e11	e22	42	21	52	39	23
26	e29	e22	e17	e16	e14	e11	e24	38	21	92	38	23
27	e29	e22	e17	e15	e14	e11	e27	42	21	144	36	23
28	e29	e21	e17	e15	e14	e11	e32	43	21	93	33	23
29	e28	e21	e16	e15		e11	e38	38	21	92	31	22
30	e28	e21	e16	e15		e11	e48	35	23	161	31	23
31	e28		e16	e15		e11		34		191	28	
TOTAL	926	750	559	491	413	396	500	1841	905	1483	1543	844
MEAN	29.9	25.0	18.0	15.8	14.8	12.8	16.7	59.4	30.2	47.8	49.8	28.1
MAX	36	28	21	16	15	14	48	110	49	191	121	50
MIN	24	21	16	15	14	11	11	34	21	19	28	22
MED	29	26 1490	18	16 974	15	14	12 992	54	30	23	43	26 1670
AC-FT CFSM	1840 .62	.52	1110 .37	.33	819 .31	785 .27	.35	3650 1.23	1800 .63	2940 .99	3060 1.03	.58
IN.	.72	.52	. 43	.33	.31	.31	.35	1.42	.70	1.15	1.19	.65
TIN.	. / 4	. 50	. 43	. 30	. 24			1.74	. / 0	T. T.	エ・エン	.05

e Estimated

15518080 LIGNITE CREEK ABOVE MOUTH NEAR HEALY--Continued

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1985 - 2001, BY WATER YEAR (WY)#

MEAN 22.8 16.0 MAX 47.4 25.4 (WY) 1994 1994 MIN 10.3 4.87 (WY) 1988 1988	12.2 9.99 8.43 20.0 18.7 20.6 1987 1995 1994 1.65 .95 .000 1988 1986 1986	19.1 45.5 166 1994 1994 1992 .000 .000 40.1	64.1 44.4 50.2 42.5 145 77.0 112 134 1989 1986 2000 1990 30.2 25.6 22.7 17.6 2001 1996 1999 1987
SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1985 - 2001#
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE MAXIMUM PEAK STAGE ANNUAL RUNOFF (AC-FT) ANNUAL RUNOFF (CFSM) ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	14423.0 39.4 700 Aug 12 a7.0 Jan 12 7.2 Jan 9 28610 .82 11.15 96 25 8.0	10651 29.2 191 Jul 31 b11 Mar 22 11 Mar 22 236 Jul 31 3.48 Jul 31 95.44 Apr 20 21130 .61 8.24 49 23 14	31.3 43.6 21.1 1999 852 Jun 25 1989 c.00 Feb 1 1986 .00 Feb 1 1986 d2400 Aug 21 1986 f11.05 Aug 21 1986 22670 .65 8.84 68 20 5.0

[#] See Period of Record, partial years used in monthly statistics
a From Jan. 12 to 15
b From Mar. 22 to Apr. 9
c From Feb. 1 to Apr. 30, 1986
d Estimated discharge from rating curve extended above 280 ft³/s based on surface-float measurement at gage
Estimated
f At site then in use, same datum
g Backwater from snow and ice

15518080 LIGNITE CREEK ABOVE MOUTH NEAR HEALY--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1980 to 1981, 1986 to current year

DATE	TIME	STREAN WIDTH (FT) (00004	HEIGHT	SECOND	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	TEMPER- ATURE WATER (DEG C) (00010)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)		SED. SUSP. FALL DIAM. % FINER THAN .004 MM (70338)	SED. SUSP. FALL DIAM. % FINER THAN .008 MM (70339)	SED. SUSP. FALL DIAM. % FINER THAN .016 MM (70340)
MAY	1000	20 (1.0	2001	1 5	E 420	1260	1.0	0.4	2.4	4.2
16 JUN	1903	32.0	3.24	93	10	3001	1.5	5430	1360	17	24	34	43
28 JUL	2050	22.6	2.30	20	10	3001	17.5	106	5.8				
27	1157	45.0	3.32	150	10	3001	9.0	6660	2700	12	18	26	34
AUG 30	1939	12.4	2.81	29	10	3001	21.0	53	4.2				
DATE	% .0	THAN 31 MM	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)	SED. SUSP. SIEVE DIAM. % FINER THAN .125 MM (70332)	SED. SUSP. SIEVE DIAM. FINER THAN .250 MM (70333)	SED. SUSP. SIEVE DIAM. % FINER THAN .500 MM (70334)	SED. SUSP. SIEVE DIAM. % FINER THAN 1.00 MM (70335)	SED. SUSP SIEVE DIAM % FINE THAN 2.00 MI (70336	R				
MAY 16 JUN		50	54	67	87	98	99	100					
28 JUL			69										
27 AUG		40	42	55	75	91	97	98					
30													

15564879 SLATE CREEK AT COLDFOOT

 $\text{LOCATION.--Lat } 67^{\circ}15'17'', \text{ long } 150^{\circ}10'24'', \text{ in } \text{NW}^{1}/_{4} \text{ sec. } 15, \text{ T. 28 N., R. 12 W. (Wiseman B-1 quad), Hydrologic Unit } 19040601, \text{ on left bank } 80 \text{ ft downstream from bridge on Dalton Highway, 1.1 mi upstream from mouth and 0.1 mi north of Coldfoot. }$

DRAINAGE AREA. -- 73.4 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--Annual maximums, water years 1981-94. May 1995 to current year (no winter records in water years 1995-98).

REVISED RECORDS.--WRD AK-99-1: 1984(M), 1989(M), 1993(M), 1994(M), 1998 (M).

GAGE.--Water-stage recorder. Elevation of gage is 1050 ft above sea level, from topographic map. Prior to May 5, 1995, nonrecording gage at site 145 ft upstream at same datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DISCHA	RGE, CUB	IC FEET PER			YEAR OCTO	DBER 2000 1	O SEPTEM	IBER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e78	e16	e4.0	e.40 e.40 e.40 e.40 e.40	e.00	e.00	e.00	e.00	478 599 791 797 574	79 71 67 65 62	68	109
2	e74 e68	e15 e15	e3.8 e3.4	e.40 e.40	e.00 e.00	e.00 e.00	e.00 e.00	e.00 e.00	599 791	71 67	68 68	102 95
4	e64	e14	e3.2	e.40	e.00	e.00	e.00	e.00 e.00	797	65	65	92
5	e58	e14	e3.0	e.40	e.00	e.00	e.00	e.00	5,1	02	63	96
6 7	e56 e52	e14 e13	e2.8 e2.6	e.40 e.20	e.00 e.00	e.00 e.00	e.00 e.00	e.20 e.40	738 694	62 58	61 59	95 95
8	e48	e13	e2.4	e.20	e.00	e.00	e.00	e.80	526	54	57	94
9 10	e46 e43	e12 e12	e2.8 e2.6 e2.4 e2.2 e2.0	e.40 e.20 e.20 e.20 e.20	e.00 e.00	e.00 e.00	e.00 e.00	e1.0 e1.5	487 559	62 58 54 51 51	61 59 57 61 104	94 93
11	e40	e12	e2.0	e.20	e.00	e.00	e.00	e2.0	409	51	155	91
12 13	e38 e37	e11 e11	e1.8	e.20 e.20 e.00 e.00 e.00	e.00	e.00	e.00	e3.0	293	51 60 61 68 67	191 347	90 88
14		ell ell	e1.6 e1.6	e.00	e.00	e.00	e.00	e6.0	224	68	1500	88
15	e35		e1.4	e.00	e.00	e.00	e.00		167	67	1300	99
16 17	e34 e34	e10 e10 e10 e9.8	e1.4	e.00 e.00 e.00 e.00 e.00	e.00	e.00	e.00 e.00 e.00 e.00	e12 e16	152 156	60 63	780 463	121 117
18	e33 e32	e10	e1.2	e.00	e.00	e.00	e.00	e24	158	67	277	113
19 20	e32 e31	e9.8 e9.0	e1.0 e1.0	e.00 e.00	e.00 e.00	e.00 e.00	e.00 e.00	e40 e60	154 128	61 67	222 195	106 102
21			e1.0	e.00	e.00	e.00	e.00				176	99
22	e28 e26 e25 e24	e7.8	e.80	e.00 e.00 e.00 e.00 e.00	e.00	e.00	e.00	e110	116 108 102 96 91	87 81 71 65 61	146	99
23 24	e26 e25	e7.4 e6.6	e.80 e.80	e.00 e.00	e.00 e.00	e.00 e.00	e.00 e.00	e140 e160	102 96	71 65	128 121	96 93
25	e24	e6.2	e.80	e.00	e.00	e.00	e.00	e190	91	61	115	89
26 27	e23	e5.8	e.60	e.00	e.00	e.00	e.00	e210	89	58	112	85
28	e21	e5.4 e5.0	e.60 e.60	e.00	e.00	e.00	e.00 e.00	e280	73	54 57	107	80
29 30	e19	e4.6	e.60	e.00		e.00	e.00	362	77	72	98	77
31	e17		e.60	e.00		e.00		403		58 54 57 72 77 72	93	
TOTAL	1188	304.6	51.40	3.60	0.00	0.00	0.00	2760.90	9247	2000 64.5 87 51 3970 .88 1.01	7396	2858
MEAN MAX	38.3	10.2	1.66	.12	.000	.000	.000	89.1 403	308 797	64.5 87	239 1500	95.3 121
MIN	17	4.4	.60	.00	.00	.00	.00	.00	73	51	57	76
AC-FT CESM	2360 52	604 14	102 02	7.1	.00	.00	.00	5480 1 21	18340 4 20	3970 88	14670 3 25	5670 1 30
IN.	.60	.15	.03	.00	.00	.00	.00	1.40	4.69	1.01	3.75	1.45
		STATISTIC	CS OF MON	THLY MEAN I	DATA FOR	WATER	YEARS 199			YEAR (WY)#	<u> </u>	
MEAN	45.5	16.1	9.27	5.42 12.1 1999 .12 2001	3.83	3.08	4.34	208 378	207 308	101 184	209 435 1998 121 1996	152
MAX (WY)	1999	1999	17.3	1999	1999	1999	9.32 1998 .000	1998	2001	1995	1998	1998
MIN	16.2	2.28	1.66	.12	.000	.000	.000 2001	378 1998 71.7 2000	128	54.7	121	71.7
ANNUAL '		ICS	FOR	23241.80	DAR YEAR		25809.			WATER YE	ARS 1995	- 2001#
ANNUAL I				63.5			70.			73.5		
	ANNUAL ANNUAL M									84.0 65.9		1999 2000
	DAILY M	EAN		802	Jun 7		1500	Aug 14		65.9 a2850 c.00 .00 d4930 19.73 53280	May 2	6 1998
	DAILY ME	AN Y MINIMUM		b.60	Dec 26		C.	00 Jan 13		c.00	Jan 1	3 2001
	PEAK FL	OW		.03	DCC 23		2510	Aug 14		d4930	May 2	6 1998
MAXIMUM ANNIIAT.	PEAK ST	AGE AC-FT)		46100			18. 51190	01 Aug 14		19.73	May 2	6 1998
ANNUAL	RUNOFF (CFSM)		.87 11.78								
ANNUAL 1	RUNOFF (ENT EXCE	INCHES) EDS		46100 .87 11.78 138			13. 154			13.61 249		
50 PERC.	ENT EXCE	EDS		10			11			66		
90 PERC	ENT EXCE	EDS		2.0			•	00		2.0		

See Period of Record; partial years used in monthly summary statistics Revised in 1999 from 2740 ft 3 /s From Dec. 26 to 31 From Jan. 13 to May 5 From rating curve extended above 2,190 ft 3 /s on basis of slope-area measurement at discharge 4,700 ft 3 /s, gage height 19.6 ft Fstimated

Estimated

15564879 SLATE CREEK AT COLDFOOT--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- May 1998 to current year.

PERIOD OF DAILY RECORD.-WATER TEMPERATURE: May 1998 to current year (seasonal).

INSTRUMENTATION.--Water-temperature recorder since May 11, 1998. Electronic water temperature recorder set for 1hour recording interval.

REMARKS.--No record October 1 to May 27 due to probe frozen in ice. Records represent water temperature at sensor within 0.5°C. Temperature at the sensor was compared with the stream average by cross section on June 21 and August 22. No variation was found within the cross section on both dates. The variation found between mean stream temperature and sensor temperature was less than 0.5°C .

EXTREMES FOR PERIOD OF RECORD.-- WATER TEMPERATURE: Maximum, 14.5° C, July 5 and 21, 1998; minimum, 0.0° C, on many days during spring break up and winter periods.

EXTREMES FOR CURRENT YEAR.-- WATER TEMPERATURE: Maximum, 14.0°C, July 23; minimum, 0.0°C, several days in May and June.

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)
JUN							
21	1437	54.0	16.0	14.14	118	9.5	22.0
21	1439	54.0	24.0	14.14	118	9.5	22.0
21	1441	54.0	32.0	14.14	118	9.5	22.0
21	1443	54.0	40.0	14.14	118	9.5	22.0
21	1445	54.0	48.0	14.14	118	9.5	22.0
AUG							
22	2012	60.0	6.00	14.10	146	9.0	14.0
22	2013	60.0	16.0	14.10	146	9.0	14.0
22	2014	60.0	26.0	14.10	146	9.0	14.0
22	2015	60.0	36.0	14.10	146	9.0	14.0
22	2016	60.0	46.0	14.10	146	9.0	14.0
22	2017	60.0	56.0	14.10	146	9.0	14.0

15564879 SLATE CREEK AT COLDFOOT--Continued

WATER TEMPERATURE, DEGREES CELSIUS, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN FEBRUARY	MEAN	MAX	MIN MARCH	MEAN	MAX	MIN APRIL	MEAN	MAX	MIN MAY	MEAN
1												
2												
3												
4 5												
5												
6												
7												
8												
9 10												
10												
11												
12												
13												
14 15												
13												
16												
17												
18 19												
20												
21												
22												
23 24												
25												
26												
27 28										2.0	.0	.5
29										2.0	.0	1.0
30										2.0	.0	.5
31										1.5	.0	. 5
MONTH												
DAY	MAX	MTN	MEAN	MAX	MTN	MEAN	MAX	MTN	MEAN	MΔΥ	MIN	ME AN
DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN		MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	
		JUNE			JULY		i	AUGUST			SEPTEMBE	IR.
1	2.0	JUNE	1.0	12.5	JULY 6.5	9.5	10.0	AUGUST	8.0	9.5	SEPTEMBE 7.0	ER 8.0
		JUNE			JULY		i	AUGUST			SEPTEMBE	IR.
1 2	2.0 2.0 2.5 1.5	JUNE .0 .0	1.0	12.5 12.5	JULY 6.5 7.0	9.5 10.0	10.0 9.0	AUGUST 6.0 7.0	8.0 8.0	9.5 9.5	7.0 5.0	8.0 7.5
1 2 3	2.0 2.0 2.5	JUNE .0 .0	1.0 1.0 1.0	12.5 12.5 13.0	JULY 6.5 7.0 6.5	9.5 10.0 10.0	10.0 9.0 10.0	AUGUST 6.0 7.0 6.0	8.0 8.0 8.0	9.5 9.5 9.5	7.0 5.0 6.0	8.0 7.5 7.5
1 2 3 4 5	2.0 2.0 2.5 1.5 3.5	JUNE .0 .0 .0 .5	1.0 1.0 1.0 1.0	12.5 12.5 13.0 11.0 9.0	JULY 6.5 7.0 6.5 7.0 7.0	9.5 10.0 10.0 9.0 8.0	10.0 9.0 10.0 10.5 9.5	6.0 7.0 6.0 5.0 7.0	8.0 8.0 8.0 7.5 8.0	9.5 9.5 9.5 8.0 8.0	7.0 5.0 6.0 6.5 6.5	8.0 7.5 7.5 7.0 7.0
1 2 3 4 5	2.0 2.0 2.5 1.5 3.5	JUNE .0 .0 .0 .5 .5	1.0 1.0 1.0 1.0 2.0	12.5 12.5 13.0 11.0 9.0	JULY 6.5 7.0 6.5 7.0 7.0	9.5 10.0 10.0 9.0 8.0	10.0 9.0 10.0 10.5 9.5	6.0 7.0 6.0 5.0 7.0	8.0 8.0 8.0 7.5 8.0	9.5 9.5 9.5 8.0 8.0	7.0 5.0 6.0 6.5 6.5	8.0 7.5 7.5 7.0 7.0
1 2 3 4 5	2.0 2.0 2.5 1.5 3.5	JUNE .0 .0 .0 .5	1.0 1.0 1.0 1.0	12.5 12.5 13.0 11.0 9.0	JULY 6.5 7.0 6.5 7.0 7.0	9.5 10.0 10.0 9.0 8.0	10.0 9.0 10.0 10.5 9.5	6.0 7.0 6.0 5.0 7.0	8.0 8.0 8.0 7.5 8.0	9.5 9.5 9.5 8.0 8.0	7.0 5.0 6.0 6.5 6.5	8.0 7.5 7.5 7.0 7.0
1 2 3 4 5 6 7 8 9	2.0 2.5 1.5 3.5 6.0 4.0	JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0	9.5 10.0 10.0 9.0 8.0 7.5 7.0 7.0 7.5	10.0 9.0 10.0 10.5 9.5 8.5 8.0 10.5 9.0	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 8.0	8.0 8.0 8.0 7.5 8.0 7.5 7.5 8.0 8.5	9.5 9.5 9.5 8.0 7.5 8.0	7.0 5.0 6.0 6.5 6.5 5.5 5.5	8.0 7.5 7.5 7.0 7.0 6.5 6.5 6.0
1 2 3 4 5	2.0 2.0 2.5 1.5 3.5 3.5 6.0 5.0	JUNE .0 .0 .0 .5 .5 .5	1.0 1.0 1.0 2.0 2.5 3.5 3.5	12.5 12.5 13.0 11.0 9.0 9.0 8.5 9.5	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 6.0 5.5	9.5 10.0 10.0 9.0 8.0 7.5 7.0 7.0	10.0 9.0 10.0 10.5 9.5 8.5 8.0 10.5	6.0 7.0 6.0 5.0 7.0 6.5 7.0	8.0 8.0 8.0 7.5 8.0 7.5 8.0	9.5 9.5 9.5 8.0 8.0 7.5	7.0 5.0 6.0 6.5 6.5 5.5 5.5	8.0 7.5 7.5 7.0 7.0
1 2 3 4 5 6 7 8 9	2.0 2.0 2.5 1.5 3.5 6.0 5.0 7.0	JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 2.0 1.5	1.0 1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.0 4.0	12.5 12.5 13.0 11.0 9.0 9.0 8.5 9.5 9.5	JULY 6.5 7.0 6.5 7.0 7.0 6.5 5.5 6.0 5.5	9.5 10.0 10.0 9.0 8.0 7.5 7.0 7.5 7.5	10.0 9.0 10.5 9.5 8.5 8.0 10.5 9.0	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 8.0 7.5	8.0 8.0 8.0 7.5 8.0 7.5 8.0 8.5	9.5 9.5 9.5 8.0 8.0 7.5 6.5 7.0	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.0 5.5 5.5 3.0	8.0 7.5 7.5 7.0 7.0 6.5 6.5 6.0 6.0
1 2 3 4 5 6 7 8 9	2.0 2.0 2.5 1.5 3.5 3.5 6.0 5.0 4.0 7.0	JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0	9.5 10.0 10.0 9.0 8.0 7.5 7.0 7.5 7.5 7.5	10.0 9.0 10.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 8.0	8.0 8.0 8.0 7.5 8.0 7.5 8.0 8.5 8.5	9.5 9.5 9.5 8.0 7.5 8.0	7.0 5.0 6.0 6.5 6.5 5.5 5.5	8.0 7.5 7.5 7.0 7.0 6.5 6.0 6.0 5.0
1 2 3 4 5 6 7 8 9 10	2.0 2.0 2.5 1.5 3.5 6.0 5.0 7.0	JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.0 4.0	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 5.5	9.5 10.0 10.0 9.0 8.0 7.5 7.0 7.5 7.5	10.0 9.0 10.5 9.5 8.5 8.0 10.5 9.0	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 8.0 7.5	8.0 8.0 8.0 7.5 8.0 7.5 8.0 8.5	9.5 9.5 9.5 8.0 8.0 7.5 8.0 7.5 6.5 7.0	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.0 5.5 5.5 3.0	8.0 7.5 7.5 7.0 7.0 6.5 6.0 6.0 5.0 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	2.0 2.0 2.5 1.5 3.5 3.5 6.0 7.0 7.5 7.0 8.0 6.0	JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5 2.0 2.5 2.5	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.0 4.5 4.5 4.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 9.5	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 5.5 7.0 7.0	9.5 10.0 10.0 9.0 8.0 7.5 7.0 7.5 7.5 7.5 8.5 9.0 9.5	10.0 9.0 10.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 8.0 7.5 6.5 6.5 6.5	8.0 8.0 7.5 8.0 7.5 8.0 8.5 8.5 7.0 7.0 6.5	9.5 9.5 9.5 8.0 8.0 7.5 8.0 7.5 6.5 7.0	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.5 3.0 4.0 3.5 4.0	8.0 7.5 7.5 7.0 7.0 6.5 6.0 5.0 5.5 5.5
1 2 3 4 5 6 7 8 9 10	2.0 2.0 2.5 1.5 3.5 3.5 6.0 5.0 4.0 7.5 7.0 8.0	JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0 1.5 2.0 2.0	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.0 4.0	12.5 12.5 13.0 11.0 9.0 9.0 8.5 9.5 9.5 9.5	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 5.5 7.0 7.0	9.5 10.0 10.0 9.0 8.0 7.5 7.0 7.5 7.5 7.5 9.0	10.0 9.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 8.0 7.5	8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.5 8.5 7.5 7.0	9.5 9.5 9.5 9.5 8.0 8.0 7.5 6.5 7.0	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.5 3.0 4.0 3.5 3.5	8.0 7.5 7.5 7.0 7.0 6.5 6.0 6.0 5.0 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2.0 2.0 2.5 1.5 3.5 6.0 5.0 4.0 7.0 7.5 7.0 8.0 6.0 8.5	JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.0 4.0 4.5 5.5 4.5	12.5 12.5 13.0 11.0 9.0 9.0 8.5 9.5 9.5 9.5 9.5 11.0 11.5 11.0	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 5.5 7.0 7.0 7.0	9.5 10.0 10.0 9.0 8.0 7.5 7.0 7.5 7.5 7.5 9.0 9.5	10.0 9.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 8.0 7.5 6.5 6.0 6.0	8.0 8.0 7.5 8.0 7.5 8.0 8.5 8.5 7.0 7.0 6.5	9.5 9.5 9.5 9.5 8.0 8.0 7.5 6.5 7.0 7.5 6.5 6.0 6.0	7.0 5.0 6.0 6.5 6.5 5.5 5.0 5.5 3.0 4.0 3.5 4.0 5.0	8.0 7.5 7.5 7.0 7.0 6.5 6.0 6.0 5.0 5.5 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14	2.0 2.0 2.5 1.5 3.5 3.5 6.0 5.0 4.0 7.0 7.5 7.0 8.0 6.0 8.5	JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 2.5 2.0 2.5 2.5 3.5	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.0 4.5 5.5 5.5 6.0 7.0	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 11.5	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 5.5 7.0 7.0	9.5 10.0 10.0 9.0 8.0 7.5 7.0 7.5 7.5 7.5 9.0 9.5 9.5	10.0 9.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5 6.0	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 8.0 7.5 6.5 6.5 6.5	8.0 8.0 7.5 8.0 7.5 8.0 8.5 8.5 7.0 7.0 6.5	9.5 9.5 9.5 8.0 8.0 7.5 8.0 7.5 6.5 7.0	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.5 3.0 4.0 3.5 4.0	8.0 7.5 7.5 7.0 7.0 6.5 6.0 5.0 5.5 5.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2.0 2.0 2.5 3.5 3.5 6.0 5.0 4.0 7.0 7.5 7.0 8.0 6.0 8.5	JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 3.5	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.0 4.5 5.5 4.5 5.5 6.0 7.0	12.5 12.5 13.0 11.0 9.0 9.0 8.5 9.5 9.5 9.5 11.0 12.0	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 7.0 7.5	9.5 10.0 10.0 9.0 8.0 7.5 7.0 7.5 7.5 7.5 9.0 9.5 9.5	10.0 9.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5 6.0	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 8.0 7.5 6.5 6.0 6.0 5.0	8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.5 8.5 7.0 6.5 5.5	9.5 9.5 9.5 9.5 9.5 8.0 7.5 8.0 7.5 6.5 6.0 6.5 6.0 6.5	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.5 3.0 4.0 3.5 3.5 4.0 5.0	8.0 7.5 7.5 7.0 7.0 6.5 6.0 6.0 5.0 5.5 5.5 5.0 5.0 4.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	2.0 2.0 2.5 1.5 3.5 3.5 6.0 7.0 7.5 7.0 8.0 8.5	JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5 2.0 2.5 2.5 2.5 2.5 3.5 4.0	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.0 4.5 4.5 5.5 5.0	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 12.0	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 9.0 7.5	9.5 10.0 9.0 8.0 7.5 7.0 7.5 7.5 7.5 9.5 9.5 10.0 9.5	10.0 9.0 10.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5 6.0	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 8.0 7.5 6.5 6.5 6.5 6.5 6.5 6.0 5.0	8.0 8.0 7.5 8.0 7.5 8.5 8.5 7.0 6.5 5.5 6.0 5.5 6.0	9.5 9.5 9.5 9.5 8.0 7.5 8.0 7.5 6.5 7.0 6.5 6.0 6.0 6.5 5.5	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.5 3.0 4.0 3.5 4.0 5.0	8.0 7.5 7.5 7.0 7.0 6.5 6.0 6.0 5.0 5.5 5.5 5.0 5.0 4.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	2.0 2.0 2.5 3.5 3.5 6.0 5.0 4.0 7.0 7.5 7.0 8.0 6.0 8.5	JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 3.5	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.0 4.5 5.5 4.5 5.5 6.0 7.0	12.5 12.5 13.0 11.0 9.0 9.0 8.5 9.5 9.5 9.5 11.0 12.0	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 7.0 7.5	9.5 10.0 10.0 9.0 8.0 7.5 7.0 7.5 7.5 7.5 9.0 9.5 9.5	10.0 9.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5 6.0	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 8.0 7.5 6.5 6.0 6.0 5.0	8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.5 8.5 7.0 6.5 5.5	9.5 9.5 9.5 9.5 9.5 8.0 7.5 8.0 7.5 6.5 6.0 6.5 6.0 6.5	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.5 3.0 4.0 3.5 3.5 4.0 5.0	8.0 7.5 7.5 7.0 7.0 6.5 6.5 6.0 5.0 5.5 5.5 5.0 5.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	2.0 2.0 2.5 3.5 3.5 6.0 5.0 4.0 7.0 7.5 7.0 8.0 6.0 5.0 10.5 11.0	JUNE .0 .0 .0 .5 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 3.5 4.0 3.5	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.0 4.5 4.5 5.5 4.5 7.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 12.0 13.0 11.5 10.5 11.5 12.5	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 7.0 8.5	9.5 10.0 9.0 8.0 7.5 7.0 7.5 7.5 7.5 9.0 9.5 9.5 9.5	10.0 9.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5 6.0 8.0 7.5 6.0 8.0	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 7.5 6.5 6.0 6.0 5.0 4.5 4.5	8.0 8.0 7.5 8.0 7.5 8.5 8.5 7.0 6.5 5.0 6.0 7.0	9.5 9.5 9.5 9.5 9.5 8.0 7.5 6.5 7.0 7.5 6.5 6.0 6.0 6.5 5.5 5.5	7.0 5.0 6.0 6.5 6.5 5.5 5.5 3.0 4.0 3.5 3.5 4.0 5.0 4.0 2.5 2.0 2.0	8.0 7.5 7.5 7.0 7.0 6.5 6.0 6.0 6.0 5.0 5.5 5.0 5.0 5.0 4.0 3.5 3.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22	2.0 2.0 2.5 1.5 3.5 3.5 6.0 5.0 4.0 7.0 7.5 7.0 8.0 8.5 10.0 10.5 11.0	JUNE .0 .0 .0 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 2.0 2.5 3.5 4.0 3.5	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.0 4.0 4.5 5.5 5.5 7.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 11.5 11.5 12.5	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 7.0 8.5	9.5 10.0 9.0 8.0 7.5 7.5 7.5 7.5 9.5 9.5 9.5 9.5 10.0 9.0 10.5	10.0 9.0 10.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5 6.0 8.0 7.5 6.0	6.0 7.0 6.0 7.0 6.5 7.0 6.5 7.5 6.5 6.0 5.0 4.5 5.5 4.5 5.5	8.0 8.0 7.5 8.0 7.5 8.5 7.5 8.5 7.0 7.0 6.5 5.5 6.0 7.0 7.5	9.5 9.5 9.5 9.5 9.0 8.0 7.5 8.0 7.5 7.0 6.5 6.0 6.0 6.5 5.5 5.5	7.0 5.0 6.0 6.5 6.5 5.5 5.5 3.0 4.0 3.5 4.0 5.0 4.0 2.5 2.0 2.0	8.0 7.5 7.5 7.0 7.0 6.5 6.5 6.0 5.0 5.5 5.5 5.0 4.0 4.0 3.5 3.5
1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	2.0 2.0 2.5 3.5 3.5 6.0 5.0 4.0 7.0 7.5 7.0 8.0 6.0 10.5 11.0 10.5 11.0 10.5 11.0	JUNE .0 .0 .0 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 3.5 4.0 3.5 4.5 5.5	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.5 5.5 4.5 5.5 7.5 7.5 7.5 7.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 11.5 11.0 12.0 13.0 11.5 11.5 12.5	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 7.0 8.5 8.5 8.5 8.0 9.0	9.5 10.0 10.0 9.0 8.0 7.5 7.0 7.5 7.5 7.5 9.0 9.5 9.5 10.0 9.5 10.0	10.0 9.0 10.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5 6.0 8.0 7.5 6.0 8.0 10.0	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.5 6.0 6.0 6.0 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	8.0 8.0 7.5 8.0 7.5 8.5 7.5 8.5 7.0 6.5 5.5 6.0 7.5 6.0 7.5	9.5 9.5 9.5 9.5 9.5 8.0 7.5 6.0 7.5 6.0 6.0 6.5 5.5 5.5 5.5 5.5	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.5 3.0 4.0 3.5 3.5 4.0 5.5 2.0 2.0 2.0	8.0 7.5 7.5 7.0 7.0 6.5 6.5 6.0 6.0 5.0 5.5 5.5 5.0 5.0 4.0 4.0 3.5 3.5 3.5 3.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	2.0 2.0 2.5 1.5 3.5 3.5 6.0 7.0 7.5 7.0 8.5 10.0 10.5 11.0 10.5 11.0	JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5 2.0 2.5 2.5 2.5 2.5 4.5 5.5 6.0	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.0 4.5 5.5 5.0 6.0 7.0 7.5 7.5 7.5 9.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 12.0 13.0 11.5 11.5 11.5 12.5	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 7.0 8.5 8.0 9.0	9.5 10.0 9.0 8.0 7.5 7.5 7.5 7.5 9.5 9.5 10.0 9.5 10.0	10.0 9.0 10.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5 6.0 8.0 7.5 6.0 9.0	6.0 7.0 6.0 7.0 6.5 7.0 6.5 8.0 7.5 6.5 6.5 6.0 5.0 4.5 5.5 4.5 5.5	8.0 8.0 7.5 8.0 7.5 8.5 8.5 7.0 6.5 5.5 6.0 7.0 7.5 8.0 7.5 7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.5 9.5 9.5 9.5 9.5 8.0 7.5 8.0 7.5 7.0 7.5 6.0 6.0 6.0 5.5 5.5 5.5 5.5 5.5	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.5 3.0 4.0 3.5 4.0 5.0 4.0 2.5 2.0 2.0 2.0 3.0	8.0 7.5 7.5 7.0 7.0 6.5 6.5 6.0 5.0 5.5 5.5 5.0 4.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 3.5
1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	2.0 2.0 2.5 3.5 3.5 6.0 5.0 4.0 7.0 7.5 7.0 8.0 6.0 10.5 11.0 10.5 11.0 10.5 11.0	JUNE .0 .0 .0 .5 .5 1.0 1.5 1.5 2.0 2.5 2.0 2.5 2.5 3.5 4.0 3.5 4.5 5.5	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.5 5.5 4.5 5.5 7.5 7.5 7.5 7.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 11.5 11.0 12.0 13.0 11.5 11.5 12.5	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 7.0 8.5 8.5 8.5 8.0 9.0	9.5 10.0 10.0 9.0 8.0 7.5 7.0 7.5 7.5 7.5 9.0 9.5 9.5 10.0 9.5 10.0	10.0 9.0 10.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5 6.0 8.0 7.5 6.0 8.0 10.0	6.0 7.0 6.0 5.0 7.0 6.5 7.0 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.5 6.0 6.0 6.0 6.5 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	8.0 8.0 7.5 8.0 7.5 8.5 7.5 8.5 7.0 6.5 5.5 6.0 7.5 6.0 7.5	9.5 9.5 9.5 9.5 9.5 8.0 7.5 6.0 7.5 6.0 6.0 6.5 5.5 5.5 5.5 5.5	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.5 3.0 4.0 3.5 3.5 4.0 5.5 2.0 2.0 2.0	8.0 7.5 7.5 7.0 7.0 6.5 6.5 6.0 6.0 5.0 5.5 5.5 5.0 5.0 4.0 4.0 3.5 3.5 3.5 3.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	2.0 2.0 2.5 1.5 3.5 3.5 6.0 7.0 7.5 7.0 8.5 10.0 10.5 11.0 10.5 11.0	JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5 2.0 2.5 2.5 2.5 2.5 4.5 5.5 6.0	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.0 4.5 5.5 5.0 6.0 7.0 7.5 7.5 9.5 9.5 9.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 12.0 13.0 11.5 11.5 11.5 12.5 13.5 14.0 13.0 11.5	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 7.0 8.5 8.0 9.0	9.5 10.0 9.0 8.0 7.5 7.5 7.5 7.5 9.5 9.5 10.0 9.5 10.0 10.5 10.5 10.5 9.5	10.0 9.0 10.0 10.5 9.5 8.5 8.0 10.0 8.5 7.5 8.0 6.5 6.0 8.0 10.0 9.0 10.0 9.0 10.0	AUGUST 6.0 7.0 6.0 7.0 6.5 7.0 6.5 7.5 6.5 6.5 6.5 4.5 5.6 6.5 5.5 6.5 5.5	8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.5 7.0 6.5 5.5 6.0 7.0 7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.5 9.5 9.5 9.5 9.5 8.0 7.5 8.0 7.5 7.0 7.5 6.0 6.0 6.0 5.5 5.5 5.5 5.5 5.5	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.5 3.0 4.0 3.5 4.0 5.0 4.0 2.5 2.0 2.0 2.0 2.0	8.0 7.5 7.5 7.0 7.0 6.5 6.5 6.0 6.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25 26 27	2.0 2.0 2.5 1.5 3.5 6.0 5.0 7.0 7.5 7.0 8.0 8.5 10.0 10.5 11.0 10.5 11.0 10.5 13.5	JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 2.5 2.0 2.5 2.5 3.5 4.0 3.5 4.5 5.5 6.0 6.0 6.0	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 3.5 4.0 4.5 5.5 5.0 6.0 7.5 7.5 7.5 9.0 9.5 9.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 12.0 13.0 11.5 11.5 12.5 13.5 14.0 13.0 11.0	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 7.0 8.5 8.5 8.0 9.0 9.0 8.5 7.5 6.5	9.5 10.0 9.0 8.0 7.5 7.5 7.5 7.5 9.5 9.5 9.5 10.0 9.5 10.0 9.5 10.5 10.5 11.5 9.5	10.0 9.0 10.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5 6.0 8.0 7.5 6.0 9.0 10.0	AUGUST 6.0 7.0 6.0 7.0 6.5 7.0 6.5 7.5 6.5 6.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	8.0 8.0 7.5 8.0 7.5 8.5 7.0 7.5 6.5 6.5 6.5 7.0 7.5 7.0 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	9.5 9.5 9.5 9.5 8.0 7.5 8.0 7.5 7.0 6.5 7.0 6.5 6.0 6.0 5.5 5.5 5.5 5.5 5.5 6.0 4.5 3.5 5.5 5.5 5.5 5.5 5.5 5.5 5	7.0 5.0 6.0 6.5 6.5 5.5 5.5 3.0 4.0 3.5 3.5 4.0 2.5 2.0 2.0 2.0 1.5 2.0 3.0	8.0 7.5 7.5 7.0 7.0 7.0 6.5 6.5 6.0 5.0 5.5 5.5 5.0 4.0 4.0 3.5 3.5 3.5 3.5 2.5 2.0
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	2.0 2.0 2.5 1.5 3.5 3.5 6.0 5.0 4.0 7.0 7.5 7.0 8.0 6.0 8.5 10.0 10.5 11.0 10.5 11.0 10.5 11.0	JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 2.5 2.0 2.5 2.0 2.5 3.5 4.0 3.5 4.5 5.5 6.0 6.0 6.5 5.5	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.5 5.5 5.5 7.5 7.5 7.5 9.5 9.5 9.0 7.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 11.5 12.0 13.0 11.5 12.5 13.5 14.0 13.0 11.0	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 7.0 8.5 8.5 8.5 8.5 8.7 9.0 9.0 8.5 7.5	9.5 10.0 10.0 9.0 8.0 7.5 7.5 7.5 9.0 9.5 9.5 9.5 10.0 9.5 10.0 9.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10	10.0 9.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5 6.0 8.0 10.0 9.0 10.0 9.0 10.0	AUGUST 6.0 7.0 6.0 7.0 6.0 7.0 6.5 7.5 6.5 6.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	8.0 8.0 7.5 8.0 7.5 8.5 7.5 8.5 7.5 6.5 6.0 7.5 6.7 7.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	9.5 9.5 9.5 9.5 9.0 8.0 7.5 6.5 7.0 7.0 6.5 6.0 6.0 5.5 5.5 5.0 4.0 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	7.0 5.0 6.5 6.5 5.5 5.5 5.5 5.5 5.0 4.0 3.5 3.5 4.0 5.0 4.0 2.5 2.0 2.0 2.0 1.5 2.0 3.0 1.5 2.0 3.5	8.0 7.5 7.5 7.0 7.0 6.5 6.5 6.0 5.0 5.5 5.5 5.0 4.0 4.0 3.5 3.5 3.5 3.5 2.5 2.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	2.0 2.0 2.5 1.5 3.5 3.5 6.0 7.0 7.5 7.0 8.0 6.0 8.5 10.0 10.5 11.0 10.5 11.0 10.5 11.0 12.5 13.5	JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5 2.0 2.5 2.5 2.5 2.5 2.6 6.0 6.0 6.5 5.5	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.0 4.5 5.5 5.0 6.0 7.0 7.5 7.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 12.0 13.0 11.5 11.5 12.5 13.5 13.5 13.0 11.0 12.0	JULY 6.5 7.0 6.5 7.0 6.0 6.0 5.5 6.0 7.0 7.5 7.0 7.5 9.0 7.5 8.5 8.0 9.0 8.5 7.5 6.5 7.5 6.5	9.5 10.0 9.0 8.0 7.5 7.5 7.5 7.5 9.5 9.5 10.0 9.5 10.0 10.5 10.5 10.5 10.5 10.5 10.5 10	10.0 9.0 10.0 10.5 9.5 8.5 8.0 10.0 10.0 8.5 7.5 8.0 6.5 6.0 8.0 10.0 9.0 10.0 9.0 10.0 9.5 9.0	AUGUST 6.0 7.0 6.0 7.0 6.5 7.0 6.5 7.5 8.0 7.5 6.5 6.0 6.5 4.5 5.6 6.5 5.7 6.5 7.0	8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.5 7.0 6.5 6.0 7.0 7.5 6.0 7.0 7.5 7.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	9.5 9.5 9.5 9.5 8.0 7.5 8.0 7.5 7.0 6.0 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.5 3.0 4.0 3.5 4.0 5.0 4.0 2.5 2.0 2.0 2.0 2.0 3.5 5.0 5.0 5.0 5.0 5.0 5.5 5.5 5.5 5.5 5	8.0 7.5 7.5 7.0 7.0 6.5 6.5 6.0 5.0 5.5 5.5 5.0 4.0 4.0 3.5 3.5 3.5 3.5 2.5 2.0
1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28	2.0 2.0 2.5 1.5 3.5 3.5 6.0 5.0 4.0 7.0 7.5 7.0 8.0 6.0 8.5 10.0 10.5 11.0 10.5 11.0 10.5 11.0	JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 2.5 2.0 2.5 2.0 2.5 3.5 4.0 3.5 4.5 5.5 6.0 6.0 6.5 5.5	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.5 5.5 5.5 7.5 7.5 7.5 9.5 9.5 9.0 7.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 11.5 12.0 13.0 11.5 12.5 13.5 14.0 13.0 11.0	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 7.0 8.5 8.5 8.5 8.5 8.7 9.0 9.0 8.5 7.5	9.5 10.0 10.0 9.0 8.0 7.5 7.5 7.5 9.0 9.5 9.5 9.5 10.0 9.5 10.0 9.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10	10.0 9.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5 6.0 8.0 10.0 9.0 10.0 9.0 10.0	AUGUST 6.0 7.0 6.0 7.0 6.0 7.0 6.5 7.5 6.5 6.0 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6	8.0 8.0 7.5 8.0 7.5 8.5 7.5 8.5 7.5 6.5 6.0 7.5 6.7 7.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	9.5 9.5 9.5 9.5 9.0 8.0 7.5 6.5 7.0 7.0 6.5 6.0 6.0 5.5 5.5 5.0 4.0 3.5 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	7.0 5.0 6.5 6.5 5.5 5.5 5.5 5.5 5.0 4.0 3.5 3.5 4.0 5.0 4.0 2.5 2.0 2.0 2.0 1.5 2.0 3.0 1.5 2.0 3.5	8.0 7.5 7.5 7.0 7.0 7.0 6.5 6.5 6.0 5.0 5.5 5.5 5.0 4.0 4.0 3.5 3.5 3.5 3.5 2.5 2.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	2.0 2.0 2.5 1.5 3.5 6.0 7.0 7.5 7.0 8.5 10.0 10.5 11.0 10.5 11.0 10.5 11.0 11.5 13.5	JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 1.5 2.0 2.5 2.5 2.5 2.5 3.5 4.0 3.5 4.5 5.5 6.0 6.0 6.0 6.5 5.5 7.0	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.0 4.5 5.5 5.0 6.0 7.0 7.5 7.5 9.5 9.5 9.5 9.5 9.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 12.0 13.0 11.5 11.5 12.5 13.5 13.5 14.0 11.0 11.0	JULY 6.5 7.0 6.5 7.0 6.0 6.0 5.5 6.0 7.5 7.0 7.5 7.0 7.5 9.0 7.5 8.5 8.0 9.0 8.5 7.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	9.5 10.0 9.0 8.0 7.5 7.5 7.5 7.5 9.5 9.5 10.0 9.5 10.0 10.5 10.5 10.5 10.5 9.5 9.5	10.0 9.0 10.0 10.5 9.5 8.5 8.0 10.0 8.5 7.5 8.0 6.5 6.0 8.0 10.0 9.0 10.0 9.0 10.0 9.5 9.0	AUGUST 6.0 7.0 6.5 7.0 6.5 7.0 6.5 7.5 6.5 6.0 6.0 5.0 4.5 5.5 6.5 6.5 5.5 6.7 6.7 7.0	8.0 8.0 7.5 8.0 7.5 8.0 7.5 8.5 7.0 6.5 6.0 7.0 7.5 6.0 7.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.5 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7	9.5 9.5 9.5 9.5 8.0 7.5 8.0 7.5 7.0 6.5 7.0 6.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	7.0 5.0 6.0 6.5 6.5 5.5 5.5 5.5 5.0 4.0 3.5 3.5 4.0 5.0 4.0 2.5 2.0 2.0 2.0 1.5 2.0 3.0 1.0 5.0	8.0 7.5 7.5 7.0 7.0 6.5 6.0 6.0 5.0 5.5 5.0 5.0 4.0 4.0 4.0 3.5 3.5 3.5 3.5 2.5 2.0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30	2.0 2.0 2.5 1.5 3.5 6.0 5.0 7.0 7.5 7.0 8.0 8.5 10.0 10.5 11.0 10.5 11.0 10.5 11.0 11.0	JUNE .0 .0 .0 .5 .5 1.0 1.5 2.0 2.5 2.0 2.5 2.5 3.5 4.5 5.5 6.0 6.0 6.5 5.5 7.0	1.0 1.0 1.0 2.0 2.5 3.5 3.5 3.5 4.0 4.5 5.5 5.0 6.0 7.5 7.5 9.0 7.5 9.5 9.5 9.5 9.5	12.5 12.5 13.0 11.0 9.0 8.5 9.5 9.5 9.5 11.0 12.0 13.0 11.5 11.5 12.5 13.5 14.0 13.0 11.0 12.0	JULY 6.5 7.0 6.5 7.0 7.0 6.0 6.0 5.5 6.5 7.0 7.5 7.0 7.5 9.0 7.5 8.5 8.0 9.0 8.5 7.5 6.5 5.5	9.5 10.0 9.0 8.0 7.5 7.5 7.5 7.5 9.5 9.5 9.5 10.0 9.5 10.0 9.5 10.5 11.5 9.5 9.5 10.0	10.0 9.0 10.5 9.5 8.5 8.0 10.5 9.0 10.0 8.5 7.5 8.0 6.5 6.0 8.0 7.5 6.0 9.0 10.0 9.0 10.0 9.5 9.0	AUGUST 6.00 7.00 5.00 7.00 6.50 7.55 6.50 6.50 4.55 6.55 5.55 6.50	8.0 8.0 7.5 8.0 7.5 8.5 7.0 7.5 8.5 7.0 7.5 6.5 6.5 7.0 7.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 7.5 8.5 8.5 8.5 8.5 8.5 8.5 8.5 8	9.5 9.5 9.5 9.5 8.0 7.5 8.0 7.5 7.0 6.5 7.0 6.0 6.0 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	7.0 5.0 6.0 6.5 6.5 5.5 5.5 3.0 4.0 3.5 3.5 4.0 2.5 2.0 2.0 2.0 2.0 3.0 5.0	8.0 7.5 7.5 7.0 7.0 7.0 6.5 6.0 5.0 5.5 5.0 5.5 5.0 4.0 4.0 3.5 3.5 3.5 3.5 2.0 2.5 1.5

15565447 YUKON RIVER AT PILOT STATION

LOCATION.--Lat $61^{\circ}56'04''$, long $162^{\circ}52'50''$, in $SW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 5, T.21 N., R.74 W. (Marshall D-3 quad), Hydrologic Unit 19040805, on the right bank, .2 mi downstream from village of Pilot Station, 2.4 mi downstream from Atchuelinguk River, and 19 mi upstream from Andreafsky River.

DRAINAGE AREA.--321,000 \mbox{mi}^2 approximately.

WATER-DISCHARGE RECORDS

PERIOD OF RECORD.--October 1975 to September 1996, April 1 to September 30, 2001.

REVISED RECORDS.--WRD-AK-99-1: 1998.

GAGE.--Water-stage recorder. Elevation of gage is 20 ft above sea level from topographic map.

REMARKS.--Records good, except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

REMARKS	Record	DISCHAF			R SECOND,		EAR OCTOE				emetry at	scation.
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1							e46000	e55000	e740000	815000	416000	466000
2							e46000	e60000	e760000	781000	416000	465000
3							e46000	e60000	e780000	746000	418000	459000
4							e46000	e65000	e800000	724000	423000	452000
5							e46000	e65000	e780000	704000	428000	445000
6							e46000	e70000	747000	680000	435000	438000
7							e46000	e75000	736000	656000	442000	429000
8							e46000	e80000	731000	631000	448000	417000
9							e46000	e85000	722000	609000	454000	406000
10							e46000	e90000	720000	588000	458000	396000
11							e46000	e95000	720000	567000	459000	387000
12							e46000	e100000	722000	546000	457000	379000
13							e46000	e110000	723000	525000	453000	373000
14							e46000	e120000	731000	506000	448000	366000
15							e46000	e130000	748000	488000	446000	360000
16							-16000	-140000	771000	471000	444000	355000
17							e46000 e46000	e140000 e150000	771000 799000	471000 461000	444000 440000	352000
18							e46000	e160000	816000	458000	435000	348000
19							e48000	e180000	834000	454000	430000	343000
20							e48000	e200000	858000	453000	431000	e341000
21							e48000	e210000	865000	452000	426000	340000
22							e48000	e230000	858000	450000	423000	339000
23							e48000 e48000	e250000	854000 865000	448000 445000	425000 431000	336000
24 25							e50000	e280000 e320000	873000	441000	431000	334000 328000
							630000	e320000	873000	441000	437000	320000
26							e50000	e360000	875000	436000	443000	321000
27							e50000	e400000	e873000	430000	451000	314000
28							e50000	e440000	871000	425000	456000	309000
29							e55000	e500000	872000	422000	462000	304000
30							e55000	e580000	848000	419000	465000	298000
31								e680000		418000	467000	
TOTAL							1426000	6340000	23892000	16649000	13667000	1120000
MEAN							47530	204500	796400	537100	440900	373300
MAX							55000	680000	875000	815000	467000	466000
MIN							46000	55000	720000	418000	416000	298000
AC-FT							2828000	12580000	47390000	33020000	27110000	22220000
CFSM							.15	.64	2.48	1.67	1.37	1.16
IN.							.17	.73	2.77	1.93	1.58	1.30
		STATISTIC	S OF MONT	CHLY MEAN	DATA FOR	WATER Y	EARS 1976	- 2001,	BY WATER	YEAR (WY)	#	
MEAN	254400	128300	76600	61980	53460	48430	46430	266900	584600	455300	398000	359400
MAX	335900	188800	94840	76000	65360	56770	55000	501700	844600	563500	515800	481300
(WY)	1991	1987	1986	1986	1994	1980	1989	1991	1985	1992	1981	1994
MIN	170600	72500	50000	50000	38380	35160	38430	100200	364400	314000	315000	252700
(WY)	1979	1989	1988	1988	1984	1984	1976	1985	1978	1996	1990	1976
	RY STATIST	rics	FO:	R 2001 WA	TER YEAR					EARS 1976	- 2001#	
ANNUAL									227400		1004	
	T ANNUAL								253700		1994	
	' ANNUAL N ST DAILY N		07	5000	Jun 26			h	185300 e1100000	Turn	1978 5 1985	
	DAILY ME		0 /	5000	Juli 26			Di	c35000		23 1984	
		AY MINIMUM							35000		23 1984	
	M PEAK FI		a90	1000	Jun 25			(11070000		9 1985	
	M PEAK ST			a27.09	Jun 25				d27.		9 1985	
MAXIMU	M PEAK ST	ΓAGE							f36.2	25 May	25 1989	
	RUNOFF							10	54700000	_		
	RUNOFF								. '			
	RUNOFF								9.0	53		
	CENT EXC								510000			
	CENT EXC								135000			
90 PER	CENI EACI	FENO							48000			

b

See Period of Record, partial years used in monthly statistics
Maximum recorded, but may have been higher during period of estimated discharge, Jun. 27
Jun. 5-8, 1985
From Feb. 23 to Mar. 27, 1984
Maximum recorded, but may have been higher during period of estimated discharge, Jun. 5-8, 1985
Estimated

Backwater from ice

15565447 YUKON RIVER AT PILOT STATION--Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1954-1956, 1975-96 AND 2001.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: 1976 and 1978, (seasonal).

DATE	TI	L T C SE (FT B		SPECIFIC CONDUC- TANCE (US/CM) (00095)	PH WATE WHOLE FIELD (STAN- DARD UNITS) (00400	TEMPI TUF WAT (DEG	RE RIC ER SUF C) OF	ROMET- PRES- RE (MM F HG) 0025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN DIS- SOLVED (PERCEN SATURA TION) (00301) TT -		
APR 19 19 19 AUG	1	902 904 906 908	1850 1680 1480 900	301 306 308 311		7.4 7.3 7.3 7.3	.00	760 760 760		3.3 3.0 3.1 2.8	23 21 21 19		
14 14 14 14	2 2 2	1145 1148 2204 2211 2215	2150 1650 1100 750 250	214 214 214 214 214		7.9 7.9 7.9 7.8 7.9	14.0 14.0 14.0 14.0 14.0	764 764 764 764		9.9 9.9 9.9 9.9	96 96 96 96 97		
DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	GAGE HEIGHT (FEET) (00065)	DIS-CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	TYPE (CODE)	QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111)			TEMPERA TURE AIR (DEG C) (00020)	ATURE WATER (DEG C)
APR 19	940	9	9	2000		47400	20	3060	100	312	7.3	2.0	.00
JUL 05 25	1820 1030	9 9	9 9	2950 2460	25.96 20.58	680000 441000	20 70	3055 8010	30 10	186 208	8.3 8.0	11.0 18.0	15.0 16.5
AUG 14 30	2130 1130	9 9	9 7	2380 2550	20.78 21.30	448000 466000	20 20	3055 3055	30 30	214 214	7.9 7.8	14.5 14.5	14.0 13.5
SEP 21	1400	9	9	2270	17.01	340000	20	3055	100	223	7.7	9.0	10.0
DATE	TURBID- ITY (NIU) (00076)	HACH 2100AN (NTU)	ANCE 254 NM, WTR FLT (UNITS/ CM)	UV ABSORB- ANCE 280 NM, WTR FLT (UNITS/ CM) (61726)	BARO- METRIC PRES- SURE (MMOF HG) (00025)	OXYGEN DIS- OLVED (MG/L) (00300)	OXYGEN, DIS- OLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	DIS- SOLVED (MG/L AS MG)	DIS- SOLVED (MG/L AS NA)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
APR 19	6.1	8.6	.070	.052	760	3.0	21	160	47.1	10.7	3.3	135	1.34
JUL 05 25		150 E250	.170	.126	762 769	8.1 8.6	80 87	91 96	27.0 27.3	5.63 6.70	1.9 2.3	67 76	1.21 1.26
AUG 14 30		430 100	.222	.163 .135	764 743	9.9 9.4	96 93	99 100	28.2 29.5	6.77 7.19	2.6 2.8	72 77	1.50 1.41
SEP 21		68	.179	.132	744	10.0	91	110	31.0	8.01	2.8	80	1.34

YUKON ALASKA

15565447 YUKON RIVER AT PILOT STATION--Continued

DATE	HCO3	ATE WATER DIS IT FIELD MG/L AS CO3	TOT IT FIELD	ALKA- LINITY WAT DIS FIX END FIELD CACO3 (MG/L) (39036)	SUL- FATE DIS- SOLVED (MG/L AS SO4)		FLOU- RIDE DIS- SOLVED (MG/L AS F) (00950)	SIL- ICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOL- IDS, RISI- DUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	ENTS, DIS- SOLVED (MG/L)	NITRO- GEN NITRITE DIS- SOLVED (MG/L AS N) (00613)	DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMO- NIA DIS- SOLVED (MG/L AS N) (00608)
APR 19	165	.0	135	140	27.1	1.3	E.1	11.4	200	185	.003	. 206	.054
JUL 05			67	140	22.2	.7	E.1		131	105	.003	.048	.003
25 AUG	93		76		27.1	.9	E.1		129	118	.002	.068	.004
14 30	88 91		72 75	 77	29.0 29.4	.9			132 130	120 123	.001	.065	.006
SEP 21	95	.0	78	80	29.8	.8	<.2	7.3	146	128	.002	.071	.004
DATE	TOTAL (MG/L AS N)	NITRO- GEN, AMMO- NIA + ORGANIC DIS. (MG/L AS N) (00623)	TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)			ALUMI - NUM SED, SUS PERCENT (30221)		ANTI- MONY SED. SUSP. (UG/G) (29816)	ARSENIC SED. SUSP. (UG/G) (29818)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM SED. SUSP. (UG/G) (29820)
APR 19 JUL	.17	.15	.027	<.006	<.007				1			. 4	
05 25	.59 E.43	.17 .13	.338 E.312	.007	<.007 <.007	<.10 E.12	.09 E.11	6.6 E7.5	13 13	1.4 E2.2	12 E19	1.0	910 E950
AUG 14 30	.57 .46	.19 .20	.508 .441	E.005	E.004	.10	.1 .09	7.7 7.5	15 14	2.1 1.7	19 17	.8	990 1000
SEP 21	.41	.14	.257	E.005	<.007	.10	.1	7.3	11	1.5	17	.9	990
DATE	BAR- IUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM SED. SUSP. (UG/G) (29822)	BERYL- LIUM DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CAD- MIUM SED. SUSP. (UG/G) (29826)	CAD- MIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM SED. SUSP. (UG/G) (29829)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	COBALT SEDI- MENT SUSP. (UG/G) (35031)	COBALT DIS- SOLVED (UG/L AS CO) (01035)	COPPER SED. SUSP. (UG/G) (29832)	COP- PER, DIS- SOLVED (UG/L AS CU) (01040)	IRON SEDI- MENT SUSP. PERCENT (30269)
	77.0		<.06	17		<.04		<.8		.20		1.0	
JUL 05 25	45.1 43.4	2 E2	<.06 <.06	E6 9	.4 E.5	E.03 E.02	98 E110	<.8 <.8	18 E20	.10	35 E46	2.9 2.4	3.9 E4.9
	47.4 46.9	2 2	<.06 <.06	20 9	.5 .6	<.04 <.04	110 110	<.8 <.8	21 19	.08	47 42	3.9	4.9 4.6
SEP 21		2	<.06	9	. 6	<.04	93	<.8	18	.09	46	2.3	4.5

15565447 YUKON RIVER AT PILOT STATION--Continued

DATE	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD SED. SUSP. (UG/G) (29836)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITH- IUM SEDI- MENT SUSP. (UG/G)	LITH- IUM DIS- SOLVED (UG/L AS LI) (01130)	MAN- GANESE SED. SUSP. (UG/G) (29839)	MAN- GANESE, DIS- SOLVED (UG/L AS MN) (01056)	MER- CURY SED. SUSP. (UG/G) (29841)	MOLYB- DENUM SED. SUSP. (UG/G) (29843)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL SED. SUSP. (UG/G) (29845)	SOLVED (UG/L AS NI)	SELE- NIUM SED. SUSP. (UG/G) (29847)
APR 19	80		<.08		3.0		95.8			.9		.47	
JUL 05 25	170 110	12 E15	.29 .15	30 E34	1.9 2.5	810 E1000	12.6 3.5	.09 E.06	2 E3	. 8	54 E63	.82	M M
AUG 14 30 SEP	50 90	16 16	.20	32 33	2.7 2.5	950 860	2.9 4.1	.05	2 2	1.1	58 47	.74 .25	M M
21	150	18	E.06	34	2.7	880	9.9	.06	2	.9	44	.33	М
DATE	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER SED. SUSP. (US/G) (29850)	SIL- VER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM SEDI- MENT SUSP. (UG/G) (35040)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM SUS SED (UG/G) (49955)	TITA- NIUM SEDI- MENT SUSP. PERCENT (30317)	VANA- DIUM SED. SUSP. (UG/G) (29853)	VANA- DIUM DIS- SOLVED (UG/L AS V) (01085)	ZINC SED. SUSP. (UG/G) (29855)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URA- NIUM SEDI- MENT SUSP. (UG/G) (35046)	URA- NIUM NATU- RAL DIS- SOLVED (UG/L AS U) (22703)
APR 19 JUL	. 4		<1.0		205				1.0		2		1.01
05 25 AUG	.4 N	1 :.500000	<1.0 <1.0	220 E280	103 115	<50 <50	.450 E.480	130 E150	.7 .6	110 E130	<1 <1	<50 <50	.51 .68
14 30 SEP		<.500000 <.500000	<1.0 3.0	280 230	121 121	<50 <50	.470 .440	150 140	.6 .6	130 120	<1 1	<50 <50	.77 .70
21	.5 <	.500000	<1.0	230	130	<50	.440	130	.6	130	<1	<50	.77
DATE	CARBO ORGAN DIS- SOLVI (MG/L C) (0068	IIC GAN - PART ED TOT AS (MG/	OR- ORO IC, PAR IC. L CAL TO L AS (MG)	GANIC I TICU- C ATE F DTAL /L AS (I	CARBON, INORG + DRGANIC PARTIC. TOTAL MG/L AS C)	CARBON SED. SUSP. PERCENT (30244)	CARBON ORGANIC SUS- PENDED, TOTAL PERCENT (50465)	WAT FI SUSP (MB/L A	SED - MEN - SUSE - THO - THRO - CENT - (MG/	IT P., S W- M UGH S RIF PE (L) (N	SUS- ENDED MG/L)	SEDI- MENT, DIS- CHARGE, SUS- PENDED T/DAY) 80155)	SED. SUSP. SEIVE DIAM. % FINER THAN .062 MM (70331)
APR 19	. 2.2		1	. 4	.5			<.022)		4	512	
JUL 05				6.1	6.3	1.3	1.1	.316				850000	67
25 AUG				6.0	6.3 E6.1	E2.0	E1.1	E.180			463		
14 30				5.3	8.7 8.1	1.6 1.5	.9 .9	. 255				120000 629000	82 85
SEP 21	. 4.9		-			2.1	1.5		26	56	302	277000	81

15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET

LOCATION.--Lat $63^{\circ}56'06''$, long $160^{\circ}18'18''$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 18, T.18 S., R.8 W. (Unalakleet D-3 quad), Hydrologic Unit 19050102, on the right bank, 3.5 mi upstream from mouth of the Chiroskey River, 28 mi upstream from mouth, 15 mi east of Unalakleet.

DRAINAGE AREA. -- 1,048 mi².

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- May 1997 to September 1999 (no winter record), October 1999 to current year.

REVISED RECORDS. -- WRD-AK-99-1: 1998.

GAGE.--Water-stage recorder. Elevation of gage is 40 ft above sea level from topographic map.

REMARKS.--Records good, except for June 2 to June 12 which are fair, and estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DISCHA	RGE, CUB	IC FEET PE			YEAR OCTOBE VALUES	R 2000	TO SEPTEM	MBER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	2240 2060 e1900 e1850 e1800	e900 e850 e800 e800 e750	e380 e360 e340 e320 e320	e220 e210 e200 e190 e180	e130 e130 e130 e120 e120	e100 e100 e100 e100 e100	e95 e95	e130 e140 e140 e140 e150	6490 7970 9630 11500 13300	2370 2240 2160 2390 2420	1810 1730 1670 1590 1520	1890 1910 1780 1770 1940
6 7 8 9 10	e1700 e1600 e1550 e1500 e1450	e750 e750 e750 e750 e800	e320 e320 e300 e300 e300	e160 e160 e160	e120 e120 e120 e120 e120	e100 e100 e100 e100 e100	e95 e95 e95 e95 e95 e95	e150 e150 e160 e160 e160	15200 17900 19600 19300 17700	2220 2060 1950 1850 1810	1460 1420 1380 1410 1790	2900 5130 4900 4160 3600
11 12 13 14 15	e1400 e1500 e1700 e2100 e2300	e800 e800 e800 e800 e750	e300 e290 e290 e290 e280	e160 e150 e150 e150 e150	e120 e120 e120	e100 e100 e100	e100 e100 e100	e190 e230 e280 e360 e500	15400 13100 11300 9610 8500	1870 1970 2140 2250 2170	1870 1810 1800 2100 2810	3190 2890 2660 2450 2290
16 17 18 19 20	e2000 e1800 e1500 e1300 e1200	e750 e750 e750 e700 e650	e280 e270 e270 e260 e260	e150 e150 e140 e140 e140	e110 e110 e110 e110 e110	e100 e100 e100 e100 e100	e100 e100 e100 e100 e100	667 1040 1430 1600 1580	7360 6490 6150 5940 5680	2220 2790 2880 2770 3770	3310 3410 3180 3090 3150	2170 2050 1960 1880 1810
21 22 23 24 25	e1100 e1000 e1000 e1000 e1000	e650 e600 e600 e550 e500	e250 e250 e250 e240 e240	e140 e140 e140 e140 e130	e110 e110 e110 e110 e110	e95 e95 e95 e95 e95	e110 e110 e110 e110 e120	1590 1730 1870 1860 1940	5150 4590 4180 3940 3620	4290 3760 3280 2960 2720	3570 3340 3070 2840 2620	1740 1670 1610 1550 1490
26 27 28 29 30 31	e1000 e1100 e1100 e1000 e950 e900	e480 e460 e440 e420 e400	e240 e230 e230 e230 e220 e220	e130 e130 e130 e130 e130 e130	e110 e110 e110 	e95 e95 e95 e95 e95	e120 e120 e130 e130 e130	1920 1900 2210 2930 4120 5210	3280 2980 2760 2560 2450	2500 2370 2240 2120 2020 1920	2430 2270 2140 2040 1940 1850	1450 1420 1400 1350 1300
TOTAL MEAN MAX MIN AC-FT CFSM IN.	45600 1471 2300 900 90450 1.40 1.62	20550 685 900 400 40760 .65 .73	8650 279 380 220 17160 .27 .31	4770 154 220 130 9460 .15 .17	3260 116 130 110 6470 .11	3045 98.2 100 95 6040 .09	3140 105 130 95 6230 .10	36637 1182 5210 130 72670 1.13 1.30	263630 8788 19600 2450 522900 8.39 9.36	76480 2467 4290 1810 151700 2.35 2.71	70420 2272 3570 1380 139700 2.17 2.50	68310 2277 5130 1300 135500 2.17 2.42
		STATISTIC	S OF MOI	NTHLY MEAN	DATA FOR	WATER	YEARS 1997 -	- 2001,	BY WATER	YEAR (WY)	#	
MEAN MAX (WY) MIN (WY)	1317 1471 2001 1163 2000	586 685 2001 487 2000	266 279 2001 252 2000	154 154 2000 154 2000	118 120 2000 116 2001	103 108 2000 98.2 2001	110 115 2000 105 2001	1573 1963 2000 1182 2001	4011 8788 2001 1216 1997	1704 2467 2001 562 1997	3239 5690 1998 2272 2001	2897 3890 1998 1385 1999
SUMMARY	Y STATIST	CICS	FOR 200	0 CALENDAR	YEAR	FOR	2001 WATER	YEAR	W	ATER YEARS	1997 -	2001
LOWEST HIGHEST LOWEST ANNUAL MAXIMUN	MEAN F ANNUAL ANNUAL F DAILY DAILY SEVEN-DA F PEAK FI M DEAK ST	MEAN MEAN CAN AY MINIMUM COW		489924 1339 6880 a100 100 971800 1.28 17.39 3490 750 110	Jun 3 Mar 25 Mar 25		19600 b95 95 19700 1199000 1.58 21.46	Jun Mar 2 Mar 2 Jun Jun	8 1 1 1 8 8	1475 1656 1294 19600 b95 c19700 98.4 1068000 1.4 19.1 4170 1420 110	Jun Mar Mar Jun 1 Jun 1	2001 2000 8 2001 21 2001 21 2001 8 2001 8 2001
50 PERO 90 PERO	CENT EXCE	EEDS EEDS		750 110			750 100			1420 110		

See Period of Record, partial years used in monthly statistics From Mar. 25 to Apr. 10 From Mar. 21 to Apr. 10 From rating curve extended above 8800 ${\rm ft}^3/{\rm s}$ Estimated

Estimated

15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1982-83, 1998 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURE: June 1998 to current year.

INSTRUMENTATION.--Electronic water-temperature recorder set for one-hour recording interval.

REMARKS.-- Records represent water temperature at the sensor within $0.5^{\circ}C$. Temperature was compared with the stream average by cross section on September 5. No variation was found. The variation found between mean stream temperature and sensor temperature was less than 0.5°C .

EXTREMES FOR PERIOD OF RECORD.-WATER TEMPERATURE: Maximum, 14.5°C, July 11,12 2000; minimum, 0.0°C, many days during winter and spring breakup periods.

EXTREMES FOR CURRENT YEAR.--

WATER TEMPERATURE: Maximum, 11.5°C, July 9; minimum, 0.0°C, many days during winter and spring breakup periods.

WATER-QUALITY DATA, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	TIME	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	TEMPER- ATURE WATER (DEG C) (00010)	TEMPER- ATURE AIR (DEG C) (00020)
SEP 05 05	1301 1303	245 245	23.0 45.0	88.28 88.28	1940 1940	7.5 7.5	11.0 11.0
05 05 05	1305 1307 1309	245 245 245	80.0 130.0 205.0	88.28 88.28 88.28	1940 1940 1940	7.5 7.5 7.5	11.0 11.0 11.0

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		OCTOBER		NO	OVEMBER		DE	CEMBER			JANUARY	
1 2 3 4 5	1.0 .5 .5 1.0	.5 .0 .0 .0	1.0 .5 .0 .5	.0.0.0	.0.0.0.0	.0 .0 .0	. 0 . 0 . 0 . 0	.0.0.0.0	.0 .0 .0	.0.0.0.0	.0.0.0.0	.0.0.0
6 7 8 9 10	.5 .0 .0 .0	.0 .0 .0	.0 .0 .0	.0.0.0.0	.0.0.0	.0.0.0	. 0 . 0 . 0 . 0	.0.0.0.0	.0 .0 .0	. 0 . 0 . 0 . 0	.0.0.0	.0.0.0
11 12 13 14 15	. 0 . 0 . 0 . 0	.0 .0 .0	.0 .0 .0	.0.0.0.0	.0.0.0	.0.0.0	. 0 . 0 . 0 . 0	.0.0.0.0	.0 .0 .0	. 0 . 0 . 0 . 0	.0.0.0	.0.0.0
16 17 18 19 20	. 0 . 0 . 0 . 0	.0 .0 .0	.0.0.0	. 0 . 0 . 0 . 0	.0.0.0.0	.0.0.0.0	. 0 . 0 . 0 . 0	.0.0.0.0	.0 .0 .0	.0.0.0.0.0	.0 .0 .0	.0.0.0
21 22 23 24 25	. 0 . 0 . 0 . 0	.0.0.0.0	.0.0.0	.0.0.0.0	.0.0.0.0	.0.0.0.0	. 0 . 0 . 0 . 0	.0.0.0.0	.0 .0 .0	. 0 . 0 . 0 . 0	.0.0.0.0	.0.0.0
26 27 28 29 30 31	.0.0.0.0.0	.0.0.0.0.0	. 0 . 0 . 0 . 0 . 0	.0	.0.0.0.0.0	.0 .0 .0 .0	. 0 . 0 . 0 . 0 . 0	.0.0.0.0.0	.0 .0 .0 .0	.0 .0 .0 .0	.0	.0 .0 .0 .0
MONTH	1.0	.0	.1	.0	.0	.0	.0	.0	.0	.0	.0	.0

15565700 UNALAKLEET RIVER ABOVE CHIROSKEY RIVER NEAR UNALAKLEET—Continued

TEMPERATURE, WATER (DEG. C), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DAY	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN
		FEBRUARY	?		MARCH			APRIL			MAY	
1 2 3 4 5	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0.0.0	. 0 . 0 . 0 . 0	.0.0.0.0	.0.0.0.0		.0.0.0.0
6 7 8 9 10	.0.0.0.0	.0.0.0.0	.0 .0 .0 .0	.0.0.0.0	.0.0.0.0	.0	.0.0.0		.0.0.0.0	.0 .0 .0 .0		.0.0.0
11 12 13 14 15	.0 .0 .0 .0	.0.0.0.0	.0.0.0	.0.0.0.0	.0.0.0.0	.0	.0.0.0	.0 .0 .0 .0	. 0 . 0 . 0 . 0	.0 .5 1.5 5.0 6.5		
16 17 18 19 20	.0 .0 .0 .0	.0.0.0.0	.0.0.0	.0.0.0.0	.0.0.0.0	.0	.0.0.0	.0 .0 .0 .0	. 0 . 0 . 0 . 0	6.0 4.5 2.5 2.0 2.5		5.0 3.5 2.0 1.5
21 22 23 24 25	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0.0.0.0	.0 .0 .0	.0.0.0	. 0 . 0 . 0 . 0	.0.0.0.0	3.5 3.0 2.5 2.5 2.5		2.5 2.5 2.0 2.5 2.0
26 27 28 29 30 31	.0.0.0	.0	.0 .0 .0	.0.0.0.0.0	. 0 . 0 . 0 . 0 . 0	.0.0.0.0.0	.0 .0 .0 .0	.0.0.0.0.0	.0 .0 .0 .0	2.5 3.5 3.5 3.5 3.5 2.5	1.0 2.0 3.0 2.5 2.0	2.0 2.5 3.5 3.0 2.5 2.5
MONTH	.0	.0	.0	.0	.0	.0	.0	.0	.0	6.5	.0	1.6
							YEAR OCTOB					
DAY	MAX	MIN JUNE	MEAN	MAX	MIN JULY	MEAN	MAX	MIN AUGUST	MEAN	MAX	MIN SEPTEMBE	MEAN CR
1 2 3 4 5	3.5 4.5 4.5 5.0 4.5	2.5 3.0 3.0 3.5 3.5	3.0 3.5 4.0 4.0	9.0 9.5 9.0 9.0 8.0	8.0 8.0 9.0 8.0 7.5	8.5 8.5 9.0 8.0 7.5	9.5 9.0 8.5 8.5 8.5	8.5 8.0 7.5 7.5	9.0 8.5 8.0 8.0	8.5 8.5 8.0 8.0 7.5		8.0 8.0 8.0 7.5 7.5
6 7 8 9 10	5.0 5.5 5.5 5.0 4.5	4.5 5.0 5.0 4.0 4.0	5.0 5.0 5.5 4.5	9.0 10.0 10.5 11.5	6.5 8.0 9.0 9.5 9.5	7.5 9.0 9.5 10.5	8.0 9.0 9.5 9.0 9.0	7.5 8.0 8.5 9.0 8.5	8.0 8.5 9.0 9.0	7.5 7.0 6.5 7.0	6.5	7.0 6.5 6.5 6.5
11 12 13 14 15	5.5 6.0 5.5 4.5 5.0	4.0 5.0 4.0 3.5 4.5	4.5 5.5 5.0 4.0 5.0	9.5 8.5 9.0 9.5 9.5	8.5 8.0 8.0 8.5 9.0	9.0 8.5 8.5 9.0 9.5	8.5 9.0 9.0 9.0	8.0 8.0 8.5 8.5	8.5 8.5 9.0 8.5 8.5	6.5 6.5 6.0 6.0	6.0 5.5 5.0 5.5 5.5	6.5 6.0 5.5 6.0 5.5
16 17 18 19 20	5.5 6.5 7.0 8.0 8.0	4.0 5.5 6.5 7.0 8.0	4.5 6.0 7.0 7.5 8.0	9.5 9.0 9.5 9.5	8.5 8.5 8.0 9.0	9.0 8.5 8.5 9.5 9.0	8.5 8.5 7.5 7.5 8.0	8.0 7.5 7.0 7.0	8.0 8.0 7.5 7.0	6.0 6.0 6.0 7.0	5.0 5.5 5.5 5.5 6.0	5.5 5.5 6.0 6.0
21 22 23 24 25	8.5 9.0 10.0 9.5	8.0 8.5 9.0 8.5	8.0 8.5 9.5 9.5	9.5 9.5 9.0 8.5	9.0 9.0 8.5 8.0	9.5 9.5 9.0 8.0	8.5 8.5 8.5	7.5 7.5 8.0 8.0	8.0 8.0 8.0 8.5 8.5	7.0 6.5 6.0 5.5 5.5	6.0 5.5 5.0 5.0	6.5 6.0 5.5 5.5
	9.0	8.0	8.5	8.5	7.5	8.0	9.0	0.0	0.5		3.0	3.0

11.5 6.5 8.7

MONTH 10.5 2.5 6.2

9.5 7.0 8.3 8.5

3.0

6.1

15743850 DAHL CREEK NEAR KOBUK

LOCATION.--Lat $66^{\circ}56'46''$, long $156^{\circ}54'32''$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$ sec. 21, T. 18 N., R.9 E. (Shungnak D-2 quad), Hydrologic Unit 19050302, on right bank 25 ft downstream from culvert on road to Bornite at west end of Dahl Creek landing strip, 3.5 mi upstream from mouth and 3 mi north of Kobuk.

DRAINAGE AREA. -- 11.0 mi².

PERIOD OF RECORD.--Annual maximum, water years 1986-87, April 1988 to current year. (No winter record in water years 1989, 1991-92, 1994, and 1996.)

REVISED RECORDS. -- WDR AK-88-1: 1986(M).

GAGE.--Water-stage recorder. Elevation of gage is 225 ft above sea level, from topographic map. July 16, 1986, to April 28, 1988, the water-stage recorder was operated to obtain annual maximums. Prior to August 17, 1994 at site 50 ft upstream at same datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

		DISCHA	ARGE, CUBI	C FEET PEF		WATER Y Y MEAN V	YEAR OCTOBE VALUES	R 2000 T	O SEPTEME	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	57 54 54 51 e45	e10 e9.5 e9.5 e9.0 e9.0	e5.0 e5.0 e5.0 e5.0 e4.8	e3.6 e3.6 e3.6 e3.6	e3.2 e3.2 e3.2 e3.2 e3.2	e3.0 e3.0 e3.0 e3.0	e3.0 e3.0 e3.0 e3.0 e3.0	e2.9 e2.9 e2.9 e2.9 e2.9	46 57 83 120 138	39 38 36 40 36	52 55 51 49 47	45 43 41 42 41
6 7 8 9 10	e40 e36 e32 e30 e28	e8.5 e8.5 e8.0 e8.0 e8.0	e4.8 e4.6 e4.6 e4.6 e4.4	e3.6 e3.6 e3.4 e3.4 e3.4	e3.2 e3.2 e3.2 e3.2 e3.2	e3.0 e3.0 e3.0 e3.0 e3.0	e3.0 e3.0 e3.0 e3.0 e3.0	e2.9 e2.9 e2.9 e2.9 e2.9	155 171 170 150 135	33 32 31 31 30	45 43 42 51 109	38 38 38 39 37
11 12 13 14 15	e26 e24 e23 e21 e20	e7.5 e7.5 e7.5 e7.0 e7.0	e4.4 e4.4 e4.4 e4.2 e4.2	e3.4 e3.4 e3.4 e3.4 e3.4	e3.2 e3.2 e3.2 e3.2 e3.0	e3.0 e3.0 e3.0 e3.0	e3.0 e3.0 e3.0 e3.0 e3.0	e2.9 e2.9 e2.9 e3.0 e3.2	110 108 99 141 97	30 41 37 34 34	102 141 200 449 266	36 36 35 34 35
16 17 18 19 20	e19 e18 e17 e16 e16	e7.0 e6.5 e6.5 e6.5 e6.5	e4.2 e4.2 e4.0 e4.0 e4.0	e3.4 e3.4 e3.4 e3.4 e3.4	e3.0 e3.0 e3.0 e3.0 e3.0	e3.0 e3.0 e3.0 e3.0 e3.0	e3.0 e3.0 e3.0 e2.9 e2.9	e3.2 e3.4 e3.4 e3.4 e3.2	83 83 87 82 74	35 37 35 47 80	206 174 151 138 121	34 33 33 32 32
21 22 23 24 25	e15 e15 e14 e14 e13	e6.0 e6.0 e6.0 e5.5	e4.0 e3.8 e3.8 e3.8 e3.8	e3.4 e3.2 e3.2 e3.2 e3.2	e3.0 e3.0 e3.0 e3.0 e3.0	e3.0 e3.0 e3.0 e3.0	e2.9 e2.9 e2.9 e2.9 e2.9	e3.2 e3.2 e3.2 e3.2 e3.2	70 64 60 58 54	63 60 58 55 51	107 96 86 77 72	31 31 30 30 29
26 27 28 29 30 31	e13 e12 e12 e11 e11 e10	e5.5 e5.5 e5.5 e5.0	e3.8 e3.8 e3.8 e3.6 e3.6	e3.2 e3.2 e3.2 e3.2 e3.2 e3.2	e3.0 e3.0 e3.0	e3.0 e3.0 e3.0 e3.0 e3.0	e2.9 e2.9 e2.9 e2.9 e2.9	e5.0 e8.0 e15 e24 29 35	50 46 43 41 39	48 47 57 60 56 53	67 61 57 53 50 48	29 28 27 27 26
							88.8 2.96 3.0 2.9 176 .27					1030 34.3 45 26 2040 3.12 3.48
							EARS 1986 -					
MEAN MAX (WY) MIN (WY)	28.8 67.2 1994 9.65 1993	9.12 16.0 1999 3.70 1993	5.59 8.17 1998 2.55 1993	4.53 6.88 1998 2.00 1993	4.07 6.15 1998 2.00 1993	3.76 5.63 1998 1.63 1993	4.23 7.39 1997 1.50 1993	52.5 93.1 1996 6.21 2001	64.7 116 1992 13.1 1997	36.4 73.2 1989 10.6 1997	70.3 223 1994 17.3 1990	50.5 104 1993 19.8 1991
SUMMARY	STATIST	ICS	FOR 2	000 CALENI	DAR YEAR		FOR 2001 WA	TER YEAR		WATER YE	ARS 1986	- 2001
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL ANNUAL 10 PERC 50 PERC	MEAN ANNUAL ANNUAL M DAILY M DAILY ME	MEAN EAN EAN AN Y MINIMUM OW AGE AC-FT) CFSM) INCHES) EDS EDS		7458.6 20.4 181 a3.6 3.7 14790 1.85 25.22 63 7.0	Jun 3 Dec 30 Dec 25		10052.3 27.5 449 b2.9 2.9 765 6.16 f6.62 19940 2.50 34.00 68 5.5 3.0	Aug 14 Apr 19 Apr 19 Aug 14 Aug 14 Nov 7		25.4 36.7 18.8 1400 c1.5 1.5 d1840 6.73 18380 2.31 31.34 83	Aug 1 Mar Mar Aug 1 Aug 1	1993 1999 7 1994 9 1993 9 1993 7 1994 7 1994

See Period of Record; partial years used in monthly statistics

From Apr. 19 to May 13 From Mar. 9 to Apr. 30, 1993 c d

From rating curve extended above 170 $\mathrm{ft^3/s}$ on basis of slope-area measurement of peak flow

Estimated
Backwater from ice

15744500 KOBUK RIVER NEAR KIANA

LOCATION.--Lat $66^\circ 58'25''$, long $160^\circ 07'51''$, in $NW^1/_4 SE^1/_4$ sec. 11, T. 18 N., R. 7 W.(Selawik D-3 quad), Northwest Arctic Borough, Hydrologic Unit 19050304, on left bank, 5.8 mi upstream from Portage Creek, 9.7 mi upstream from Squirrel River, and 7.8 mi east of Kiana.

DRAINAGE AREA.--9,520 mi², approximately.

PERIOD OF RECORD. -- September 1976 to current year.

REVISED RECORDS.--WDR AK-81-1: 1977 (M), 1978, 1979-80 (M), WDR AK-93-1: 1992.

GAGE.--Water-stage recorder. Elevation of gage is 35 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES Satellite telemetry at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

					DAI	LY MEAN	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e22000 e22000 e21000 e21000	e10000 e10000 e9500 e9500 e9000	e5500 e5500 e5500 e5500 e5000	e3800 e3800 e3800 e3800 e3800	e3000 e3000 e3000 e3000 e2900	e2500 e2500 e2500 e2400 e2400	e2100 e2100 e2100 e2100 e2100	e1900 e1900 e1900 e1900 e1900	e17000 e24000 e34000 e50000 e75000	36400 34200 32600 32100 32200	27500 26400 25300 24000 23000	21800 21000 20500 20300 21200
6 7 8 9 10	e20000 e20000 e20000 e19000 e19000	e9000 e8500 e8500 e8000 e8000	e5000 e5000 e5000 e5000 e4800	e3600 e3600 e3600 e3600	e2900 e2900 e2900 e2800 e2800	e2400 e2400 e2400 e2400 e2300	e2100 e2100 e2000 e2000 e2000	e1900 e1900 e1900 e1900 e1900	e100000 e115000 e125000 e130000 e130000	30200 28100 26400 24800 23200	21900 20900 19900 19500 20100	22900 23100 23100 24300 25200
11 12 13 14 15	e18000 e18000 e17000 e17000 e16000			e3400 e3400 e3400 e3400 e3400	e2800 e2800 e2800 e2700 e2700	e2300 e2300 e2300 e2300 e2300	e2000 e2000 e2000 e2000 e2000	e1900 e1900 e1900 e1900 e2000	e130000 e125000 e120000 e110000 100000	21900 21500 21900 22300 23200	23800 29700 38500 52400 75500	25300 24600 23600 22500 21300
16 17 18 19 20	e16000 e16000 e15000 e15000 e15000	e7000 e6500	e4600 e4400 e4400 e4400 e4400	e3400 e3400 e3400 e3400 e3200	e2700 e2700 e2700 e2700 e2600	e2200 e2200 e2200 e2200 e2200	e2000 e2000 e2000 e2000 e2000	e2000 e2000 e2000 e2000 e2000	86200 74700 71700 71000 69100	25200 28100 31600 31100 35700	80300 73800 66600 58500 51900	20500 20100 20000 19500 18800
21 22 23 24 25	e14000 e14000 e13000 e13000 e12000	e6500	e4200 e4200	e3200	e2600 e2600	e2200 e2200 e2200 e2200 e2200	e1900 e1900	e2000 e2000 e2000 e2000 e2200	64900 63300 59100 58100 58800	45100	46300 41600 38000 35000 32200	18300 17800 17300 16800 16400
26 27 28 29 30 31	e12000 e11000 e11000 e11000 e10000	e6000 e5500 e5500	04000		e2500 	e2100 e2100 e2100 e2100 e2100 e2100	e1900 e1900 e1900 e1900 e1900	e2700 e3400 e4600 e6500 e9000 e12000	54500 48500 44500 41500 38800	34100 30400 28500 29100 29700 28900	29900 28000 26300 24900 23700 22800	15700 15300 15200 15100 14700
MEAN MAX MIN AC-FT	499000 16100 22000 10000 989800 1.69 1.95	221000 7367 10000 5500 438400 .77 .86	142200 4587 5500 3800 282100 .48 .56	105400 3400 3800 3000 209100 .36 .41	76900 2746 3000 2500 152500 .29 .30	70300 2268 2500 2100 139400 .24 .27	59700 1990 2100 1900 118400 .21	87000 2806 12000 1900 172600 .29 .34	2289700 76320 130000 17000 4542000 8.02 8.95	962200 31040 47600 21500 1909000 3.26 3.76	1128200 36390 80300 19500 2238000 3.82 4.41	602200 20070 25300 14700 1194000 2.11 2.35
		STATISTI	CS OF MO	NTHLY MEA	N DATA FOR	WATER	YEARS 1976	5 - 2001,	BY WATER	YEAR (WY	7)#	
MEAN MAX (WY) MIN (WY)	13900 29870 1994 5003 1997	5455 11050 1994 2750 1981	3453 6097 1994 1926 1982	2620 3965 1994 1606 1982	2157 2868 1994 1331 1984	1902 2600 1980 1116 1984	3703 1980 1000	24050 48430 1979 1635 1992	46820 87010 1989 19690 1997	9032	31170 78210 1994 9284 1990	28370 78190 1986 9542 1996
SUMMAR							FOR 2001	WATER YEA	R	WATER	YEARS 197	6 - 2001#
MAXIMU	MEAN T ANNUAL N ANNUAL N T DAILY ME SEVEN-DA M PEAK FI	MEAN MEAN MEAN EAN AY MINIMUM LOW		127000 b1600 1600			a130000 c1900 1900 f gh61.	Jun Apr 2 Apr 2	9 1 1	15360 24960 10020 155000 d1000 1000 161000 g62. h64.	Jun Apr Apr Jun 26 Jun 61 92	1994 1977 5 1992 1 1984 1 1984 4 1992 1 1989
ANNUAL ANNUAL 10 PER 50 PER 90 PER	RUNOFF (RUNOFF (CENT EXCE CENT EXCE CENT EXCE	(CFSM) (INCHES) EEDS EEDS EEDS		1.4 19.5 32300 5750 1670	13 53		gh61. 12380000 1. 24. 43300 6000 2000	80 40		1. 21. 41400 5400 1700	61 92	

See Period of Record; partial years used in monthly statistics

a b c d

From Jun. 9-11
From Apr. 6 to May 11
From Apr. 21 to May 14
From Apr. 1 to May 14
Estimated

Estimated Not determined, see Highest Daily Mean Discharge From flood marks Backwater from ice

15746900 WULIK RIVER ABOVE FERRIC CREEK NEAR KIVALINA

LOCATION.--Lat $68^{\circ}04'42''$, long $163^{\circ}11'15''$, in $NW^{1}/_{4}$ sec. 23, T. 31 N., R. 20 W. (DeLong Mts A-2 quad), Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank 0.7 mi upstream from Ferric Creek, 9 miles west of Red Dog Mine site, and 43 miles northeast of Kivalina.

DRAINAGE AREA. -- 191 mi².

PERIOD OF RECORD. -- July 2000 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 500 ft above sea level, from topographic map.

EXTREMES FOR Water year 2000-- Maximum discharge for period July through September, 2000, 5440 $\rm ft^3/s$ September 2, gage height 53.05 $\rm ft$; minimum not determined, occurs during the winter.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 1999 TO SEPTEMBER 2000 DAILY MEAN VALUES DAY OCT MOM DEC JAN FEB MAR APR MAY .TITN JUL AUG SEP e160 839 1020 2 --------------------------e250 1830 4360 e330 1420 3200 290 2420 3590 5 ---------------------------258 3470 4420 6 220 2030 2900 ---------------------------203 1630 1660 1120 181 1470 8 9 ___ ___ ___ ___ ___ ___ ___ ___ ___ 166 1290 833 ---------------10 ------------154 2230 646 ___ ___ 11 ___ ___ ___ ___ ___ ___ ___ 142 1860 520 ---------------------------1680 12 131 426 13 353 14 ___ ___ ___ ___ ___ ___ ___ ___ ___ 109 1490 335 ------------------------271 15 ---114 1020 16 ___ ___ ___ ___ ___ ___ 297 788 246 ---17 ------------------------594 1080 176 ___ ---------___ ---___ ___ ---1470 206 ---___ ___ ___ ___ ___ ___ 19 669 1070 171 ------20 ------443 869 167 21 ___ ___ 341 702 186 22 ---------------------------276 573 e200 ---------------------------23 259 474 e180 221 24 401 e160 25 206 341 e140 26 ___ 240 297 -----e130 27 263 265 e120 28 ---___ ---___ ___ ___ ___ ___ ___ 240 262 e110 ---------------------29 310 242 e100 30 e90 31 ___ ___ ___ ___ ___ ___ ___ ___ ___ 578 319 TOTAL 9760 35564 28036 MEAN ___ ___ ___ ___ ___ ___ ___ ___ ___ 315 1470 1147 935 ------------------------3470 4420 MAX MIN 109 222 MED ___ ___ ___ ___ ___ ___ ___ ___ ___ 250 1070 258 ___ ___ ___ ---AC-FT 19360 70540 55610

1.90

6.93

5.46

CFSM

e Estimated

15746900 WULIK RIVER ABOVE FERRIC CREEK NEAR KIVALINA--Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

					DAII	Y MEAN V	VALUES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e85 e80 e75 e70 e65	e32 e32 e32 e32 e30	e20 e19 e18 e17 e16	e7.0 e7.0 e7.0 e6.5 e6.5	e4.2 e4.2 e4.2 e4.2 e4.0	e3.2 e3.2 e3.2 e3.2 e3.2	e2.7 e2.7 e2.7 e2.6 e2.6	e2.3 e2.3 e2.3 e2.3	e320 e500 e800 e1200 e1800	658 677 621 646 544	570 947 814 653 536	176 169 167 184 250
6 7 8 9 10	e60 e60 e60 e55 e55	e30 e30 e30 e30 e30	e15 e15 e14 e14 e13	e6.5 e6.0 e6.0 e6.0	e4.0 e4.0 e4.0 e4.0 e3.8	e3.2 e3.2 e3.2 e3.2 e3.0	e2.6 e2.6 e2.6 e2.6	e2.3 e2.3 e2.3 e2.3	e2600 e3000 3200 3300 2450	412 351 339 299 263	446 412 613 2090 1510	e360 e460 e500 e800 e1400
11 12 13 14 15	e55 e50 e50 e50 e48	e32 e32 e32 e32 e32	e13 e12 e12 e12 e11	e6.0 e5.5 e5.5 e5.5 e5.5	e3.8 e3.8 e3.8 e3.6	e3.0 e3.0 e3.0 e3.0	e2.6 e2.5 e2.5 e2.5 e2.5	e2.2 e2.2 e2.2 e2.2 e2.2	2040 2960 2990 1860 1070	288 296 308 289 262	1460 3750 4840 3090 1670	e1250 1070 776 618 532
16 17 18 19 20	e48 e46 e44 e42 e42	e32 e32 e32 e32 e32	e11 e11 e10 e10 e9.5	e5.5 e5.0 e5.0 e5.0 e5.0	e3.6 e3.6 e3.6 e3.6	e2.9 e2.9 e2.9 e2.9 e2.9	e2.5 e2.5 e2.5 e2.5 e2.5	e2.2 e2.3 e2.5 e2.7 e3.1	939 1080 1770 1830 1200	403 1080 1390 801 765	1110 846 671 554 515	479 415 370 334 310
21 22 23 24 25	e40 e40 e38 e38 e36	e30 e30 e29 e28 e27	e9.5 e9.0 e9.0 e8.5 e8.5	e5.0 e4.8 e4.8 e4.6 e4.6	e3.4 e3.4 e3.4 e3.4	e2.9 e2.8 e2.8 e2.8 e2.8	e2.5 e2.4 e2.4 e2.4	e3.8 e5.0 e8.0 e13 e21	1370 1060 1610 1420 864	684 570 501 431 364	446 398 327 285 256	286 259 241 222 205
26 27 28 29 30 31	e36 e36 e34 e34 e34	e26 e25 e23 e22 e21	e8.0 e8.0 e7.5 e7.5	e4.6 e4.4 e4.4 e4.4 e4.2	e3.4 e3.4 	e2.8 e2.8 e2.7 e2.7 e2.7	e2.4 e2.4 e2.4 e2.4	e34 e60 e110 e200 e150 e220	765 715 753 906 909	355 535 1270 954 678 536	242 232 208 196 229 197	185 158 e155 150 e145
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	1540 49.7 85 34 48 3050 .26	889 29.6 32 21 30 1760 .16	363.5 11.7 20 7.5 11 721 .06	168.7 5.44 7.0 4.2 5.5 335 .03	104.6 3.74 4.2 3.4 3.7 207 .02	91.9 2.96 3.2 2.7 2.9 182 .02	75.5 2.52 2.7 2.4 2.5 150 .01	871.6 28.1 220 2.2 2.3 1730 .15	47281 1576 3300 320 1280 93780 8.25 9.21	17570 567 1390 262 535 34850 2.97 3.42	30113 971 4840 196 554 59730 5.09 5.86	12626 421 1400 145 298 25040 2.20 2.46
	:	STATISTIC	S OF MONT	THLY MEAN	DATA FOR	WATER Y	EARS 2000	- 2001,	BY WATER	YEAR (WY)	#	
MEAN MAX (WY) MIN (WY)	49.7 49.7 2001 49.7 2001	29.6 29.6 2001 29.6 2001	11.7 11.7 2001 11.7 2001	5.44 5.44 2001 5.44 2001	3.74 3.74 2001 3.74 2001	2.96 2.96 2001 2.96 2001	2.52 2.52 2001 2.52 2001	28.1 28.1 2001 28.1 2001	1576 1576 2001 1576 2001	441 567 2001 315 2000	1059 1147 2000 971 2001	678 935 2000 421 2001
SUMMARY	STATISTI	CS			FOR 20	001 WATER	R YEAR			WATER Y	EARS 2000	- 2001#
LOWEST HIGHEST LOWEST ANNUAL INSTANT INSTANT INSTANT ANNUAL ANNUAL 10 PERC 50 PERC		EAN EAN EAN EAN EAN EAK			624 5 5 22150 2	10	Aug 13 May 11 May 10 Aug 12 Aug 12 Jun 1			306 306 306 4840 a2.2 2.2 6240 53.29 b53.9 221700 1.60 21.7' 1250 55 2.7	May May Aug Aug Jun	2001 2001 13 2001 11 2001 10 2001 12 2001 12 2001 1 2001

[#] See period of record, partial years used in monthly statistics a From May 11-16 b From floodmarks, backwater from snow and ice e Estimated

15746991 IKALUKROK CREEK BELOW RED DOG CREEK NEAR KIVALINA

LOCATION.--Lat $68^{\circ}02'51''$, long $163^{\circ}01'34''$, in $NE^{1}_{/4}$ $NW^{1}_{/4}$ sec.33, T.31 N., R.19 W.(Delong Mountains A-2 quad) Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank about 3.5 mi downstream from the mouth of Red Dog Creek, 2.5 mi upstream from the mouth of Dudd Creek, and 45 mi northeast of Kivalina.

DRAINAGE AREA. -- 98.6 mi².

PERIOD OF RECORD. -- June 1995 to current year (no winter record).

GAGE.--Water-stage recorder. Elevation of gage is 650 ft above sea level, from topographic map. Prior to June 1, 1998 at site 1 mi upstream at different datum.

REMARKS.--Records good except for estimated daily discharges, which are poor. Runoff from $3.6~\text{mi}^2$ is impounded in tailings ponds and released intermittently at a maximum rate of $25~\text{ft}^3/\text{s}$. Meteor-burst telemetry at station.

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, undetermined, July 25, 1996; gage height, 12.22 ft, at site and datum then in use.

EXTREMES FOR CURRENT PERIOD.--Maximum discharge, 4090 ft^3/s , August 12, gage height, 11.81 ft ; minimum not determined, occurs during the winter. Maximum gage height 16.5 ft, flow over ice May 16, 2001.

		DISCHAF	RGE, CUBIC	FEET PER		WATER YEA Y MEAN VAI		ER 2000 TO) SEPTEMBE	ER 2001		
					DAILI	I MEAN VAI	TOES					
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	e80	e21						e1.0	e300	280	400	140
2	e75	e20						e1.0	e500	288	557	129
3	e70	e20						e1.0	e600	278	436	127
4	e65	e19						e1.0	e1000	295	368	140
5	e60	e19						e1.0	e1100	249	303	164
6	e55	e18						e1.0	e1200	209	263	241
7	e50	e18						e1.0	e1100	186	269	333
8	e49	e17						e1.0	1070	166	498	308
9	e48	e17						e1.0	1050	158	998	511
10	e46	e17						e1.0	791	151	871	563
11	e44	e16						e1.0	720	146	942	468
12	e42	e16						e1.0	948	148	2560	386
13	e40	e16						e1.0	940	148	2750	331
14	e38	e15						e1.0	665	142	1530	302
15	e36	e15						e1.0	404	134	870	280
16	e34	e15						e2.0	343	229	625	258
17	e34	e14						e3.0	428	446	486	238
18	e32	e14						e5.0	713	518	397	220
19	e32	e14						e5.0	609	338	345	206
20	e30	e14						e6.0	483	411	303	197
21	e29	e13						e6.0	500	345	268	185
22	e28	e13						e7.0	414	288	245	176
23	e27	e13						e8.0	556	266	225	169
24	e26	e12						e13	490	237	208	160
25	e25	e12						e22	334	209	195	153
26	e25	e11						e32	309	209	180	141
27	e24	e11						e50	313	439	170	e130
28	e23	e10						e90	329	763	160	e125
29	e23	e9.0						e170	371	525	151	e115
30	e22	e9.0						e120	350	395	163	e105
31	e22							e180		324	149	
TOTAL	1234	448.0						734.0	18930	8920	17885	7001
MEAN	39.8	14.9						23.7	631	288	577	233
MAX	80	21						180	1200	763	2750	563
MIN	22	9.0						1.0	300	134	149	105
AC-FT	2450	889						1460	37550	17690	35470	13890
CFSM	.40	.15						. 24	6.40	2.92	5.85	2.37
IN.	.47	.17						.28	7.14	3.37	6.75	2.64

e Estimated

15747000 WULIK RIVER BELOW TUTAK CREEK NEAR KIVALINA

LOCATION.--Lat $67^{\circ}52'34''$, long $163^{\circ}40'28''$, in $NW^1/4$ sec. 34, T. 29 N., R. 22 W. (Noatak D-4 quad), Northwest Arctic Borough, Hydrologic Unit 19050404, on left bank 0.1 mi downstream from Tutak Creek and 25 mi northeast of Kivalina.

DRAINAGE AREA. -- 705 mi².

PERIOD OF RECORD. -- September 1984 to current year.

GAGE.--Water-stage recorder. Elevation of gage is 175 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. GOES satellite telemetry at station. Flow from 2.8 square miles of the drainage basin is regulated by a tailings dam at the Red Dog Mine site. Up to 25 ft³/s of the flow at the gage may be discharge from Red Dog Mine during the summer period. Data for Water Year 2000 were omitted from Water Year 2000 Water Resources Data Report and are included here.

		DISCHAR	GE, CUBI	C FEET PE			YEAR OCTOBE	R 1999	TO SEPTEMB	ER 2000		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	782 810 743 674 586	e140 e135 e130 e125 e120	e49 e48 e47 e46 e45	e28	e20 e19 e19 e19 e19	e16 e16 e15 e15	e14 e14 e14 e14 e13	e13 e13 e13 e13	e5500 e4500 e4700 e5000 e6000	424 676 886 737 721	1460 4150 3700 5790 10600	1600 8960 8070 8580 12700
6 7 8 9 10	532 550 543 541 515	e115 e110 e105 e103 e99	e44 e43 e42 e41 e40	e26 e26 e25 e25	e19 e19 e18 e18 e18	e15 e15 e15 e15 e15	e13 e13 e13 e13	e14 e16 e40 e50 e50	8810 8280 9230 7440 5400	636 567 510 457 416	7000 5510 4780 4150 6550	10600 6280 4060 2970 2380
11 12 13 14 15	491 e340 e310 e360 e380	e95 e92 e89 e87 e84	e39 e39 e38 e37 e37	e25 e24 e24 e24 e24		e15 e15 e15 e15 e14	e13 e13 e13 e13	e80 e80 e200 e350 e600	5830 5070 3830 3940 2980	383 350 314 286 301	7090 6820 7450 5890 3910	1980 1660 1440 1350 1200
16 17 18 19 20	e375 e370 e320 e300 e275	e81 e79 e76 e74 e71	e36 e36 e35 e35 e34	e23 e23 e23 e22 e22		e14 e14 e14 e14		e800 e1100 e1400 e1200 e800	2170 1710 1260 1250 1070	918 1490 3210 2170 1410		1090 914 922 851 843
21 22 23 24 25	e260 e240 e225 e210 e200	e60	e31		e16 e16 e16 e16	e14 e14 e14 e14	e13 e13 e13 e13	e750 e730 e710 e800 e600	661	1040 828 731 662 600	1330	893 e1050 e900 e800 e700
26 27 28 29 30 31	e190 e180 e170 e163 e155 e147	e59 e57 e55 e53 e51						e300 e280 e600 e600 e800 e1300		838 1450 1140 942 1090 1330	1180 1060 1020 984 918 1020	e640 e600 e560 e540 e520
TOTAL MEAN MAX MIN AC-FT CFSM IN.	11937 385 810 147 23680 .55 .63	2606 86.9 140 51 5170 .12 .14	1151 37.1 49 29 2280 .05	729 23.5 28 20 1450 .03 .04	505 17.4 20 16 1000 .02 .03	450 14.5 16 14 893 .02 .02	394 13.1 14 13 781 .02	14316 462 1400 13 28400 .66 .76	100645 3355 9230 446 199600 4.76 5.31	888 3210 286 54570	10600 918	12700 520
							YEARS 1985			YEAR (WY)	#	
MEAN MAX (WY) MIN (WY)	563 1542 1994 207 1997	141 290 1994 68.5 1988	62.7 111 1986 34.2 1988	34.2 70.0 1986 21.5 1992	22.9 49.3 1986 12.0 1992	17.6 39.5 1991 9.10 1992	15.3 38.8 1991 9.00 1992	1950 4856 1993 20.6 1989	3121 6669 1989 1372 1988	1761 6144 1989 424 1999	2918 8458 1994 496 1991	1672 2855 2000 386 1991
SUMMARY	Y STATIST	ICS	FOR 1	.999 CALEN	DAR YEAR		FOR 2000 WA	TER YEA	R			5 - 2000#
ANNUAL HIGHES' LOWEST HIGHES' ANNUAL MAXIMUN MAXIMUN ANNUAL ANNUAL ANNUAL 50 PERC	MEAN I ANNUAL I ANNUAL MI I DAILY ME SEVEN-DA: M PEAK FLO M PEAK STA	MEAN EAN EAN EAN Y MINIMUM OW AGE AGE AC-FT) CFSM) INCHES) EDS EDS		240792 660 8110 a15 15 477600 .94 12.71 1900 95	Aug 1 Apr 29 Apr 29		366201 1001 12700 b13 13 14200 9.15 d10.48 726400 1.42 19.32 3850 94	Sep Apr Apr Sep Sep May 2	5 5 5 5 5 5 4	1028 1843 530 29400 9.0 38500 12.2 d13.5 745000 1.4 19.8 2920 130	Aug Apr Apr Aug 1 Aug May 6	1994 1987 17 1994 30 1985 30 1985 17 1994 17 1994 16 1999

See period of record From Apr. 29 to May 11 From Apr. 5 to May 4 From Apr. 30 to May 10, 1985, and Mar. 4 to May 17, 1992 From floodmarks, backwater from snow and ice

Estimated

15747000 WULIK RIVER BELOW TUTAK CREEK NEAR KIVALINA--Continued

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

		DISCHAI	KGE, CODIK	, reer re	DAIL	Y MEAN		JDER Z000	IO SEFIEM	BER ZUUI		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e500 e480 e460 e440 e430	e190 e190 e180 e180 e170	e110 e110 e110 e110 e100	e75 e75 e75 e75 e70	e55 e55 e50 e50 e50	e42 e42 e40 e40 e40	e32 e32 e32 e30 e30	e25 e25 e25 e24 e24	e3500 e5000 e6000 e9000 e10000	1840 1750 1660 1720 1520	1850 3370 2970 2320 1850	751 700 680 683 793
6 7 8 9 10	e420 e400 e380 e370 e360	e170 e170 e160 e160 e160	e100 e100 e100 e100 e95	e70 e70 e70 e70 e70	e50 e50 e50 e50 e50	e40 e40 e40 e38 e38	e30 e30 e30 e29 e29	e24 e24 e24 e23 e23	9880 9570 8270 7850 6560	1220 1020 913 831 763	1500 1310 1650 5320 5270	955 1410 1440 2180 3840
11 12 13 14 15	e350 e340 e330 e320 e300	e150 e150 e150 e150 e140	e95 e95 e95 e90	e65 e65 e65 e65	e50 e48 e48 e48 e48	e38 e38 e38 e37 e36	e29 e29 e29 e28 e28	e23 e23 e23 e23 e23	5020 6330 7480 6600 3770	740 766 772 767 712	5400 10300 21100 14400 7810	3230 2720 2180 1740 1500
16 17 18 19 20	e290 e280 e280 e270 e260	e140 e140 e140 e130 e130	e90 e90 e90 e85 e85	e65 e65 e60 e60	e48 e46 e46 e46 e46	e36 e36 e36 e36	e28 e28 e28 e27	e24 e25 e27 e29 e32	2930 3030 4130 4950 3440	778 2790 3590 2420 2050	4750 3370 2550 2100 1790	1440 1290 1170 1070 989
21 22 23 24 25	e250 e250 e240 e230 e230	e130 e130 e130 e120 e120	e85 e85 e85 e80 e80	e60 e60 e60 e60	e44 e44 e44 e44	e36 e34 e34 e34 e34	e27 e27 e27 e26 e26	e36 e42 e50 e60 e80	3560 2780 3860 3760 2640	1860 1570 1340 1210 1040	1520 1340 1210 1090 984	931 864 807 756 711
26 27 28 29 30 31	e220 e220 e210 e210 e200 e200	e120 e120 e120 e110 e110	e80 e80 e80 e80 e75 e75	e55 e55 e55 e55 e55	e42 e42 e42 	e34 e34 e34 e32 e32 e32	e26 e26 e26 e25 e25	e120 e250 e460 e650 e750 e1000	2120 2120 1960 2290 2430	989 1250 3690 3460 2470 1860	900 828 777 742 829 830	662 615 596 547 521
TOTAL MEAN MAX MIN AC-FT CFSM IN.	9720 314 500 200 19280 .44 .51	4360 145 190 110 8650 .21	2825 91.1 110 75 5600 .13 .15	1985 64.0 75 55 3940 .09	1330 47.5 55 42 2640 .07	1137 36.7 42 32 2260 .05	846 28.2 32 25 1680 .04	3991 129 1000 23 7920 .18 .21	150830 5028 10000 1960 299200 7.13 7.96	49361 1592 3690 712 97910 2.26 2.60	112030 3614 21100 742 222200 5.13 5.91	37771 1259 3840 521 74920 1.79 1.99
		STATISTIC	S OF MONT	HLY MEAN	DATA FOR	WATER Y	YEARS 198	5 - 2001,	BY WATER	YEAR (WY)	#	
MEAN MAX (WY) MIN (WY)	548 1542 1994 207 1997	141 290 1994 68.5 1988	64.4 111 1986 34.2 1988	36.0 70.0 1986 21.5 1992	24.3 49.3 1986 12.0 1992	18.7 39.5 1991 9.10 1992	16.0 38.8 1991 9.00 1992	1843 4856 1993 20.6 1989	3234 6669 1989 1372 1988	1751 6144 1989 424 1999	2959 8458 1994 496 1991	1648 2855 2000 386 1991
SUMMARY	STATIST	ics	FOR 2	000 CALEN	IDAR YEAR		FOR 2001	WATER YEA	R	WATER Y	EARS 1985	- 2001#
LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM ANNUAL ANNUAL ANNUAL 10 PERC 50 PERC	MEAN 'ANNUAL MAILY MI 'DAILY MEA DAILY MEA	EAN EAN AN Y MINIMUM DW AGE AC-FT) CFSM) INCHES) EDS EDS		367412 1004 12700 a13 13 728800 1.42 19.39 3850 150			376186 1031 21100 b23 23 23100 10. 746200 1 1 19 3110 120 29	May May Aug 1 .52 Aug 1	9 9 3 3	1029 1843 530 29400 9.0 38500 12.2 d13.5 745100 1.4 19.8 2930 130	Apr Apr Aug 1 Aug May	1994 1987 17 1994 30 1985 30 1985 17 1994 17 1994 16 1999

See period of record From Apr. 5 to May 4 From May 9-15 From Apr. 30 to May 10, 1985, and Mar. 4 to May 17, 1992 From floodmarks, backwater from snow and ice Estimated # a b c d

ARCTIC SLOPE ALASKA

15798700 NUNAVAK CREEK NEAR BARROW

LOCATION.--Lat $71^{\circ}15'35''$, long $156^{\circ}46'57''$, in $SE^{1}/_{4}$ sec. 18, T. 22 N., R. 18 W.(Barrow B-4 quad), North Slope Borough, Hydrologic Unit 19060202, 0.7 mi downstream from Emaiksoun Lake, 1.2 mi upstream from Nunavak Bay, and 2.3 mi south of Barrow Post Office.

DRAINAGE AREA.--2.79 mi², approximately.

PERIOD OF RECORD. -- October 1971 to current year.

REVISED RECORDS. -- WDR AK-76-1: 1972.

GAGE.--Water-stage recorder. Elevation of gage is 19 ft above sea level, from topographic map. Prior to May 29, 1982, at site 10 ft downstream at datum about 29.6 ft higher.

REMARKS.--Records poor.

		DISCHAR	GE, CUBI	C FEET P		, WATER LY MEAN	YEAR OCTOBE VALUES	R 2000	TO SEPTEM	BER 2001		
DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	4.3 3.9 3.7 3.5 3.3	1.5 1.4 .78 1.7	e.28 e.27 e.32 e.35 e.34
6 7 8 9 10	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.50	3.0 2.5 2.1 1.9	.54 .47 .57 1.7 2.4	e.32 e.30 e.34 e.50 e.90
11 12 13 14 15	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e1.0 e4.0 e45 e70 e51	1.5 1.2 1.1 .78 .72	3.0 3.9 6.1 3.1 2.0	e.85 e.80 e.74 e.65 e.69
16 17 18 19 20	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	24 17 12 9.7 8.8	.66 .78 .72 1.0	1.4 1.2 .61 .50	e.62 e.53 e.49 e.46 e.39
21 22 23 24 25	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	8.2 7.6 7.3 6.8 6.6	1.2 .92 1.5 1.4	.44 .38 e.37 e.35 e.34	e.36 e.32 e.23 e.20 e.19
26 27 28 29 30 31	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	6.1 6.1 5.6 5.2 4.7	.72 .54 .66 1.4 1.2	e.32 e.31 e.30 e.30 e.31 e.29	e.18 e.17 e.16 e.15 e.14
TOTAL MEAN MAX MIN AC-FT CFSM IN.	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00 .00	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00	307.20 10.2 70 .00 609 3.67 4.10	51.58 1.66 4.3 .54 102 .60	38.28 1.23 6.1 .29 76 .44	12.24 .41 .90 .14 .24 .15
		STATISTIC	S OF MON	THLY MEAN	DATA FOR	WATER	YEARS 1972 -	- 2001,	BY WATER	YEAR (WY)	#	
MEAN MAX (WY) MIN (WY)	.031 .22 1980 .000 1972	.000 .000 1972 .000 1972	.000 .000 1972 .000 1972	.000 .000 1972 .000 1972	.000 .000 1972 .000 1972	.000 .000 1972 .000 1972	.000 .000 1972 .000 1972	.20 3.55 1990 .000 1972	8.52 17.3 1999 2.73 1992	2.04 9.93 1981 .091 1983	.90 6.79 1994 .001 1983	1.02 8.34 1986 .000 1975

e Estimated

15798700 NUNAVAK CREEK NEAR BARROW--Continued

SUMMARY STATISTICS	FOR 2000 CALENDAR YEAR	FOR 2001 WATER YEAR	WATER YEARS 1972 - 2001
ANNUAL TOTAL	506.37	409.30	
ANNUAL MEAN	1.38	1.12	1.05
HIGHEST ANNUAL MEAN			2.26 1989
LOWEST ANNUAL MEAN			.26 1992
HIGHEST DAILY MEAN	52 Jun 16	70 Jun 14	110 Jun 14 1994
LOWEST DAILY MEAN	a.00 Jan 1	b.00 Oct 1	c.00 Oct 1 1971
ANNUAL SEVEN-DAY MINIMUM	.00 Jan 1	.00 Oct 1	.00 Oct 1 1971
MAXIMUM PEAK FLOW		84 Jun 14	d131 Jun 10 1980
MAXIMUM PEAK STAGE		fg34.26 Jun 13	g34.36 Jun 11 1994
ANNUAL RUNOFF (AC-FT)	1000	812	763
ANNUAL RUNOFF (CFSM)	.50	.40	.38
ANNUAL RUNOFF (INCHES)	6.75	5.46	5.13
10 PERCENT EXCEEDS	5.5	1.7	2.0
50 PERCENT EXCEEDS	.00	.00	.00
90 PERCENT EXCEEDS	.00	.00	.00

From Jan. 1 to Jun. 9 and Sep. 30 to Dec. 31 From Oct. 1 to Jun. 9 No flow during winter months and at times during summer months At site and datum then in use, flow over snow. Maximum observed but may have been higher prior to gage startup, Jun. 10-13 Backwater from snow and ice

15896000 KUPARUK RIVER NEAR DEADHORSE

LOCATION.--Lat $70^{\circ}16'54''$, long $148^{\circ}57'35''$, in $NE^{1}/_{4}$ sec. 25, T. 11 N., R. 12 E. (Beechey Point B-4 quad), North Slope Borough, Hydrologic Unit 19060401, on right bank, 1.8 mi northeast of SE Eileen State No. 1, 2.1 mi south of Frontier Service City Camp, 10 mi upstream from mouth on Gwyder Bay, and 13 mi northwest of Deadhorse.

DRAINAGE AREA.--3,130 mi².

PERIOD OF RECORD.--June 1971 to current year.

GAGE.--Water-stage recorder. Datum of gage is at sea level (levels by private engineering firm).

REMARKS.--Records fair except for estimated daily discharges, which are poor. Winter low flow may be discontinuous as the flow probably varies significantly along the main stem of the river due to the formation of aufeis in the vicinity of springs. Flow may cease at other points. GOES satellite telemetry at station.

> DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	e300 e280 e270 e260 e250	e46 e44 e40 e37 e34	C2.0	e.0 e.0 e.0 e.0	e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.u	2370 2160 1770 1510 1320	1120 2640 2480 2100 2060	1410 1340 1270 1200 1190
8	e240 e230 e220 e210 e200		e2.0 e2.0 e2.0 e2.0 e2.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e1000 e4000 e12000 e38000 e55000	1010 963 1100 1330	2070 1960 1800 1660 1490	1150 1120 1110 1090 1100
12 13 14	e190 e180 e170 e160 e150	e20 e19 e18 e16 e15	e1.0 e1.0 e1.0 e1.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e43000 e30000 22200 16500 12100	1250 1100 962 847 753	1330 1300 1870 4150 10700	1160 1230 1260 1240 1190
17 18 19	e140 e130 e120 e120 e110	e14 e13 e11 e10 e9.0	e1.0 e1.0 e1.0 e1.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	9820 8270 6480 5070 3970	698 662 630 594 577	21600 19300 13400 9650 7400	1170 1160 1470 1890 1960
22 23 24 25	e80	e9.0 e8.0 e7.0 e7.0 e6.0	e1.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	3260 2760 2460 2550 2770	563 521 503 556 650	5770 4620 3800 3230 2820	1750 1570 1420 1340 1260
26 27 28 29 30 31	e75 e70 e65 e60 e55 e50	e6.0 e5.0 e5.0 e4.0 e4.0	e.0 e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0 e.0	e.0 e.0 e.0	e.0 e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0	e.0 e.0 e.0 e.0 e.0	2590 2230 1870 1650 1910	618 600 712		1160 e1100 e1000 e940 e860
TOTAL MEAN MAX MIN MED AC-FT CFSM IN.	4755 153 300 50 140 9430 .05 .06	537.0 17.9 46 4.0 14 1070 .01	36.0 1.16 4.0 .0 1.0 71 .00	0.0 .000 .0 .0 .0 .0 .00	0.0 .000 .0 .0 .0 .00	0.0 .000 .0 .0 .0 .00	0.0 .000 .0 .0 .0 .00	0.0 .000 .0 .0 .0 .00	291460.0 9715 55000 .0 3020 578100 3.10 3.46	29668 957 2370 503 783 58850 .31 .35	142030 4582 21600 1120 2240 281700 1.46 1.69	38110 1270 1960 860 1200 75590 .41 .45
							YEARS 1971 -					
MEAN MAX (WY) MIN (WY)	233 692 1978 10.0 1975	20.4 174 1973 .000 1977	2.65 24.3 1973 .000 1977	1.03 10.0 1972 .000 1976	1.01 10.0 1972 .000 1976	1.00 10.0 1972 .000 1975	1.00 10.0 1972 .000 1975	1530 8877 1996 .000 1975	10730 26360 1982 726 1990	1095 3169 1999 300 1971	1634 5095 1989 127 1990	1513 4863 1997 192 1974
SUMMARY	STATIST	ICS	FOR	2000 CALENI	DAR YEAR		FOR 2001 WAT	TER YEA	R	WATER Y	EARS 1971	- 2001 #
ANNUAL MIGHEST LOWEST LOWEST LOWEST ANNUAL MAXIMUM MAXIMUM	MEAN			78000 a.0 .00			506596.0 1388 55000 b.0 .00 d f36.74 1005000	Jun 1 Dec 2 Dec 2	0 2 2	1415 4657 658 100000 c.0 .00 118000 37.6	Jun Mar O Mar Jun O Jun	1971 1974 7 1978 1 1975 1 1975 7 1978 7 1978
10 PERC	RUNOFF (RUNOFF (RUNOFF (ENT EXCE ENT EXCE	EDS EDS		1195000 .53 7.16 2800 2.0 .00			1005000 .44 6.02 2290 2.0 .00			1025000 .4 6.1 2700 10	-	

b

See Period of Record, partial years used in monthly statistics
From Jan. 1 to Jun. 7
From Dec. 22 to Jun. 5
No flow during winter months
Not determined, occurred during period of backwater from ice and snow, see highest daily mean
Estimated

Backwater from snow and ice

15906000 SAGAVANIRKTOK RIVER TRIBUTARY NEAR PUMP STATION 3

LOCATION.--Lat $68^{\circ}41'13''$, long $149^{\circ}05'42''$, in SW^{1}_{4} sec. 4, T. 9 S., R. 13 E. (Phillip Smith Mountains C-4 quad), Hydrologic Unit 19060402, on right bank 30 ft downstream from culvert, at mi 297.9 Dalton Highway, 14 mi south of Pump Station 3, and 16.5 mi upstream from mouth.

PERIOD OF RECORD.--Annual maximums, water years 1979-87. October 1987 to current year. (No winter record in water year 1989.)

REVISED RECORDS.--WDR AK-96-1:1992(M), 1994(M), 1995(M).

GAGE.--Water stage recorder. Elevation of gage is 2,475 ft above sea level, from topographic map. Crest-stage gage only, August 15, 1979 to September 12, 1987, 30 ft upstream of culvert at same datum.

REMARKS.--Records fair except for estimated daily discharges, which are poor.

DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES

	DITTE	1 11D2111 V2	1000					
	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
e.00 e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00	e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e50 e130	31 24 20 23 36	65 59 64 60 54	15 16 15 14 14
e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00	199 162 112	46 70 52 37 29	53 47 38 38 48	20 20 22 21 18
e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	128 100 74 55 42	25 23 22 25 32	68 71 73 122 193	16 14 13 12 12
						22 20 36 32 29	183 130 92 66 50	15 14 12 11 10
e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00	19 24 25 20 18	26 21 18 21 31	40 34 30 27 24	e7.0 e6.5
e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00	e.00 e.00 e.00 e.00 e.00	e.00 e.00 e.00 e.00			36 31 27 68 122 95	22 19 18 17 15	e4.6 e4.2
0.00 0.00 .000 .000 .00 .00 .00 .00 .00 .00 .00 .00	0.00 .000 .00 .00 .00 .00	0.00 .000 .00 .00 .00	0.00 .000 .00 .00 .00	1.00 .032 1.0 .00 2.0 .00	1944.0 64.8 199 3.0 3860 2.28 2.55	1130 36.5 122 18 2240 1.28 1.48	1834 59.2 193 14 3640 2.08 2.40	368.2 12.3 22 4.2 730 .43 .48
.000 .000 .000 .000 1988 1988 .000 .000 1988 1988	.000 .000 1988 .000	.000 .000 1988 .000 1988	.000 .000 1988 .000	36.0 95.6 1995 .032 2001	55.4 150 1992 10.4 1988	34.4 81.6 1999 8.19 1990	45.2 90.8 1997 3.17 1990	27.9 77.4 1997 9.56 2000
FOR 2000 CALENI	DAR YEAR	F	OR 2001 WA	TER YEAR		WATER YEA	RS 1988	- 2001#
14.0 500 a.00 .00 10160 .49 6.71 37			14.6 199	Jun 8 Nov 1 Nov 1 Jun 8 Jun 8 Jun 7		809 c.00 .00 d940 21.20 12370 .60 8.17 49	Jun 1 Oct Oct Jun 1 Jun 1	1997 1988 1 1992 1 1987 1 1987 1 1992 1 1992
	e.00 e	DEC JAN FEB e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00	DEC JAN FEB MAR e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.0	e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00	DEC JAN FEB MAR APR MAY e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.00	DEC JAN FEB MAR APR MAY JUN e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.0	DEC JAN FEB MAR APR MAY JUN JUL e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.0	DEC JAN FEB MAR APR MAY JUN JUL AUG e.00 e.00 e.00 e.00 e.00 e.00 e.00 e.0

See Period of Record, partial years used in monthly statistics From Jan. 1 to May 29 and Nov. 1 to Dec. 31 From Nov. 1 to May 30 No flow during winter months From rating extended above 450 $\rm ft^3/s$ on basis of slope-area measurement of peak discharge Perionard Estimated

From floodmarks at recording gage

15908000 SAGAVANIRKTOK RIVER NEAR PUMP STATION 3

LOCATION.--Lat $69^{\circ}00'54''$, long $148^{\circ}49'02''$, in NW $^{1}/_{4}$ sec. 16, T. 5 S., R. 14 E. (Sagavanirktok River A-4 quad), North Slope Borough, Hydrologic Unit 19060402, on left bank 600 ft east of Dalton Highway at mi 324.7, 6.0 mi upstream from Lupine River, and 15 mi north of Pump Station 3.

DRAINAGE AREA.--1,860 mi², approximately.

PERIOD OF RECORD. -- September 1982 to current year.

GAGE.--Water-stage recorder. Elevation is 1,150 ft above sea level, from topographic map.

REMARKS.--Records good except for estimated daily discharges, which are poor. Precipitation gage and air temperature recorder at station, daily values of precipitation and air temperature are available from the computer files of the Alaska District. GOES satellite telemetry at station.

Γ	DISCHARGE, CUBIC		ID, WATER		2000 T	O SEPTEM	BER 2001		
DAY OCT	NOV DEC	JAN FEE			MAY	JUN	JUL	AUG	SEP
2 e660 e 3 e640 e 4 e640 e	300 e180 290 e180 290 e180 280 e170 280 e170	e130 e110 e130 e110 e130 e110 e130 e110 e130 e110	e96 e96 e96 e96	e86 e86 e86 e86	e80 e80 e80 e80 e80	e270 e460 e700 e1200 e2100	5770 5360 4840 5080 7000	4460 4290 4310 4270 4150	1870 1960 1850 1810 1770
7 e560 e 8 e560 e 9 e540 e	270 e170 260 e170 260 e170 250 e160 250 e160	e130 e110 e130 e110 e130 e110 e130 e110 e130 e110	e94 e94 e94 e94	e86 e86 e84 e84 e84	e78 e78 e78 e78 e78	e3400 e5400 e7000 e9000 10600	6000 4990 4230 3520 3230	4010 3700 3560 3600 3840	1960 1970 1950 1890 1780
12 e490 e 13 e480 e 14 e460 e	240 e160 240 e160 240 e160 230 e160 230 e150	e130 e110 e130 e100 e120 e100 e120 e100 e120 e100	e94 e92 e92 e92	e84 e84 e84 e84	e76 e76 e76 e76 e76	10900 8570 7980 7160 5550	3200 3730 4420 4700 4880	4880 5550 5510 6250 9540	1690 1620 1550 1490 1460
17 e420 e 18 e410 e 19 e400 e	230 e150 220 e150 220 e150 220 e150 220 e150 210 e150	e120 e100 e120 e100 e120 e100 e120 e100 e120 e100	e92 e90 e90 e90	e84 e84 e84 e84	e76 e76 e76 e76 e74	4310 5060 6090 5020 3850	4880 4990 5470 4720 4430	9160 6880 5180 4110 3390	1550 1520 1420 1340 1280
22 e370 e 23 e360 e 24 e360 e	210 e150 210 e150 200 e140 200 e140 200 e140	e120 e100 e120 e100 e120 e100 e120 e98 e120 e98	e90 e90 e90 e88 e88	e82 e82 e82 e82 e82	e74 e74 e74 e74	4220 5850 6050 6250 6510	5210 4700 5060 8110 7410	2930 2660 2500 2340 2160	1230 1190 1140 1150 1110
27 e330 e 28 e320 e 29 e320 e 30 e310 e	2200 e140 190 e140 190 e140 190 e140 190 e140 e130	e120 e98 e110 e98 e110 e96 e110 e110	e88 e88 e88 e86 e86	e82 e80 e80 e80 e80	e74 e74 e74 e74 e74 e150	7700 7330 6280 6290 5880	6170 5230 4700 4700 5950 5130	2050 1940 1860 1790 1800 1780	1050 e980 e960 e920 e860
MEAN 457 MAX 680 MIN 300 AC-FT 28130 13	980 4800 233 155 300 180 180 130 840 9520 .13 .08 .14 .10	3790 2898 122 104 130 110 110 96 7520 5750 .07 .06 .08 .06	2834 91.4 96 86 5620 .05	2506 83.5 86 80 4970 .04	2438 78.6 150 74 4840 .04	166980 5566 10900 270 331200 2.99 3.34	5091 8110 3200	124450 4015 9540 1780 246800 2.16 2.49	44320 1477 1970 860 87910 .79 .89
STA	TISTICS OF MONTH	HLY MEAN DATA F	OR WATER Y	YEARS 1982 -		Y WATER	YEAR (WY)#		
MAX 1172 (WY) 1996 1 MIN 279 7	208 75.9 358 233 996 1998 6.0 4.03 984 1991	36.1 22.4 180 150 1998 1998 .000 .000 1983 1983	18.3 128 1998 .000 1983	19.7 117 1998 .000 1984	1261 3588 1993 4.77 1986	5921 9737 1992 3875 1985	4799 7370 1995 2839 1991	3897 6252 1987 1897 1990	1872 3984 1997 883 1983
SUMMARY STATISTICS	FOR 2	000 CALENDAR YE	CAR	FOR 2001 WA	TER YEAF	2	WATER Y	EARS 198	2 - 2001#
ANNUAL TOTAL ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MI MAXIMUM PEAK STAGE MAXIMUM PEAK STAGE ANNUAL RUNOFF (CFSM ANNUAL RUNOFF (CFSM ANNUAL RUNOFF (INCH 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS	NIMUM T) 11	88961.0 1609 25000 Jun al.0 Feb 1 1.0 Feb 1 68000 .87 11.78 4780 190 1.0	.0	533986 1463 10900 b74 74 12300 18.16 d19.5 1059000 79 10.68 5190 180	Jun 11 May 20 May 20 Jun 11 Jun 15 Jun 6		1567 2071 993 35300 c.00 .00 42900 20.67 d25.68 1135000 .84 11.44 5000 190	Dec Dec Aug Aug Jun	1995 1983 18 1999 25 1982 25 1982 27 1992 27 1992 8 2000

See Period of Record, partial years used in monthly statistics From Feb. 10 to May 27 From May 20 to 30 No flow during winter months water years 1983 to 1995 From floodmarks, backwater from ice and snow

c d

Estimated

Figure 2. Locations of crest-stage partial-record stations

DISCHARGE AT PARTIAL-RECORD STATIONS AND MISCELLANEOUS SITES

As the number of streams on which streamflow information is likely to be desired far exceeds the number of stream-gaging stations feasible to operate at one time, the Geological Survey collects limited streamflow data at sites other than stream-gaging stations. When limited streamflow data are collected on a systematic basis over a period of years for use in hydrologic analyses, the site at which the data are collected is called a partial-record station. Data collected at these partial-record stations are usable in low-flow or flood-flow analyses, depending on the type of data collected. In addition, discharge measurements are made at other sites not included in the partial-record program. These measurements are generally made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites.

Records of partial-record stations are presented in the table of annual maximum stage and discharge at crest-stage stations. Discharge measurements made at miscellaneous sites for both low flow and high flow are given in a second table.

CREST-STAGE PARTIAL-RECORD STATIONS

The following table contains annual maximum discharge for crest-stage stations. A crest-stage gage is a device that will register the peak stage occurring between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain, but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. The maximum discharge for each water year is given. The maximum discharge for the current water year and the maximum for the period of record are presented in the table below. However, at some stations the maximum discharge from spring runoff and from rainfall are shown by the symbols S/ and R/, respectively. Information on some lower floods may have been obtained, but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined.

		[1 ootnotes	at end of t	able on p. 3	07]			
Station			Wate	r year 2001 m	naximum	Period	l of record m	aximum
name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
		SOL	JTHEAST A	ALASKA				
Cupola Peak Creek at Bear Cove near Sitka (15088400)	Lat 57°00′39″, long 135°09′11″, in $NE^1/_4$ $SE^1/_4$ $SE^1/_4$ sec. 13, T. 56 S., R. 64 E. (Sitka A-4 quad), on Baranof Island, in the Tongass National Forest, on left bank 200 ft downstream from Green Lake road crossing, 400 ft upstream from mouth at south shore of Bear Cove in Silver Bay, and about 7.1 mi southeast of Sitka. Drainage area is 0.43 mi².	2000-2001	12-05-00	10.77	n	9-04-00 and 12-05-00	10.77	n
North Fork Peterson Creek near Auke Bay (15109045)	Lat 58°17′02″, long 134°39′49″, in SE¹/4 NW¹/4 SW¹/4, sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, on left bank, 300 ft upstream from mouth, 7.3 mi south of Auke Bay, and 9.5 mi west of Douglas. Drainage area is 1.59 mi²., revised.	1997-2001	9-18-01	22.01	48	11-01-99 and 12-28-99	23.38	160

G:			Wate	r year 2001 n	naximum	Period of record maximum			
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)	
		SOUTI	H-CENTRA	L ALASKA					
Dry Creek near Glennallen (15201000)	Lat 62°08′49″, long 145°28′31″, in NE¹/4 sec. 7, T. 4 N., R.1 W. (Gulkana A-3 quad), on left bank 135 ft upstream from culvert at mi 119 Richardson Highway and 3.3 mi north of Glennallen. Drainage area is 11.4 mi².	1963-2001	401 4-27-01 9-03-01	f15.33 15.20 <14.52	u S/71 R/<39	572	d25.88	546	
McCarthy Creek at McCarthy (15210025)	Lat $61^{\circ}25'54''$, long $142^{\circ}55'02''$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 19, T. 5 S., R. 14 E. (McCarthy B-6 quad), on right bank 1100 ft upstream from large boulder near footbridge at trail crossing at McCarthy, 0.8 mi upstream from mouth. Drainage area is is 79.0 mi ² .	1994-2001	9-27-00 7-09-01 9-19 -01	j80.27 79.61 <78.93	geR/4,000 S/1,950 R/<850	9-27-00	j80.27	ge4,000	
Boulder Creek near Tiekel (15212500)	Lat $61^{\circ}20'08''$, long $145^{\circ}18'26''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 19, T. 6 S., R. 1 E. (Valdez B-4 quad), on left downstream wingwall of bridge at mi 51.4 of old Richardson Highway, 0.2 mi downstream from culvert on present Richardson Highway, and 0.7 mi north of Tiekel. Drainage area is 9.80 mi ² .	1964-2001	6-14-01 7-06-01	10.38 10.55	S/284 R/407	8-07-81	11.72	1,330	
Ptarmigan Creek Tribu- tary near Valdez (15212800)	Lat $61^{\circ}08'12''$, long $145^{\circ}44'32''$, $NW^{1}_{/4}$ $NE^{1}_{/4}$ sec 34, T. 8 S., R. 3 W. (Valdez A-5 quad), on left bank 275 ft upstream from Richardson Highway, 21 mi east of Valdez. Drainage area is 0.72 mi ² .	1965-70 1996-2001	601 9-05-01	f78.52 77.55	u R/42	965	d10.82	85	
Mineral Creek near Valdez (15227500)	Lat $61^{\circ}08'30''$, long $146^{\circ}21'42''$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$ $SE^{1}/_{4}$ sec. 30, T. 8 S., R. 6 W. (Valdez A-7 quad), on right bank 120 ft upstream from bridge, 1.8 mi upstream from mouth, and 0.5 mi northwest of Valdez. Drainage area is 44.0 mi ² .	i1976-81, 1990-2001	5-28-01 9-05-01	<11.40 <11.40	S/<1,520 R/<1,520	676	di 90.81	5,570	

St. t.			Water year 2001 maximum			Period	Period of record maximum		
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)	
		SOUTH-CEN	ITRAL ALA	ASKA—Conti	nued				
Shakespeare Creek at Whittier (15236200)	Lat $60^{\circ}46'35''$, long $148^{\circ}43'35''$, in $NE^1/_4$ sec. 22, T. 8 N., R. 4 E. (Seward D-5 quad), on upstream right wingwall of concrete bridge 0.5 mi upstream from mouth, and 1.8 mi west of the Alaska railroad terminal building at Whittier. Drainage area is 1.61 mi ² .	1970-80, 1984-2001	6-28-01 8-29-01	<9.86 12.35	S/<282 R/528	9-20-95	14.90	690	
Glacier Creek at Bruno Road near Seward (15237900)	Lat 60°10′49″, long 149°22′46″, in NW¹/4 sec.13, T. 1 N., R. 1 W. (Seward A-7 NE quad), Kenai Peninsula Borough, on left bank 25 ft upstream from Bruno Road bridge, and 5.6 mi northeast of Seward. Drainage area is indeterminate.	1987-2001	4-29-01 6-29-01 8-30-01	f8.96 7.76 8.61	u S/363 R/370	10-11-86	15.70	4,200	
Fritz Creek near Homer (15239500)	Lat 59°42′30″, long 151°20′35″, in SW¹/₄ SW¹/₄ sec. 28, T. 5 S., R. 12 W. (Seldovia C-4 quad), Kenai Peninsula Borough, on right bank 25 ft downstream from culvert under East End Road, 8 mi east of Homer. Drainage area is 10.4 mi².	1963-85, ‡1986-92, 1993-2001	1-15-01 5-13-01	11.34 10.70	R/259 S/92	10-22-80	d 18.53	852	
Anchor River near Anchor Point (15239900)	Lat 59°44′50″, long 151°45′11″, in NE¹/₄ sec. 13, T. 5 S., R. 15 W., (Seldovia C-5 quad), Kenai Peninsula Borough, on right bank at downstream side of bridge on Sterling Highway, 4.3 mi southeast of Anchor Point. Drainage area is 137 mi².	‡1965-73 1974 ‡1978-86 1987 ‡1991-92 2000-01	11-11-00 2-27-01 5-29-01	3.68 f8.67 4.63	R/ 906 u S/ 1,690	11-29-83	d7.42	6,050	
Premier Creek near Sutton (15283600)	Lat $61^{\circ}42'40''$, long $149^{\circ}05'12''$, in $SE^{1}/_{4}$ NE $^{1}/_{4}$ sec. 28, T. 19 N., R. 2 E. (Anchorage C-6 quad), on left bank 10 ft downstream from culvert under Buffalo Mine Road, 3.85 mi north from mi 53 Glenn Highway , and 7 mi northeast of Palmer. Drainage area is 3.38 mi ² .	1997-2001	4-29-01 5-27-01 9-06-01	f7.17 6.94 6.88	u S/28 R/24	9-22-00	7.14	47	

St. t.		Water year 2001 maximum			naximum	Period of record maximum			
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)	
		SOUTH-CEN	ITRAL ALA	ASKA—Conti	nued				
Wasilla Creek near Palmer (15285000)	Lat 61°38′37″, long 149°11′46″, in SE¹/4 SW¹/4 sec. 13, T. 18 N., R. 1 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, on right bank 20 ft downstream from culverts on Wasilla Fishhook Road, and 4.1 mi northeast of Palmer. Drainage area is 16.8 mi².	1971, 1976-2001	4-29-01 9-06-01	7.36 <7.69	S/83 R/<119	8-10-71	d17.74	700	
Nancy Lake Tributary near Willow (15290200)	Lat $61^{\circ}41'17''$, long $149^{\circ}57'58''$, in $SE^{1}/_{4}$ Sec. 34 , T. 19 N., R. 4 W. (Tyonek C-1 quad), Matanuska-Susitna Borough, on left bank 50 ft upstream from culvert at Parks Highway, 0.3 mi upstream from mouth and 4.5 mi southeast of Willow. Drainage area is 8.00 mi ² .	1980, 1983-87, 1989-2001	401 4-24-01 8-16-01	f11.13 10.87 <10.00	u S/70 R/<22	10-11-86	13.21	465	
Raft Creek near Denali (15291100)	Lat 63°03′04″, long 147°16′22″, in SE¹/₄ sec. 36, T. 21 S., R. 2 E.(Healy A-1 quad), Matanuska-Susitna Borough, on right bank 30 ft upstream from culvert at mi 68.9 Denali Highway, and 10.7 mi southeast of Denali. Drainage area is 4.33 mi².	1963-2001	5-23-01 6-24-01 8-03-01	f13.48 10.61 10.62	u S/65 R/66	664	11.72	133	
Myrtle Creek near Kodiak (15297200)	Lat 57°36′12″, long 152°24′12″, in NW¹/₄ SW¹/₄ sec. 6, T. 30 S., R. 19 W. (Kodiak C-2 quad), Kodiak Island Borough, on left bank 0.1 mi upstream from bridge, 0.3 mi upstream from mouth, and 13 mi south of Kodiak. Drainage area is 4.74 mi².	‡1963-86, 1987-2001	5-21-01 9-22-01	3.82 5.70	S/217 R/832	1-03-77	6.93	1,350	
Stapp Creek near Cold Bay (15297609)	Lat $55^{\circ}11'17''$, long $162^{\circ}42'47''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$ sec. 1, T. 58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, on left bank, 0.9 mi upstream from mouth, and 1 mi. south of Cold Bay. Drainage area is 1.68 mi ² .	2001	10-24-00 3-29-01 2-15-01	15.67 f16.55 15.02	R/25 u S/5.1	10-24-00	15.67	25	

C4-4:			Water year 2001 maximum			Period of record maximum		
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
		SOUTH-CEN	TRAL ALA	ASKA—Conti	nued			
Frosty Creek near Cold Bay (15297810)	Lat 55°09'59", long $162^{\circ}48'22"$, in $SE^{1}_{/4}$ $SW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 8, T. 58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, on left bank, 2.8 mi upstream from mouth, and 4.5 mi southwest of Cold Bay. Drainage area is 5.92 mi ²		10-24-00 4-02-01	11.92 11.61	R/497 S/392	10-24-00	11.92	497
		SOU	THWEST A	ALASKA				
Chinkelyes Creek Tributary near Pedro Bay (15300350)	Lat $59^{\circ}44'02''$, long $153^{\circ}48'40''$, in $SE^{1}_{/4}$ $NE^{1}_{/4}$ $NE^{1}_{/4}$ sec. 23, T. 5 S., R. 27 W. (Iliamna C-3 quad), on left bank 60 ft upstream from culvert, 8 mi east of Pile Bay, and 11 mi east of Pedro Bay. Drainage area is 0.40 mi ² .	1997-2001	6-26-01 7-19-01	10.90 11.19	S/14 R/23	9-18-99	13.14	144
Moody Creek at Aleknagik (15302900)	Lat 59°16′34″, long 158°35′42″, in SE¹/4 sec. 30, T. 10 S., R. 55 W. (Dillingham B-7 quad), on left bank 10 ft upstream from culvert entrance, and 500 ft upstream from mouth at Wood River at the Aleknagik Mission. Drainage area is 1.28 mi².	1969-73, 1975-85, 1988-2001	401 5-13-01 7-15-01	18.11 17.76 17.97	u S/10 R/ 14	6-07-71	19.60	55
Gold Creek at Takotna (15303660)	Lat $62^{\circ}59'20''$, long $156^{\circ}04'08''$, in $SE^{1}_{/4}$ $SE^{1}_{/4}$ sec. 34, T. 34 N., R. 36 W. (Iditarod D-1 quad), at Takotna, on right bank, 350 ft upstream from bridge, and 400 ft upstream from mouth. Drainage area is 6.31 mi^{2} .	1987-2001	501 5-29-01 8-20-01	f7.47 7.46 7.00	u S/67 R/33	5-16-99	8.30	131
		Y	UKON AL	ASKA				
Dennison Fork near Tetlin Junction (15305900)	Lat $63^{\circ}25'24''$, long $142^{\circ}29'00''$, in SW ¹ / ₄ sec. 14, T. 19 N., R. 15 E. (Tanacross B-3 quad), on left bank 7 ft downstream from culverts at mi 10.7 Taylor Highway, and 8.3 mi northeast of Tetlin Junction. Drainage area is 2.93 mi ² .	1964-2001	n	n	n	764	d16.29	128

			Wate	r year 2001 m	naximum	Period of record maximum		
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
YUKON ALASKA—Continued								
King Creek near Dome Creek (15344000)	Lat $64^{\circ}23'38''$, long $141^{\circ}24'43''$, in NE $^{1}/_{4}$ SW $^{1}/_{4}$ sec. 16, T. 6 S., R. 32 E. (Eagle B-1 quad), on left bank 1,100 ft upstream from culvert at mi 119.8 Taylor Highway, 0.4 mi upstream from mouth, 4.9 mi east of Dome Creek, and 28 mi south of Eagle. Drainage area is 5.87 mi ² .	1975-82, ‡1983-90, 1991-2001	n	n	n	6-13-97	j17.65	n
Boulder Creek near Central (15439800)	Lat 65°34′05″, long 144°53′13″, in NW¹/4 sec. 32, T. 9 N., R. 14 E. (Circle C-2 quad), on right bank 2,000 ft upstream from bridge at mi 125.4 Steese Highway, 0.7 mi upstream from mouth, and 2.3 mi west of Central. Drainage area is 31.3 mi².	1964-65, ‡1966-82, 1983, ‡1984-86, 1987-2001	5-17-01 5-23-01 7-07-01	f7.6 d38.59 7.56	u S/243 R/583	6-25-89	10.01	1,460
Quartz Creek near Central (15442500)	Lat $65^{\circ}37'09''$, long $144^{\circ}28'55''$, in $SW^{1}/_{4}$ sec. 7, T. 9 N., R. 16 E. (Circle C-1 quad), on left bank 10 ft upstream from culvert at mi 138.1 on Steese Highway, 1 mi upstream from mouth, 19 mi southwest of Circle, and 10 mi east of Central. Drainage area is 17.2 mi ² .	1967, 1969-79, 1989-2001	n	n	n	7-15-95	dj23.08	700
Ray River Tributary near Stevens Village (15453610)	Lat 65°56′57″, long 149°54′55″, in SE¹/4 sec. 17, T. 13 N., R. 11 W. (Livengood D-6 quad), on right bank 10 ft upstream from culvert at mi 63.6 on the Dalton Highway, and 22 mi west of Stevens Village. Drainage area is 8.00 mi².	1977-2001	n	n	n	579	d 21.10	860
Little Jack Creek near Nabesna (15470300)	Lat 62°32′39″, long 143°19′22″, in SW¹/4 NW¹/4 SE¹/4 sec. 22, T. 9 N., R. 11 E. (Nabesna C-5 quad), on left bank 8 ft upstream from the culvert at mi 25.8 Nabesna Road, and 15.6 mi northeast of Nabesna (previously 0.2 mi upstream on left bank). Drainage area is 6.73 mi²	1975-2001	6-29-00 6-11 -01 7-25-01	18.34 <17.53 21.42	gR/76 S/<69 R/254	579	d 21.10	860

G:			Wate	er year 2001 m	naximum	Period of record maximum		
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
		YUKO	N ALASKA	—Continued				
Berry Creek near Dot Lake (15476300)	Lat 63°41′23″, long 144°21′47″, in NW¹/4 sec. 13, T. 22 N., R. 5 E. (Mt. Hayes C-1 quad), on left bank 100 ft upstream from former bridge site, at mi 1371.4 on abandoned section of Alaska Highway, 1.9 mi upstream from mouth, and 6.0 mi west of Dot Lake. Drainage area is 65.1 mi².	1964-71, ‡1972-81, 1982-2001	5-16-01 9-03-01	12.63 12.19	S/802 R/593	7-19-64	15.49	2,800
Suzy Q Creek near Pump Station 10 (15478093)	Lat $63^{\circ}29'43''$, long $145^{\circ}51'27''$, in SW ¹ / ₄ sec. 29, T. 16 S., R. 10 E. (Mt. Hayes B-4 quad), on right bank 30 ft upstream from bridge at mi 224.8 on Richardson Highway, 0.1 mi upstream from mouth, and 6 mi north of Pump Station 10. Drainage area is 1.29 mi ² .	1987, 1989-2001	n	n	n	7-14-87	33.83	1,070
Ruby Creek above Richardson Highway near Donnelly (15478499)	Lat 63°37′54″, long 145°52′14″, in NE¹/4 sec. 7, T. 15 S., R. 10 E. (Mt. Hayes C-4 quad), on left bank 0.2 mi upstream from Trans-Alaska Pipeline, 0.5 mi upstream from bridge at mi 234.8 on Richardson Highway, 2.2 mi upstream from mouth, and 2.3 mi south of Donnelly. Drainage area is 4.89 mi².	1987-2001	n	n	n	7-14-87	16.95	1,660
Banner Creek at Richardson (15480000)	Lat 64°17′24″, long 146°20′56″, in SW¹/4 sec. 22, T. 7 S., R. 7 E. (Big Delta B-5 quad), on left bank 400 ft upstream from bridge at mi 295.4 Richardson Highway, 0.2 mi upstream from mouth, and 0.4 mi northwest of Richardson. Drainage area is 20.2 mi².	1964-2001	4-27-01 5-24-01 7-30-01	fj17.1 f15.34 14.10	u S/u R/116	6-26-89	16.38	950
Slime Creek near Cantwell (15516200)	Lat 63°30′34″, long 148°48′39″, in SE¹/₄ sec. 24, T. 16 S., R. 7 W. (Healy C-4 quad), on right bank 25 ft downstream from culverts at mi 219.9 George Parks Highway, and 9.1 mi northeast of Cantwell. Drainage area is 6.90 mi².	1966-2001	401 6-24-01 8-03-01	f18.31 17.05 17.31	u S/84 R/126	767	d14.52	685

St. t.	Location and drainage area		Wate	Water year 2001 maximum			Period of record maximum		
Station name and number		Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)	
		YUKO	N ALASKA	—Continued					
Dragonfly Creek near Healy (15517980)	Lat $63^{\circ}47'45''$, long $148^{\circ}55'19''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 9, T. 13 S., R. 7 W. (Healy D-4 quad), on left bank at mi 242.6 George Parks Highway 100 ft upstream from highway bridge, and 6 mi southeast of Healy. Drainage area is 0.71 mi ² .	1990-2001	n	n	n	7-12-90	d7.59	535	
Globe Creek near Liven- good (15541600)	Lat $65^{\circ}17'08''$, long $148^{\circ}07'56''$, in $SE^{1}/_{4}$ sec. 3, T. 5 N., R 3 W. (Livengood B-3 Quad), 0.1 mi upstream from culvert at mi 37.6 Elliot Highway, 9 mi upstream from mouth, and 19 mi southeast of Livengood. Drainage area is 23.0 mi ² .	1964-2001	5-22-01 8-16-01	14.12 j15.12	S/189 R/361	8-12-67	17.05	1,240	
Snowden Creek near Wiseman (15564868)	Lat $67^{\circ}44'20''$, long $149^{\circ}44'24''$, in $SW^{1}/_{4}$ sec. 26, T. 34 N., R. 10 W. (Chandalar C-6 quad), on right bank 0.25 mi upstream from culvert at mi 213.5 of the Dalton Highway,and 24.5 mi northeast of Wiseman. Drainage area is 16.7 mi ² .	1968, d1977-79, 1992-2001	n	n	n	1968	u	1,200	
Nugget Creek near Wiseman (15564872)	Lat $67^{\circ}29'25''$, long $149^{\circ}52'20''$, in NW 1 / ₄ sec. 30, T. 31 N., R. 10 W. (Chandalar B-6 quad), on left bank 1,000 ft upstream from culvert at mi 195.6 Dalton Highway, and 8.7 mi northeast of Wiseman. Drainage area is 9.47 mi 2 .	d1975-88, d1990-92, 1993-2001	n	n	n	5-26-98	40.17	540	
Prospect Creek near Prospect Camp (15564884)	Lat 66°46′56″, long 150°41′06″, in NW¹/₄ sec. 31, T. 23 N., R. 14 W. (Bettles D-2 quad), on left bank 200 ft upstream from bridge at mi 135.2 on the Dalton Highway, 0.4 mi downstream from Trans-Alaska Pipeline crossing, 1.5 mi upstream from mouth, 2.1 mi south of Pump Station 5, and 1.5 mi southeast of Prospect Camp. Drainage area is 110 mi².	1968, 1975-2001	n	n	n	1968	d10.22	6,800	

G:			Wate	er year 2001 m	naximum	Perio	Period of record maximum		
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)	
		YUKO	N ALASKA	A—Continued					
Bonanza Creek Tribu- tary near Prospect Camp (15564887)	Lat 66°36′52″, long 150°41′24″, in SE¹/4 sec. 25, T. 21 N., R. 15 W. (Bettles C-2 quad), on right bank 0.3 mi downstream from culverts at mi 121 on the Dalton Highway, 3.4 mi upstream from mouth, 13.5 mi south of Pump Station 5, and 12.6 mi south of Prospect Camp. Drainage area is 11.7 mi².	1975-2001	5-21-01 6-03-01 8-14-01	f19.20 18.78 18.73	u S/141 R/137	5-15-93	19.89	290	
Indian River at Utopia (15564950)	Lat $65^{\circ}59'49''$, long $153^{\circ}41'V$ B31", in NW 1 / ₄ sec. 19, T. 7 N., R. 25 E. (Melozitna D-2 quad), on right bank, 200 ft downstream of bridge at mi 0.2 on road to Indian Mountain. Drainage area is 38.8 mi 2 .	1998-2001	5-29-01 6-07-01 8-14-01	f18.58 17.53 18.04	u S/410 R/567	8-20-98	18.7	828	
Utopia Creek at Utopia (15564960)	Lat.65°59′26″, long 153°41′ 44″, in SW¹/4 sec. 19, T. 7 N., R. 25 E. (Melozitna D-2 quad), on right bank, 460 ft downstream of 4 wheeler crossing west of airstrip, .5 mi above mouth, .3 mi south-southeast of Utopia, 5.4 mi south of Indian Mt, and 16 mi east-southeast of Hughes. Drainage area is 5.18 mi².	1999-2001	5-13-99 7-20-99 5-17-00 5-31-00 7-21-00 5-18-01 6-7-01 8-14-01	g 6.54 g 6.35 gfj 8.31 gf6.76 g6.72 af8.8 6.98 6.59	g S/49 g R/33 u gS/u gR/69 u S/102 R/54	6-7-01	6.98	102	
Municipal Reserve Creek at Pilot Station (15565449)	Lat 61°56′19″, long 162°52′53″, in NW¹/ ₄ SE¹/ ₄ sec. 5, T. 21 N., R. 74 W. (Marshall D-3 quad), on right bank 0.3 mile upstream from mouth, and 0.1 mile northeast of Village of Pilot Station. Drainage area is 1.43 mi².	1993-97 2001	5-16-01 6-03-01 8-31-01	f7.95 6.10 7.49	u S/2.3 R/6.5	8-26-94	8.71	12	

C4-4:			Water year 2001 maximum			Period of record maximum		
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
		NOR	THWEST A	ALASKA				
Chiroskey River near Unalakleet (15565730)	Lat 63°55′06″, long 160°18′58″, in NW¹/ ₄ sec. 19, T. 18 S., R. 8 W. (Unalakleet D-3 quad), on left bank 3/4 mile upstream from mouth, 14 miles northeast of Unalakleet. Drainage area is 296 mi².	1998-2001	598 8-01-99 6-02-00 9-07-00 501 6-09-01 7-21-01	46.13 46.98 45.56 47.03 f48.73 46.75 45.39	gS/1,070 gR/1,490 gS/810 gR/1,520 u S/1,370 R/740	9-07-00	47.03	1,520
Goldengate Creek near Nome (15585000)	Lat $64^{\circ}26'51''$, long $165^{\circ}03'14''$, in $SW^{1}/_{4}$ sec. 15, T. 12 S., R. 32 W. (Nome B-1 quad), on right bank 500 ft upstream from culvert on Nome-Council Road, and 11 mi southeast of Nome. Drainage area is 1.55 mi ² .	1965, 1977-84, 1986-2001	a5-15-01 6-06-01 8-14-01	f 14.40 11.10 11.36	u S/17 R/27	9-08-65	d11.70	63
Arctic Creek above Tributary near Nome (15624998)	Lat 64°38′16″, long 165°42′42″, in NE¹/₄ sec. 8, T. 10 S., R. 35 W. (Nome C-2 quad), on right bank 300 ft upstream from culvert on Nome-Teller Road, 2 mi upstream from mouth, and 13 mi northwest of Nome. Drainage area is 1.13 mi².	1975, 1979-2001	7-06-01 7-13-01 8-14-01	f 19.47 18.19 17.79	u S/43 R/10	8-20-98	19.06	182
Washington Creek near Nome (15633000)	Lat $64^{\circ}42'52''$, long $165^{\circ}49'13''$, in $NW^1/_4$ sec. 14, T. 9 S., R. 35 W. (Nome C-2 quad), on left bank, 400 ft upstream from culvert on Nome-Teller Road, and 19 mi northwest of Nome. Drainage area is 6.34 mi^2 .	1964-2001	6-18-01 7-06-01 8-14-01	f 24.00 20.23 19.70	u S/70 R/32	7-10-75	d19.35	620
Eldorado Creek near Teller (15635000)	Lat 64°57′38″, long 166°11′59″, in NE¹/4 NE¹/4 sec. 20, T. 6 S., R. 37 W. (Nome D-3 quad), on right bank 30 ft downstream from bridge on Nome-Teller Road, at mi 46.3 of the Nome-Teller Road, 0.5 mi upstream from mouth at Tisuk River, and 21 mi south of Teller. Drainage area is 5.83 mi².	1986-87, ‡1988-90, 1991, ‡1992-98, 1999-2001	6-18-01 7-06-01 8-14-01	10.09 9.00 9.00	u S/292 R/292	9-04-86	9.42	600

Maximum discharge at crest-stage partial-record stations--Continued [Footnotes at end of table on p. 369]

a. t			Wate	er year 2001 m	naximum	Perio	d of record m	aximum
Station name and number	Location and drainage area	Period of record	Date	Gage height (ft)	Discharge (ft ³ /s)	Date	Gage height (ft)	Discharge (ft ³ /s)
		NORTHW	EST ALA	SKA-Continue	d			
North Fork Red Dog Creek near Kivalina (15746988)	Lat 68°05′03″, long 162°52′52″, in NW¹/4 SW¹/4 sec. 18, T. 31 N., R. 18 W. (DeLong Mts. A-2 quad), on left bank 500 ft upstream from mouth, 1.1 mi northwest of Red Dog Mine mill site, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco Station 12. Drainage area is 15.9 mi².	‡1991-94, 1995-2001	n	n	n	8-17-94	6.03	900
Tutak Creek near Kivalina (15746998)	Lat 67°52′28″, long 163°40′14″, in NW¹/4 NE¹/4 sec. 34, T. 29 N., R. 22 W. (Noatak D-4 quad), on left bank, 1,000 ft upstream from mouth, 25 mi northeast of Kivalina, and 28 mi northwest of Noatak. Drainage area is 119 mi².	1992-2001	n	n	n	6-15-92	15.00	3,100
		ARC	TIC SLOPE	E ALASKA				
Atigun River Tributary near Pump Station 4 (15904900)	Lat $68^{\circ}22'25''$, long $149^{\circ}18'48''$, in $NE^{1}_{/4}$ $SE^{1}_{/4}$ sec. 28, T. 12 S., R. 12 E. (Phillip Smith Mt. B-4 quad), on right bank 0.2 mi upstream from bridge at mi 265 on Dalton Highway, 0.9 mi upstream from mouth, and 4 mi south of Pump Station 4. Drainage area is 32.6 mi ² .	1976, ‡1977-86, 1987-2001	6-9-01 7-5-01	12.83 12.81	S/371 R/366	7-17-99	15.51	1,650
Sagavanirk- tok River Tributary near Happy Valley Camp (15910300)	Lat $69^{\circ}09'38''$, long $148^{\circ}49'40''$, in $NE^{1}/_{4}$ sec. 30, T. 3 S., R. 14 E. (Sagavanirktok A-4 quad), North Slope Borough, on right bank 500 ft upstream from culvert at mi 335.2 on the Dalton Highway, 0.8 mi upstream from mouth, 0.8 mi north of Happy Valley Camp, and 16 mi south of Sagwon. Drainage area is 12.7 mi ² .	1997-2001	n	n	n	5-19-98	22.09	223
Sagavanirk- tok River Tributary near Deadhorse (15918200)	Lat $69^{\circ}57'14''$, long $148^{\circ}43'48''$, in NW ¹ / ₄ NE ¹ / ₄ sec. 19, T. 1 N., R. 14 E. (Sagavanirktok D-3 quad), on right bank 6 ft upstream from culvert at mi 386.2 on the Dalton Highway, 0.4 mi upstream from mouth, and 23 mi south of Deadhorse. Drainage area is 12 mi ² , approximately.	1986, 1988-2001	n	n	n	5-24-96	j11.8	142

FOOTNOTES

- ‡ Operated as a continuous record station
- < Less than
- > Greater than
- R/ Rainfall
- S/ Spring runoff
- a Approximately
- d At different site or datum

- e estimated
- f Ice affected
- g Not previously published
- i Data collected by Dept. of Transportation and Public Facilities
- j From floodmarks
- n To be determined
- u Unknown

			Drainage	Measured previously	Measurements	
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKA				
15049900 Gold Creek near Juneau	Gastineau Channel	Lat $58^{\circ}18'26''$, long $134^{\circ}23'12''$, in $NW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 24, T. 41 S., R. 67 E. (Juneau B-2 SE quad), City and Borough of Juneau, at Old Ebner Dam site, at head of Last Chance Basin, 0.6 mi upstream from Basin Road bridge, and 1.1 mi east of Juneau.	8.41	(‡)1984-97, 1998-2000	+11-1500 +1-02-01 +2-08-01 +3-08-01 +5-31-01 +7-18-01 +8-13-01 +8-15-01 +9-10-01 +9-25-01	61 34 39 21 184 140 112 125 91 146
15052425 Jordan Creek Tribu- tary at Thunder Mt. Trailer Park near Auke Bay	Jordan Creek	Lat 58°23′33″, long 134°33′15″, in NW¹/4 NE¹/4 NW¹/4, sec. 20, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, at downstream end of Thunder Mt. Trailer Park, 15 ft upstream from mouth, 3.4 mi northeast of Auke Bay, and 8.7 mi northwest of Juneau.		1999-2000	4-10-01	no flow
15052430 Jordan Creek below Thunder Mt. Trailer Park near Auke Bay	Gastineau Channel	Lat 58°23′31″, long 134°33′15″, in SW¹/4 NE¹/4 NW¹/4, sec. 20, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, at downstream end of Thunder Mt. Trailer Park, 3.4 mi upstream from mouth, 3.4 mi northeast of Auke Bay, and 8.7 mi northwest of Juneau.	0.76	1998-2000	4-10-01	0.10
15052450 Jordan Creek at Amalga Street near Auke Bay	Gastineau Channel	Lat $58^{\circ}23'14''$, long $134^{\circ}33'40''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ NW $^{1}/_{4}$, sec. 20, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, at Amalga Street Bridge, 3.0 mi upstream from mouth, 3.1 mi east of Auke Bay, and 8.5 mi northwest of Juneau.	1.06	1997-2000	4-10-01 8-17-01	0.86 0.80
15052455 Jordan Creek at Jen- nifer Street near Auke Bay	Gastineau Channel	Lat $58^{\circ}23'01''$, long $134^{\circ}33'46''$, in $NW^{1}_{/4}$ $SW^{1}_{/4}$, sec. 20, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 25 ft upstream from footbridge at Jennifer Creek, behind Glacier Valley Grade School, 2.7 mi upstream from mouth, 3.1mi east of Auke Bay, and 8.5 mi northwest of Juneau.	1.64	1999	8-17-01	1.2
15052465 Jordan Creek at Nancy Street near Auke Bay	Gastineau Channel	Lat $58^{\circ}22'32''$, long $134^{\circ}34'21''$, in $NE^{1}_{/4}$ $SW^{1}_{/4}$ $NE^{1}_{/4}$, sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, 0.2 mi east of intersection of Mendenhall Loop Road and Nancy Street, 2 mi upstream from mouth, 3.1 mi east of Auke Bay, and 8.5 mi northwest of Juneau.	2.26	1999-2000	4-10-01 8-15-01	2.0 1.1

			Drainage	Measured prayiously	Measurements	
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKAContinued	l			
15052475 Jordan Creek below Egan Drive near Auke Bay	Gastineau Channel	Lat $58^{\circ}21'59''$, long $134^{\circ}34'34''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$, sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at footbridge, 50 ft downstream from Egan Drive, 0.4 mi southeast of intersection of Egan Drive and Mendenhall Loop Road and 3.0 mi east of Auke Bay Post Office. Currently operated as a continuous-record station.	2.60	h1984,88, h1989, h1995-96, (‡)1997-2000	10-16-00 12-19-00 2-07-01 3-07-01 3-24-01 4-10-01 5-29-01 7-02-01 8-09-01 9-13-01	15 3.7 5.1 5.9 2.9 1.3 7.2 1.4 1.6
15052480 Jordan Creek near Auke Bay	Gastineau Channel	Lat 58°21′47″, long 134°34′47″, in SE¹/4 NE¹/4 NW¹/4, sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at Old Glacier Highway bridge, 0.9 mi upstream from mouth, and 3.0 mi southeast of Auke Bay.	2.67	1953-54, 1960, 1963- 65, 1967-68, 1997, 1999- 2000	4-10-01	1.4
15052483 Jordan Creek above Yandunkin Avenue near Auke Bay	Gastineau Channel	Lat $58^{\circ}21'31''$, long $134^{\circ}34'23''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, at footbridge about 100 ft upstream from Yandunkin Avenue, 0.5 mi upstream from mouth, and 3.4 mi southeast of Auke Bay.		1997-2000	4-10-01	0.93
15052700 Mendenhall River above Montana Creek near Auke Bay	Fritz Cove	Lat $58^{\circ}22'52''$, long $134^{\circ}35'43''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$, sec. 24, T. 40 S., R. 65 E. (Juneau B-2 NW quad), City and Borough of Juneau, 200 ft upstream of Montana Creek, 1.95 mi east of Auke Bay, and 2.1 mi upstream from mouth.	87.5	1965-66, 1968, 1984, 1989, 1997	4-13-01	61
15052815 Montana Creek at Mouth near Auke Bay	Mendenhall River	Lat $58^{\circ}22'54''$, long $134^{\circ}35'53''$, in $SW^{1}_{/4}$ $SE^{1}_{/4}$ $SE^{1}_{/4}$, sec 24, T. 40 S., R. 65 E. (Juneau B-2 NW quad), City and Borough of Juneau, at footbridge 200 ft upstream of mouth, 2 mi east of Auke Bay.	16.2	1965-66, 1968	4-13-01	22
15052900 + Mendenhall River at Brotherhood Bridge near Auke Bay	Fritz Cove	Lat $58^{\circ}22'15''$, long $134^{\circ}36'00''$, in $NW^{1}_{/4}$ $SE^{1}_{/4}$, sec. 25, T. 40 S., R. 65 E. (Juneau B-2 SW quad), City and Borough of Juneau, at Egan Expressway bridge, 1.0 mi upstream from mouth, and 2.3 mi southeast of Auke Bay.	104	1950, 1961- 66, 1968, 1984, 1989, 1997, 1999	10-21-98 2-13-01 2-28-01 4-13-01 6-06-01	g7,990 165 211 97 1,540
15053170 Duck Creek at Taku Boulevard near Auke Bay	Mendenhall River	Lat 58°23′46″, long 134°33′56″, in SE¹/ ₄ SE¹/ ₄ , sec. 18, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 3.1 mi upstream from mouth, 3.1 mi east of Auke Bay, and 8 mi northwest of Juneau.	0.49	1988, 1993-2000	4-13-01	0.12
15053180 Duck Creek at Men- denhall Blvd near Auke Bay	Mendenhall River	Lat $58^{\circ}23'34''$, long $134^{\circ}34'06''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$, sec. 19, T.40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 2.8 mi upstream from mouth, 2.9 mi east of Auke Bay, and 8 mi northwest of Juneau.	0.67	1988-89, 1993-98	4-13-01 8-17-01	0.58 0.73

-			Drainage	Measured	Measurements	
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKAContinued	d			
15053185 Duck Creek at Duran Street near Auke Bay	Mendenhall River	Lat $58^{\circ}23'24''$, long $134^{\circ}34'25''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 2.9 mi upstream from mouth, 3.0 mi east of Auke Bay, and 8 mi northwest of Juneau.	0.78	2000	8-17-01	0.41
15053190 Duck Creek at Steven Richards Blvd near Auke Bay	Mendenhall River	Lat $58^{\circ}23'03''$, long $134^{\circ}34'31''$, in $NW^{1}_{/4}$ $SE^{1}_{/4}$, sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 2.1 mi upstream from mouth, 2.7 mi east of Auke Bay and 8 mi northwest of Juneau.	0.88	1988,1993- 1998	8-17-01	0.49
15053191 Duck Creek above Kodzoff Trailer Park near Auke Bay	Mendenhall River	Lat $58^{\circ}22'45''$, long $134^{\circ}34'37''$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ NE $^{1}/_{4}$, sec. 30,T. 40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, just upstream of Kodzoff Trailer Park, 0.3 mi upstream from mouth, and 2.6 mi east of Auke Bay.	1.20	1997-98	4-17-01	0.17
15053200 Duck Creek below Nancy Street near Auke Bay	Mendenhall River	Lat $58^{\circ}22'31''$, long $134^{\circ}34'38''$, in $SW^{1}_{/4}$ $NE^{1}_{/4}$, sec. 30, T.40 S., R. 66 E. (Juneau B-2 NW quad), City and Borough of Juneau, 50 ft south of intersection of Nancy Street and Mendenhall Loop Road, 0.4 mi north of intersection of Egan Drive and Mendenhall Loop Road, 1.4 mi upstream from mouth, 2.7 mi southeast of Auke Bay, and 8 mi northwest of Juneau. Currently operated as a continuous-record station.	1.30	(‡)1994-2000	10-16-00 12-19-00 2-07-01 3-07-01 3-22-01 4-17-01 5-24-01 7-02-01 8-08-01 9-13-01	8.8 2.6 3.9 3.3 2.3 1.1 4.2 1.0 2.0 6.3 5.9
15056100 Skagway River at Skagway	Taiya Inlet	Lat $59^{\circ}28'02''$, long $135^{\circ}17'00''$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$, sec. 12, T. 28 S., R. 59 E. (Skagway B-1 quad), City of Skagway, at highway bridge, 1.0 mi upstream from mouth.	a145	(‡)1963-86	8-30-01	1,160
15056500 Chilkat River near Klukwan	Lynn Canal	Lat $59^{\circ}24'55''$, long $135^{\circ}55'45''$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ $SW^{1}/_{4}$, sec. 29, T. 28 S., R. 56 E. (Skagway B-3 quad), at Haines Highway bridge, 0.25 mi upstream from mouth of Klehine River, and 1.7 mi northwest of Klukwan.	a760	(‡)1959-61	8-28-01	6,180
15056545 Big Boulder Creek at mile 135 near Haines	Klehini River	Lat 59°26′01″, long 136°11′34″, in SE¹/ ₄ NE¹/ ₄ , sec. 22, T. 28 S., R. 54 E. (Skagway B-4 quad), at Haines Highway bridge, 0.5 mi upstream from mouth, and 30 mi northwest of Haines.			10-07-00 10-10-00	658 158
15081607 Threemile Creek Tributary below can- yon near Klawock	Threemile Creek	Lat $55^{\circ}32'26''$, long $132^{\circ}57'08''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 16, T. 73 S., R. 82 E. (Craig C-3 quad), on Prince of Wales Island, in Tongass National Forest, at mouth of canyon, 0.37 mi upstream from mouth, and 5.2 mi east of Klawock.	1.41		12-07-00 2-13-01 4-22-01 7-10-01 8-30-01	13 6.2 9.4 17 9.0

			Drainage	Measured previously (water years)	Measurements	
Stream	Tributary to	Location	area (mi ²)		Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKAContinued	l			
15081608 Threemile Creek Tributary near Kla- wock	Threemile Creek	Lat 55°32′06″, long 132°57′12″, in $NW^1/_4 SW^1/_4 SE^1/_4$, sec. 16, T. 73 S., R. 82 E. (Craig C-2 quad), on Prince of Wales Island, in Tongass National Forest, 75 ft upstream from mouth at right bank of Threemile Creek, about 150 ft upstream from Threemile Creek gage, and 5.2 mi east of the city of Klawock.		1999-2000	12-07-00 2-13-01 4-22-01	29 12 16
15081611 Threemile Creek below Highway near Klawock	Klawock Lake	Lat 55°31′54″, long 132°59′05″, in NE¹/ ₄ NE¹/ ₄ NW¹/ ₄ , sec. 20, T. 73 S., R. 82 E. (Craig C-3 quad), on Prince of Wales Island, in Tongass National Forest, at Hollis Highway crossing, 3,000 ft upstream from mouth, and 4.0 mi east of Klawock.	8.05	2000	12-07-00 2-13-01 4-22-01 7-10-01 8-29-01	82 120 39 84 52
15081616 Halfmile Creek below Highway near Klawock	Klawock Lake	Lat 55°32′59″, long 133°01′44″, in SW¹/ ₄ SW¹/ ₄ SE¹/ ₄ , sec12, T. 73 S., R 81 E.(Craig C-4 quad) On Prince of Whales Island, in Tongas National Forest, at Hollis Highway crossing, about 800 ft upstream from mouth, and 2.7 mi east of Klawock.	5.26	2000	12-07-00 2-13-01 4-22-01 7-10-01 8-30-01	24 137 17 41 17
15086250 Coffman Creek near Coffman Cove	Clarence Strait	Lat $55^{\circ}59'31''$, long $132^{\circ}52'12''$, in $NW^1/_4$ $SE^1/_4$ $NW^1/_4$, sec. 10, T. 68 S., R. 81 E. (Craig D-3 quad), on Prince of Wales Island, in Tongass National Forest, 33 feet upstream from bridge, 140 feet upstream from mouth and 1.5 miles south of Coffman Cove.			7-13-01	27
15087675 Wrinkleneck Creek at Mouth at Sitka	Swan Lake	Lat $57^{\circ}03'21''$, long $135^{\circ}19'59''$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ $SW^{1}/_{4}$, sec. 36, T. 55 S., R. 63 E. (Sitka A-4 SW quad), Greater Sitka Borough, on Baranof Island, in Tongass National Forest, 10 feet upstream from culvert under Lake Street, 50 ft upstream from mouth, 200 ft north of intersection of Lake Street and Degroff Streets in Sitka.			5-19-01	1.3
15087682 Swan Lake Outlet at Sitka	Crescent Bay	Lat 57°03′16″, long 135°20′02″, in SW¹/4 NW¹/4 SW¹/4, sec. 36, T. 55 S., R. 63 E. (Sitka A-5 SE quad) Greater Sitka Borough, on Baranof Island, in Tongass National Forest, 10 ft upstream of culvert entrance at outlet of Swan Lake at southern end of lake, 50 ft north of intersection of Halibut Point Road, Sawmill Creek Boulevard, and Lake Streets in Sitka.	-		5-19-01	1.2
15087695 Indian River above CBS Pumphouse near Sitka	Crescent Bay	Lat 57°03′34″, long 135°18′15″, in SE¹/4 SW¹/4 NW¹/4, sec. 31, T. 55 S., R. 64 E. (Sitka A-4 quad), Greater Sitka Borough, on Baranof Island, 50 ft upstream from City and Borough of Sitka diversion to pump pond, 200 ft northeast of end of road and pumphouse, 0.9 mi northeast of Sitka, and 1.2 mi upstream from mouth.	11.4	1999-2000	5-13-01	63

			Drainage	Measured	Measurements	
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKAContinued	I			
15087730 Indian River Diversion to Sheldon Jackson College at Sawmill Creek Road at Sitka	Indian River	Lat 57°03′13″, long 135°19′04″, in NE¹/4 SW¹/4 SE¹/4, sec. 36, T. 55 S., R. 63 E. (Sitka A-4 quad), Greater Sitka Borough, on Baranof Island, in Tongass National Forest, on left bank at entrance to a box culvert under Sawmill Creek Road, 12 ft downstream from end of a 42-in. diversion pipe, about 1,000 ft upstream from Sheldon Jackson College campus, and about 1,500 ft downstream from point of diversion.		1998, (‡)1999-2000	3-13-01 6-14-01	8.7 13
15087810 Sawmill Creek below Upper Tailrace near Sitka	Silver Bay	Lat 57°03′40″, long 135°12′35″, in NE¹/ ₄ SE¹/ ₄ NE¹/ ₄ , sec. 34, T. 55 S., R. 64 E., (Sitka A-4 quad), on Baranof Island, in Tongass National Forest, at footbridge crossing at campground, 240 ft downstream from upper powerplant tailrace, 0.35 mi downstream from dam at Blue Lake, 1.2 mi upstream from mouth and 4.6 mi east of Sitka.	38.0	1994-95, 1998-2000	11-9-00	60
15088400 Cupola Peak Creek at Bear Cove near Sitka	Bear Cove	Lat 57°00′39″, long 135°09′11″, in NE¹/ ₄ SE¹/ ₄ SE¹/ ₄ sec. 13, T. 56 S., R. 64 E. (Sitka A-4 quad), on Baranof Island, in the Tongass National Forest, 200 ft downstream from Green Lake Road crossing, 400 ft upstream from mouth at south shore of Bear Cove in Silver Bay, and about 7.1 mi southeast of Sitka.	0.43	†2000	11-08-00 1-06-01 4-05-01 5-17-01 7-23-01	no flow-d no flow-d no flow-d no flow-d no flow-d
15109029 + Upper Peterson Creek near Auke Bay	Stephens Passage	Lat $58^{\circ}16'27''$, long $134^{\circ}38'58''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 32, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 2.20 mi upstream from mouth, 7.4 mi south of Auke Bay, and 9.0 mi west of Douglas.	0.43		4-05-01 7-12-01	0.40 2.1
15109031 + Peterson Creek Trib- utary No. 8 near Auke Bay	Peterson Creek	Lat $58^{\circ}16'25''$, long $134^{\circ}39'02''$, in $NE^{1}_{/4}$ $SW^{1}_{/4}$ $NE^{1}_{/4}$, sec. 32, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest. 10 ft upstream from mouth at a point 2.11 mi upstream from mouth of Peterson Creek, 7.4 mi south of Auke Bay, and 90 mi west of Douglas.	0.39		4-05-01 7-12-01	0.37 0.19
15109033 + Peterson Creek Trib- utary No, 7 near Auke Bay	Peterson Creek	Lat $58^{\circ}16'30''$, long $134^{\circ}39'06''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 32, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 10 ft upstream from mouth at a point 2.03 mi upstream from mouth of Peterson Creek, 7.4 mi south of Auke Bay, and 9.1 mi west of Douglas.	0.82		4-05-01 7-12-01	0.05 0.12

			Drainage	previously	Measurements	
Stream	Tributary to	Location	area (mi ²)		Date	Discharge (ft ³ /s)
		SOUTHEAST ALASKAContinued	d			
15109035 + Peterson Creek Trib- utary No. 6 near Auke Bay	Peterson Creek	Lat $58^{\circ}16'36''$, long $134^{\circ}39'11''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 32, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 10 ft upstream from mouth, at a point 1.85 mi upstream from mouth of Peterson Creek, 7.4 mi south of Auke Bay, and 9.1 mi west of Douglas.	0.16		4-05-01 7-12-01	0.16 1.1
15109039 + Peterson Creek Trib- utary No. 4 near Auke Bay	Peterson Creek	Lat $58^{\circ}16'43''$, long $134^{\circ}39'26''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$ $NW^{1}/_{4}$, sec. 32 , T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 8 ft upstream from mouth, at a point 1.65 mi upstream from mouth of Peterson Creek, 7.4 mi south of Auke Bay, and 9.2 mi west of Douglas.	1.04		4-05-01 7-12-01	0.37 0.91
15109041 + Peterson Creek Trib- utary No. 3 near Auke Bay	Peterson Creek	Lat $58^{\circ}16'51''$, long $134^{\circ}39'35''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 10 ft upstream from mouth, at a point 1.48 mi upstream from mouth of Peterson Creek, 7.3 mi south of Auke Bay, and 9.3 mi west of Douglas.	0.48		4-05-01 7-12-01	0.40 0.83
15109043 Peterson Creek Trib- utary No. 2 near Auke Bay	Peterson Creek	Lat $58^{\circ}16'56''$, long $134^{\circ}39'42''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $SW^{1}/_{4}$, sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 8 ft upstream from mouth, at a point 1.39 mi upstream from mouth of Peterson Creek, 7.3 mi south of Auke Bay, and 9.4 mi west of Douglas.	0.08		4-05-01	0.06
15109045 + North Fork Peterson Creek near Auke Bay	Peterson Creek	Lat 58°16′49″, long 134°39′28″, in SE¹/ ₄ SE¹/ ₄ SW¹/ ₄ , sec. 29, T. 41 S., R. 66 E. (Juneau B-2 SW quad), City and Borough of Juneau, on Douglas Island, Tongass National Forest, 300 ft upstream from mouth, 7.3 mi south of Auke Bay, and 9.5 mi west of Douglas.	r1.59	(†)1985-87, (†)1997-2000	10-6-00 11-14-00 4-05-01 5-25-01 7-12-01	10 2.8 1.1 2.3 1.8
15129590 Ophir Creek at Airport Road at Yakutat	Tawah Creek	Lat $59^{\circ}32'28''$, long $139^{\circ}43'18''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 30, T. 27 S., R. 34 E. (Yakutat C-5 SW quad), in Tongass National Forest, at airport road crossing 2.5 mi upstream from Summit Lake, and 0.9 mi south of Yakutat.		1989, 1992-2000	6-19-01	0.17
15129600 Ophir Creek near Yakutat	Tawah Creek	Lat $59^{\circ}31'26''$, long $139^{\circ}44'37''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 1, T. 28 S., R. 33 E. (Yakutat C-5 SW quad), in Tongass National Forest, 0.8 mi upstream from Summit Lake, and 2 mi south of Yakutat. Currently operated as a continuous-record station.	a2.5	(‡)1992-2000	11-30-00 2-03-01 4-25-01 6-19-01	36 39 17 2.4
15129615 Ophir Creek tributary at confluence near Yakutat	Ophir Creek	Lat 59°31′04″, long 139°44′43″, in $NW^1/_4$ $NW^1/_4$ $NE^1/_4$, sec. 1, T. 28 S., R. 33 E. (Yakutat C-5 SW quad), in Tongass National Forest, at confluence with Ophir Creek, and 2.3 mi south of Yakutat.		1992-2000	6-19-01	0.06

			Drainage	Measured	Measurements	
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTH-CENTRAL ALASKA				
15200400 Gulkana River at Gulkana	Copper River	Lat $62^{\circ}16'08''$, long $145^{\circ}23'52''$, in $SE^{1}/_{4}$, sec. 27, T. 6 N., R. 1 W. (Gulkana B-3 quad), at mile 126.9 Richardson Highway.	1,966	1948-50 1954 1957-60 1965-66 1970-71 1998	8-23-01	997
15201000 Dry Creek near Glennallen	Copper River	Lat $62^{\circ}08'49''$, long $145^{\circ}28'31''$, in $NE^{1}/_{4}$, sec. 7, T. 4 N., R. 1 W. (Gulkana A-3 quad), 135 ft upstream from culvert at mi 119 Richardson Highway and 3.3 mi north of Glennallen.	11.4	†1963-2000	5-11-01	32
15202000 Tazlina River near Glennallen	Copper River	Lat $62^{\circ}03'18''$, long $145^{\circ}25'30''$, in $SW^{1}/_{4}$, sec. 9, T. 3 N., R. 1 W.(Gulkana A-3 quad), at bridge, 115.3 Richardson Highway, 5 mi southeast of Glennallen.	a2,670	‡1949-72 1997-99	7-18-01	15,800
15210025 McCarthy Creek at McCarthy	Kennicott River	Lat $61^{\circ}25'54''$, long $142^{\circ}55'02''$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ NE $^{1}/_{4}$, sec. 19, T. 5 S., R. 14 E. (McCarthy B-6 quad), 1100 ft upstream from large boulder near footbridge at trail crossing at McCarthy, 0.8 mi upstream from mouth.	79.0	†1993-2000	9-27-00 5-31-01	ge4,000 464
15212500 Boulder Creek near Tiekel	Tiekel River	Lat $61^{\circ}20'08''$, long $145^{\circ}18'26''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $NW^{1}/_{4}$, sec. 19, T. 6 S., R. 1 E. (Valdez B-4 quad), at mi 51.4 on the former Richardson Highway.	9.80	†1964-2000	7-24-01	70
15212800 Ptarmigan Creek Tributary near Valdez	Ptarmigan Creek	Lat $61^{\circ}08'12''$, long $145^{\circ}44'32''$, $NW^{1}_{/4}$ $NE^{1}_{/4}$, sec 34, T. 8 S., R. 3 W. (Valdez A-5 quad), 275 ft upstream from Richardson Highway, 21 mi east of Valdez.	0.72	†1965-70 †1995-2000	7-24-01	11
15227500 Mineral Creek near Valdez	Port Valdez	Lat $61^{\circ}08'30''$, long $146^{\circ}21'42''$, in $SW^1/_4$ $NE^1/_4$ $SE^1/_4$, sec. 30, T. 8 S., R. 6 W. (Valdez A-7 quad), 120 ft upstream from bridge, 1.8 mi above mouth, and 0.5 mi northwest of Valdez.	44.0	1913, 1948-50, 1972-73, †1990-2000	9-19-01	372
15236200 Shakespeare Creek at Whittier	Passage Channel	Lat $60^{\circ}46'35''$, long $148^{\circ}43'35''$, in $NE^{1}/_{4}$, sec.22, T. 8 N., R. 4 E. (Seward D-5 quad), at bridge 0.5 mi upstream from mouth, and 1.8 mi west of the Alaska Railroad terminal building at Whittier.	1.61	1969, †1970-80, †1985-2000	6-25-01	77
601105149385100 Exit Glacier Creek Tributary at mile 0.6 of Harding Trail near Seward	Exit Glacier Creek	Lat 60°11′05″, long 149°38′51″, in $NW^1/_4NW^1/_4NW^1/_4$, sec. 16, T. 1 N., R. 2 W. (Seward A-8 quad), Kenai Peninsula Borough, at footbridge at mi. 0.64 Harding Ice Field Trail, 8 mi. northwest of Seward.			7-27-01 8-06-01 8-20-01 9-11-01 9-25-01	8.4 5.7 7.0 3.0 4.2
601105149382400 Exit Glacier Creek channel at mile 0.1 of Harding Trail near Seward	Resurrection River	Lat 60°11′05″, long 149°38′24″, in $NE^1/_4 NW^1/_4 NW^1/_4$, sec. 16, T. 1 N., R. 2 W. (Seward A-8 quad), Kenai Peninsula Borough, 50 ft. west of mi. 0.05 of Harding Ice Field Trail, 8 mi. northwest of Seward.			7-27-01 8-06-01 8-20-01 9-11-01 9-25-01	21 25 11 1.1 3.8

			Drainage	Measured previously (water years)	Measurements	
Stream	Tributary to	Location	area (mi ²)		Date	Discharge (ft ³ /s)
		SOUTH-CENTRAL ALASKAContin	nued			
601143149353400 Exit Glacier Creek Distributary at Exit Glacier Road near Seward	Resurrection River	Lat 60°11′43″, long 149°35′34″, in $SE^1/_4$ $NE^1/_4$ $NE^1/_4$, sec. 10, T. 1 N., R. 2 W. (Seward A-7 quad), Kenai Peninsula Borough, 200 ft. west of Exit Glacier Road bridge, 7 mi. northwest of Seward			7-11-01	5.4
15237900 Glacier Creek at Bruno Road near Seward	Resurrection River	Lat 60°10′49″, long 149°22′46″, in NW¹/4, sec.13, T. 1 N., R. 1 W. (Seward A-7 quad), Kenai Peninsula Borough, at Bruno Road bridge, 5.6 mi northeast of Seward.		†1987-2000	7-13-01 9-21-01	158 102
15239500 Fritz Creek near Homer	Kachemak Bay	Lat $59^{\circ}42'30''$, long $151^{\circ}20'35''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$, sec. 28, T. 5 S., R. 12 W. (Seldovia C-4 quad), 25 ft downstream from culvert on East Road, and 8 mi northeast of Homer.	10.4	†1963-66, †f 1967-70, †1971-77, †f 1978-80 †+1981-85, ‡1986-92 †1993-2000	1-24-01 4-19-01 4-25-01 5-16-01	33 36 53 63
594507151290000 Beaver Creek 2 miles above mouth near Bald Mountain near Homer	Anchor River	Lat $59^{\circ}45'02''$, long $151^{\circ}29'07''$, $SW^{1}/_{4}$ $SW^{1}/_{4}$, sec. 10, T. 5 S., R. 13 W. (Seldovia D-4 quad), Kenai Peninsula Borough, 2 mi. upstream from mouth, and 8 mi. northeast of Homer.	18.3		4-19-01 8-29-01	26 25
594734151142900 Anchor River near Bald Mountain near Homer	Cook Inlet	Lat 59°47′34″, long 151°14′29″, NW¹/4 NW¹/4, sec. 31, T. 4 S., R. 11 W. (Seldovia D-4 quad), Kenai Peninsula Borough, 1000 ft. upstream from unnamed tributary, and 16.5 mi. northeast of Homer.	3.73		4-24-01	382
595126151391000 Chakok River 7.5 miles above mouth near Anchor Point	North Fork Anchor River	Lat $59^{\circ}51'26''$, long $151^{\circ}39'18''$, $NE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 3, T. 4 S., R. 14 W. (Seldovia D-5 quad), Kenai Peninsula Borough, 300 ft. downstream from unnamed tributary, 7.5 mi. from mouth, and 8.5 mi. northeast of Anchor Point.	21.4		4-24-01 8-23-01	126 16
15239840 Anchor River above Twitter Creek near Homer	Cook Inlet	Lat $59^{\circ}43'08''$, long $151^{\circ}38'31''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 27, T. 5 S., R. 14 W. (Seldovia C-5 quad), Kenai Peninsula Borough, 30 ft upstream from Twitter Creek, and 6.3 mi northwest of Homer.	r104	f1978-80	8-20-01	233
15239900 Anchor River near Anchor Point	Cook Inlet	Lat 59°44'50″, long 151°45'11″, in NE¹/4, sec. 13, T. 5 S., R. 15 W. (Seldovia C-5 quad), Kenai Peninsula Borough, at bridge on Sterling Highway, 4.3 mi southeast of Anchor Point.	137	\$1965-73 \$1974 \$1978-86 \$1987 \$1991-92 1996, 1999, 2000	7-18-01	147
15240000 + Anchor River at Anchor Point	Cook Inlet	Lat $59^{\circ}46'21''$, long $151^{\circ}50'05''$, in $NE^{1}/_{4}$ $NW^{1}/_{4}$ $SE^{1}/_{4}$, sec. 4, T.5 S., R.15 W. (Seldovia C-5 quad), Kenai Peninsula Borough, at Old Sterling Highway bridge at Anchor Point, 0.1 mi downstream from North Fork, and 1 mi upstream from mouth.	224	‡1953-66 f1978-80 †1984-92 1990-91	4-16-01 8-20-01	690 513

			Drainage	Measured	Measurements	
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTH-CENTRAL ALASKAContin	nued			
595506151403300 + Stariski Creek 2 miles below unnamed tributary near Ninilchik	Cook Inlet	Lat 59°55′02″, long 151°40′40″, in $NW^1/_4$ $NW^1/_4$, sec. 15, T. 3 S., R. 14 W. (Seldovia D-5 quad), Kenai Peninsula Borough, 0.8 mi. upstream from unnamed tributary, and 11.5 mi. northeast of Anchor Point.	27.4		4-20-01 8-24-01	48 22
15240300 + Stariski Creek near Anchor Point	Cook Inlet	Lat $59^{\circ}51'04''$, long $151^{\circ}47'23''$, in $NW^{1}_{/4}$, sec. 12, T. 4 S., R. 15 W. (Seldovia D-5 quad), Kenai Peninsula Borough, 100 ft downstream from culvert at Sterling Highway, and 5.5 mi north of Anchor Point.	48.4	1951-52 f1978-80	4-17-01 8-25-01	166 34
600107151112800 + North Fork Deep Creek 4 miles above mouth near Ninilchik	Deep Creek	Lat $60^{\circ}01'06''$, long $151^{\circ}11'34''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$, sec. 9, T. 2 S., R. 11 W. (Kenai A-4 quad), Kenai Peninsula Borough, 300 ft. downstream from unnamed tributary, and 16.5 mi. east of Ninilchik.	27.7		4-25-01 8-30-01	32 31
600204151401800 + Deep Creek 0.6 miles above Sterling Highway near Ninilchik	Cook Inlet	Lat 60°02′01″, long 151°40′30″, in $SE^1/_4$ $NW^1/_4$, sec. 3, T. 2 S., R. 14 W. (Kenai A-5 quad), Kenai Peninsula Borough, 1.3 mi. upstream from mouth, and 1 mi. south of Ninilchik.	217		4-18-01 8-21-01	285 258
600945151210900 + Ninilchik River 1.5 miles below tribu- tary 1 near Ninilchik	Cook Inlet	Lat $60^{\circ}09'44''$, long $151^{\circ}21'14''$, in $NW^{1}/_{4}$ SW $^{1}/_{4}$, sec. 22, T. 1 N., R 12 W. (Kenai A-4 quad), Kenai Peninsula Borough, 50 ft downstream from unnamed trib., 0.2 mi upstream from bridge, and 14 mi. northeast of Ninilchik.	29.8		4-23-01 8-23-01	171 17
600321151325000 + Ninilchik River below tributary 3 near Ninilchik	Cook Inlet	Lat $60^{\circ}03'17''$, $long 151^{\circ}32'59''$, $in SW^{1}_{/4} SE^{1}_{/4}$, sec. 29, T. 1 S., R. 13 W. (Kenai A-5 quad), Kenai Peninsula Borough, 1000 ft. upstream from small, unnamed tributary, and 4 mi. northeast of Ninilchik.	117		4-18-01 8-21-01	225 113
15273040 + Rabbit Creek at Por- cupine Trail Road near Anchorage	Turnagain Arm	Lat $61^{\circ}05'15''$, long $149^{\circ}49'06''$ in $SE^{1}_{/4}$ $SE^{1}_{/4}$ $NW^{1}_{/4}$, sec. 33, T. 12 N., R. 3 W. (Anchorage A-8 quad), Municipality of Anchorage, 0.8 mi upstream from Potter Marsh, 0.3 mi upstream from Old Seward Highway, and 9.7 mi south of Anchorage.	13.3	1999-2000	7-05-01 7-05-01	56 58
15273097 + Little Rabbit Creek at Goldenview Drive near Anchorage	Rabbit Creek	Lat 61°04'54", long 149°46'20" in SW¹/4 SW¹/4, sec. 35, T.12 N., R.3W. (Anchorage A-8 quad), Municipality of Anchorage, at Goldenview Drive, and 11 mi southeast of Anchorage	r5.57	1968-69 1971-72 1999-2000	7-05-01 7-05-01	16 11
15273900 + South Fork Campbell Creek at Canyon Mouth near Anchorage	Turnagain Arm	Lat 61°08'52", long 149°43'12" in NE¹/4, sec. 12, T. 12 N., R. 3 W., (Anchorage A-8 quad), Municipality of Anchorage, 0.5 mi upstream from pipeline crossing, 1.9 mi upstream from pedestrian bridge at Campbell Airstrip, and 6.8 mi southeast of Anchorage.	25.2	‡1967 - 79, c1980, ‡1981, c1989	1-18-01 2-09-01	22 18
15274796 + South Branch of South Fork Chester Creek at tank trail near Anchorage	South Fork Chester Creek	Lat 61°11'25", long 149°42'13" in SE ${}^{1}_{4}NW^{1}_{4}$ sec. 30, T. 13 N., R. 2 W.(Anchorage A-8 quad), Municipality of Anchorage, 100 ft downstream from bridge on tank trail (Bulldog Trail), and 6.5 mi east of Anchorage.	4.30	1968, 72 1980 1998-2000	10-30-00	4.4

			Drainage	Measured previously (water years)	Measurements	
Stream	Tributary to	Location	area (mi ²)		Date	Discharge (ft ³ /s)
		SOUTH-CENTRAL ALASKAContir	nued			
15283500 Moose Creek above Wishbone Hill near Sutton	Matanuska River	Lat 61°44′02″, long 149°01′35″, in NE¹/4 SE¹/4, sec. 14, T. 19 N., R. 2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, 30 ft downstream from bridge, 40 ft upstream from unnamed tributary, 1.8 mi upstream from Buffalo Creek, and 4.5 mi northwest of Sutton.	30.4	1999-2000	3-27-01 6-19-01	8.7 254
15283600 Premier Creek near Sutton	Moose Creek	Lat 61°42′40″ long 149°05′12″, in SE¹/4 NE¹/4, sec. 28, T. 19 N., R. 2 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, 10 ft downstream from culvert on Buffalo Mine Road (named Moose Creek Road on Anchorage C-6 quad), 4 mi north of Glenn Highway, 6 mi west of Sutton, and 7 mi northeast of Palmer.	3.38	†1996-2000	5-08-01	9.4
15285000 Wasilla Creek near Palmer	Knik Arm	Lat 61°38′37″, long 149°11′46″, in SE¹/₄ SW¹/₄, sec. 13, T. 18 N., R. 1 E. (Anchorage C-6 quad), Matanuska-Susitna Borough, 20 ft downstream from culverts on Palmer-Fishhook Road, and 4.1 mi northeast of Palmer.	16.8	†1971, f†1976-83, †1984-2000	9-24-01	13
15286000 Cottonwood Creek near Wasilla	Knik Arm	Lat 61°34′30″, long 149°24′35″, in NE¹/₄ SW¹/₄, sec. 11, T. 17 N., R. 1 W. (Anchorage C-7 quad), Matanuska-Susitna Borough, 30 ft upstream from Wasilla-Matanuska Trunk Road, and 0.8 mi downstream from Wasilla Lake, and 1.1 mi. southwest of Wasilla.	28.5	1947-48 ‡1949-54 1981-83 ‡1998-2000	10-06-00	20
15290200 Nancy Lake Tribu- tary near Willow	Nancy Lake	Lat 61°41′17″, long 149°57′58″, in SE¹/ ₄ SE¹/ ₄ , sec. 34, T. 19 N., R. 4 W. (Tyonek C-1 quad), Matanuska-Susitna Borough, 50 ft upstream from culvert at Parks Highway, 0.3 mi upstream from mouth, and 4.5 mi southeast of Willow.	8.00	f1978-79, †1980, f1981, †1983-86, †1990-2000	5-01-01 8-04-01	22 5.9
15291100 Raft Creek near Denali	Susitna River	Lat $63^{\circ}03'04''$, $\log 147^{\circ}16'22''$, $\inf SE^{1}/_{4}$, sec. 36, T. 21 S., R. 2 E., (Healy A-1 quad), Matanuska-Susitna Borough, 30 ft upstream from culvert at mi 68.9 Denali Highway, and 10.7 mi southeast of Denali.	4.33	†1963-67, †1971-75, †1977-82, †1984-90, †1993-2000	07-11-01	18
15297200 Myrtle Creek near Kodiak	Kalsin Bay	Lat $57^{\circ}36'12''$, long $152^{\circ}24'12''$ in $NW^1/_4SW^1/_4$, sec. 6, T. 30 S., R. 19 W. (Kodiak C-2 quad), Kodiak Island Borough, 0.1 mi upstream from bridge, 0.3 mi upstream from mouth, and 13 mi south of Kodiak.	4.74	‡1963-86, †1987-89, †1991-2000	12-28-00	120
		SOUTHWEST ALASKA				
15297609 Stapp Creek near Cold Bay	Cold Bay	Lat 55°11'17", long $162^{\circ}42'47$ ", in $SE^{1}/_{4}$ $SE^{1}/_{4}$ $NW^{1}/_{4}$, sec. 1, T.58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, 0.9 mi upstream from mouth, and 1 mi south of Cold Bay.	1.68		10-16-00 2-15-01 4-24-01 6-11-01 8-27-01	2.2 5.1 2.9 0.8 0.8

			Drainage	Measured previously (water years)	Measurements	
Stream	Tributary to	Location	area (mi ²)		Date	Discharge (ft ³ /s)
		SOUTHWEST ALASKAContinued	d			
15297810 Frosty Creek near Cold Bay	Izembek Lagoon	Lat 55°09'59", long $162^{\circ}48'22''$, in $SE^{1}/_{4}$ $SW^{1}/_{4}$ $SE^{1}/_{4}$, sec. 8, T.58 S., R. 89 W. (Cold Bay A-3 quad), Aleutians East Borough, 2.8 mi upstream from mouth, and 4.5 mi southwest of Cold Bay.	5.92		10-17-00 2-15-01 4-24-01 6-11-01 8-27-01	37 28 32 42 44
15297970 Tlikakila River at Mouth near Port Alsworth	Lake Clark	Lat $60^{\circ}23'34''$, long $153^{\circ}48'44''$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ SW $^{1}/_{4}$, sec. 33, T. 4 N., R. 26 W. (Lake Clark B-3 quad), about 22 mi northeast of Port Alsworth.	622	1999-2000	5-11-01	449
15297980 Currant Creek at Mouth near Port Alsworth	Lake Clark	Lat $60^{\circ}18\varepsilon'2''$, long $154^{\circ}00'03''$, in $SW^1/_4$ NE $^1/_4$, sec. 32, T. 3 N., R. 27 W. (Lake Clark B-3 quad), about 14 mi northeast of Port Alsworth.	165	1999-2000	6-05-01 7-10-01 8-21-01 9-25-01	1,440 1,470 1,620 671
15297990 Kijik River at Mouth near Port Alsworth	Lake Clark	Lat $60^{\circ}17'06''$, long $154^{\circ}13'26''$, in $NE^{1}/_{4}$ $NE^{1}/_{4}$, sec. 12, T. 2 N., R. 29 W. (Lake Clark B-4 quad), about 8 mi northeast of Port Alsworth.	298	1999-2000	8-20-01 9-25-01	817 447
15298010 Tanalian River at Mouth at Port Alsworth	Lake Clark	Lat $60^{\circ}11'55''$, long $154^{\circ}20'27''$, in $NW^1/_4$ $NW^1/_4$, Sec. 8, T. 1 N., R. 29 W. (Lake Clark A-4 quad), about 0.5 mi southeast of airport runway at Port Alsworth.	205	1999-2000	5-11-01 6-05-01 8-20-01 9-24-01	129 1,560 2,090 450
15298050 Chulitna River near Port Alsworth	Lake Clark	Lat $60^{\circ}10'58''$, long $154^{\circ}34'33''$, in $NE^1/_4$ $NW^1/_4$ $NE^1/_4$, sec. 13, T. 1 N., R. 31 W. (Lake Clark A-5 quad), about 9 mi southwest of Port Alsworth.	1,157	1999-2000	6-04-01 7-09-01 8-20-01 9-25-01	7,420 2,230 2,370 1,870
15299000 Lake Clark Outlet near Port Alsworth	Newhalen River	Lat $60^{\circ}01'10''$, long $154^{\circ}45'11''$, in $SW^{1}/_{4}$ $NE^{1}/_{4}$, sec. 10, T. 2 S., R. 32 W. (Lake Clark A-5 quad), about 20 mi southwest of Port Alsworth.	2,942	1999-2000	6-04-01 7-09-01 8-20-01 9-25-01	8,530 23,800 21,600 10,600
15300350 Chinkelyes Creek tributary near Pedro Bay	Chinkelyes Creek	Lat $59^{\circ}44'02''$, long $153^{\circ}48'40''$, in $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 23, T. 5 S., R. 27 W. (Iliamna C-3 quad), Lake and Peninsula Borough, 60 ft upstream from culvert, 8 mi east of Pile Bay and 11 mi east of Pedro Bay.	0.40	†1998-2000	6-27-01	10
15300700 +Alagnak River below Nonvianuk River near Igiugig	Kvichak River	Lat 59°01'16", long 155°50'51", in NE¹/4 SE¹/4, sec. 30, T. 13 S., R. 39 W. (Iliamna A-8 quad), Lake and Peninsula Borough, 600 ft downstream from mouth of Nonvianuk River, 4.6 mi upstream from Sugarloaf Mountain Creek, and 21.5 mi south of Igiugig	922	1999-2000	2-27-01 6-06-01	1,420 4,420
15300730 +Alagnak River 27 miles above mouth near McCormick near Levelock	Kvichak River	Lat 59°06'52", long 156°23'01", in NW¹/4 NE¹/4, sec. 29, T. 12 S., R. 42 W. (Dillingham A-2 quad), Lake and Peninsula Borough, 560 ft downstream from McCormick's cabin, 27 mi above mouth, and 16.5 mi east of Levelock.	1148	1999-2000	2-27-01 6-04-01	1,420 3,830
15300770 +Alagnak River 13 miles above mouth near lower barge near Levelock	Kvichak River	Lat 59°03'05", long 156°37'25", in $SW^1/_4 NE^1/_4$, sec. 16, T.13 S., R.44 W. (Dillingham A-2 quad), Lake and Peninsula Borough, 1300 upstream from lower barge, 13 mi above mouth, and 9.5 mi southeast of Levelock.	1282	1999-2000	6-05-01	3,990

			Drainage	Measured	Meası	irements
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		SOUTHWEST ALASKAContinue	ed			
15302900 Moody Creek at Aleknagik	Wood River	Lat $59^{\circ}16'34''$, long $158^{\circ}35'42''$,in $SE^{1}/_{4}$, sec. 30, T. 10 S., R. 55 W. (Dillingham B-7 quad), 500 ft upstream from mouth at Wood River at the Aleknagik Mission.	1.28	1968 †1969-73, †1975-83, †1988-89 †1993-2000	5-14-01 8-16-01	6.2 1.0
15303660 Gold Creek at Takotna	Takotna River	Lat $62^{\circ}59'20''$, long $156^{\circ}04'08''$, in $SE^{1}/_{4}$ $SE^{1}/_{4}$, sec. 34, T. 34 N., R. 36 W. (Iditarod D-1 quad), at Takotna, 350 ft upstream from bridge, and 400 ft upstream from mouth.	6.31	†1987-2000	5-22-01	42
		YUKON ALASKA				
15305900 Dennison Fork near Tetlin Junction	South Fork Forty Mile River	Lat 63°25′24″, long 142°29′00″, in SW¹/4 sec. 14, T. 19 N., R. 15 E. (Tanacross B-3 quad), 10 ft downstream from culvert at mi 10.7 Taylor Highway and 8.3 mi northeast of Tetlin Junction.	2.93	†1964-70, †1972-75, †1977, †1979, †1981-84, †1983-90, †1992-2000	7-25-01 9-02-01	15 10
15344000 King Creek near Dome Creek	O'Brien Creek	Lat $64^{\circ}23'38''$, long $141^{\circ}24'43''$, in $NE^{1}/_{4}$ SW $^{1}/_{4}$ sec. 16, T. 6 S., R. 32 E. (Eagle B-1 quad), at mi 120 Taylor Highway, 1,100 ft upstream from culvert at mi 119.9, 0.4 mi upstream from mouth, 4.9 mi east of Dome Creek, and 28 mi south of Eagle.	5.87	†1975-77 †1979-80 †1982 †1983-1990 †1991-2000	5-22-01 7-25-01	43 42
15388030 Nation River near Nation	Yukon River	Lat 65°14' 23", long 141°39' 10" in NW¹/4 NW¹/4, sec. 30, T. 5N.,R. 30E., (Charley River A-2 quad), in Yukon-Charley Preserve, 3.75 mi upstream from mouth, 4.25 mi downstream from mouth of Hard Luck Creek, 5 mi northeast of Nation townsite, and 33 mi northwest of Eagle.	931	‡1991-2000	12-16-00 3-09-01	198 122
15388060 Kandik River near Nation	Yukon River	Lat 65°23′44″,long 142°25′41″ in NW¹/4 NE¹/4, sec. 32, T. 6N., R. 25E., (Charley River B-3 quad), in Yukon-Charley Rivers National Preserve, on right bank, 0.75 mi upstream of the mouth of Threemile Creek, 3.75 mi above the mouth of the Kandik River, 23 mi northwest of Nation townsite and 55 mi north-northwest of Eagle.	1084	‡1994-2000	12-15-00 3-09-01 8-30-01	85 43 941
15389000 Porcupine River near Fort Yukon	Yukon River	Lat $66^{\circ}59'26''$,long $143^{\circ}08'16''$ in $NE^{1}/_{4}$ $SW^{1}/_{4}$, sec. 16, T. 25N., R. 21E., (Black River D-5 quad), 1,000 ft upstream from John Herberts Village, and 65 mi northeast of Fort Yukon.	a29,500	‡1964-79	3-29-01 6-30-01 7-16-01 8-07-01 8-27-01 9-17-01	1,090 20,500 24,200 16,700 18,800 18,900
15439800 Boulder Creek near Central	Crooked Creek	Lat 65°34′05″, long 144°53′13″, in NW^1 / ₄ , sec. 32, T. 9 N., R. 14 E. (Circle C-2 quad), 2000 ft upstream from bridge at mi 125.4 Steese Highway, 0.7 mi upstream from mouth, and 2.3 mi west of Central.	31.3	†1964-65, ‡1966-82, †1983, ‡1984-86, †1988-2000	5-23-01 7-18-01	206 37

			Drainage	Measured	Measu	irements
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKAContinued				
15442500 Quartz Creek near Central	Crooked Creek	Lat 65°37′09″, long 144°28′55″, in $SW^1/_4$, sec. 7, T. 9 N., R. 16 E. (Circle C-2 quad), at mi 138.1 on Steese Highway, 1 mi upstream from mouth, and 10 mi east of Central.	17.2	†1990, †1992-2000	5-23-01 7-18-01	76 73
15453610 Ray River Tributary near Stevens Village	Ray River	Lat $65^{\circ}56'57''$, long $149^{\circ}54'50''$ in $SE^{1}_{/4}$, sec.17, T.13 N., R. 11 W. (Livengood D-6 quad), at mi 63.8 on the Dalton Highway and 22 mi west of Stevens Village.	8.00	†1977, †1979-80 †1982 †1987-88 †1990-2000	5-23-01 8-22-01	85 8.2
15470300 Little Jack Creek near Nabesna	Jack Lake	Lat $62^{\circ}32'39''$, long $143^{\circ}19'22''$, in $SW^{1}/_{4}$ $NW^{1}/_{4}$ $SE^{1}/_{4}$, sec. 22 T. 9 N., R. 11 E. (Nabesna C-5 quad), mi 25.8 Nabesna Road, and 15.6 mi northwest of Nabesna.	6.73	†1975-77 †1980 †1982-83 †1985-88 †1990-95 †1997-2000	6-20-01 8-01-01	6.6 24
15472000 Tanana River near Tok Junction	Yukon River	Lat 63°19′00″, long 142°38′30″ in NW¹/₄, sec. 25, T. 18 N., R. 14 E. (Tanacross B-4 quad) 1.4 mi west of junction of Alaska and Taylor Highways, at bridge crossing.	6,800	‡1950-1953	8-23-01	24600
15476300 Berry Creek near Dot Lake	Tanana River	Lat $63^{\circ}41'23''$, long $144^{\circ}21'47''$, in $NW^{1}/_{4}$, sec. 13 T. 22 N., R. 5 E. (Mt. Hayes C-1 quad), 100 ft upstream from former bridge site at mi 1371.4 on abandoned section of Alaska Highway, 1.9 mi upstream from mouth, and 6.0 mi west of Dot Lake.	65.1	†1963-71, †1972-81, †1982,1984, †1988 †1990-94 †1997-2000	5-24-01 7-24-01	141 268
15478093 Suzy Q Creek near Pump Station 10	Delta River	Lat $63^{\circ}29'43''$, long $145^{\circ}51'27''$, in $SW^{1}/_{4}$, sec. 29, T. 16 S., R. 10 E. (Mt. Hayes B-4 quad), at mi 224.8 on Richardson Highway, 0.1 mi upstream from mouth, and 6 mi north of Pump Station 10.	1.29	†1987, †1991-94, †1997-2000	6-12-01 7-24-01	12 7.7
15480000 Banner Creek at Richardson	Tanana River	Lat $64^{\circ}17'24''$ long $146^{\circ}20'56''$, in $SW^{1}_{/4}$, sec. 22, T. 7 S., R. 7 E. (Big Delta B-5 quad), 400 ft upstream from bridge at mi 295.4 Richardson Highway 0.2 mi upstream from mouth, and 0.4 mi northwest of Richardson.	20.2	†1964-67, †1969-70, †1972, †1974-75, †1977, †1982-84, †1989-93, †1995-96	7-31-01	26
15493400 Chena River below Hunts Creek near Two Rivers	Tanana River	Lat 64°51′36″, long 146°48′12″, in NW¹/4, sec. 5, T. 1 S., R. 5 E. (Big Delta D-6 quad), approximately 0.6 mi downstream from Hunts Creek and 1.5 mi south of mi 25.8 Chena Hot Springs Road.	1,344	1985, 1987-89, 1991-2000	9-27-01	798

			Drainage	Measured previously	Meası	Measurements		
Stream	Tributary to	Location	area (mi ²)	(water years)	Date	Discharge (ft ³ /s)		
		YUKON ALASKAContinued						
15493700 Chena River below Moose Creek Dam	Tanana River	Lat 64°48′03″, long 147°13′40″, in NW¹/4, sec. 30, T. 1 S., R. 3 E. (Fairbanks C-1 quad), 3.1 mi downstream from Moose Creek Dam, 1.4 mi upstream from Potlatch Creek, 5 mi northeast of North Pole, and 14.7 mi east of Fairbanks	1,460	‡1979-96, 1997-99	9-26-01	893		
1551400425 Noyes Slough at Minnie Street Bridge	Chena River	Lat $64^{\circ}50'54''$, long $147^{\circ}42'26''$, in $NW^{1}_{/4}$ sec. 11, T.1 S., R.1 W., Fairbanks North Star Borough, (Fairbanks D-2 Quad), Hydrologic Unit 19040506, 900 ft. downstream from Noyes Slough entrance 0.3 mi downstream from Wendell StreetBridge, 5.6 mi upstream from mouth, and 11.3 mi downstream from Chena Slough entrance.		1967,1971, 1989,1990, 1992-1994 2000	7-31-01 8-17-01 8-20-01	36 0 14		
15516200 Slime Creek near Cantwell	Nenana River	Lat $63^{\circ}30'34''$, long $148^{\circ}48'39''$, in $SE^{1}/_{4}$, sec. 24, T. 16 S., R. 7 W. (Healy C-4 quad), at mi 219.9 George Parks Highway, 9.1 mi northeast of Cantwell	6.90	†1990-2000	7-11-01	27		
15517980 Dragonfly Creek near Healy	Nenana River	Lat $63^{\circ}47'45''$, long $148^{\circ}55'19''$, in SW $^{1}/_{4}$, sec. 9, T.13 S., R. 7 W., (Healy D-4 quad), at mi 242.6 George Parks Highway, 6 mi southeast of Healy.	0.71	†1990-95, 1997-2000	7-27-01	2.0		
15541600 Globe Creek near Livengood	Tatilina River	Lat 65°17′08″, long 148°07′56″, in SE¹/₄, sec. 3, T. 5 N., R. 3 W. (Livengood B-3 quad), 0.2 mi upstream from culvert at mi 36.7 on Elliott Highway.	23.0	†1964-70, †1972-74, †1976, †1982-83, †1985-86, †1989-91, †1993, †1995-2000	5-23-01	95		
15564868 Snowden Creek near Wiseman	Dietrich River	Lat $67^{\circ}44'20''$, long $149^{\circ}44'24''$, in $SW^{1}_{/4}$, sec. 26, T. 34 N., R. 10 W. (Chandalar C-6 quad), upstream from culvert at mi 213.5 of the Dalton Highway and 24.5 mi northeast of Wiseman.	16.7	†1977-80, †1982, †1984-85, †1987-94, †1996-2000	6-07-01 6-21-01 8-23-01	202 30 19		
15564872 Nugget Creek near Wiseman	Middle Fork Koyukuk River	Lat $67^{\circ}29'25''$, long $149^{\circ}52'20''$, in $NW^{1}/_{4}$, sec. 30, T. 31 N., R. 10 W. (Chandalar B-6 quad), upstream from culvert at mi 195.6 Dalton Highway, and 8.7 mi northeast of Wiseman.	9.47	†1975-79, †1982, †1985, †1987, †1989-2000	5-24-01 6-7-01 6-21-01 8-23-01	12 64 16 3.7		
15564884 Prospect Creek near Prospect Camp	Jim River	Lat $66^{\circ}46'56''$, long $150^{\circ}41'06''$, in $NW^{1}/_{4}$, sec. 31, T. 23 N., R. 14 W. (Bettles D-2 quad), at mi 135.2 Dalton Highway, 0.4 mi downstream from Trans-Alaska Pipeline crossing, 1.5 mi upstream from mouth .	110	†1975-78, †1980 †1982 †1989 †1992-2000	5-24-01	466		
15564887 Bonanza Creek Tributary near Prospect Camp	Bonanza Creek	Lat $66^{\circ}36'52''$, long $150^{\circ}41'24''$, in $SE^{1}/_{4}$, sec. 25, T. 21 N., R. 15 W., 0.3 mi downstream from culverts at mi 121.2 on the Dalton Highway, 3.4 mi upstream from mouth, and 13.5 mi south of pump station 5.	11.7	†1975-76, †1982, †1985-86, †1989-95, †1997-2000	5-24-01	64		

			Drainage	Measured	Meası	irements
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		YUKON ALASKAContinued				
15564950 Indian River at Utopia	Koyukuk River	Lat 65°59′49″, long 153°41′31″, in NW¹/₄, sec. 19, T. 7 N., R. 25 E. (Melozitna D-2 quad), at mi 0.2 on road to Indian Mountain, and 1.8 mi upstream from mouth of Flat Creek.	38.8	†1998-2000	6-1-01 6-14-01 9-7-01	232 124 107
15564960 Utopia Creek at Utopia	Indian River	Lat $65^{\circ}59'19''$, long $153^{\circ}42'18''$, in $SE^{1}/_{4}$, sec. 24, T. 7 N., R. 24 E. (Melozitna D-2 quad), 0.3 mi south of landing strip at Utopia, and 1.2 mi upstream from mouth.	5.18	†1998-2000	6-01-01 6-14-01 9-7-01	25 18 14
15565400 Anvik River near Anvik	Yukon River	Lat 62°47′22″, long 160°41′49″, in NW¹/ ₄ SE¹/ ₄ , sec. 10, T. 31 N., R. 61 W. (Holy Cross D-4 quad), approx. 25 river mi upstream from mouth and 18 mi northwest of Anvik.			8-03-01	2,190
15565449 Municipal Reserve Creek at Pilot Sta- tion.	Yukon River	Lat $61^{\circ}56'19''$, long $162^{\circ}52'53''$, in $NW^1/_4$ $SE^1/_4$, sec. 5, T. 21 N., R. 74 W. (Marshall D-3 quad), 0.3 mile upstream from mouth, and 0.1 mile north of Village of Pilot Station.	1.43	†1993-97	6-27-01 9-22-01	.95 .91
		NORTHWEST ALASKA				
15565730 Chiroskey River near Unalakleet	Unalakleet River	Lat 63°55′06″, long 160°18′58″, in NW¹/₄, sec. 19, T. 18 S., R. 8 W. (Unalakleet D-3 quad), 0.75 mi upstream from mouth, 14 mi northeast of Unalakleet.	296	†1998	6-14-01	934
15583500 Etta Creek near Council	East Fork Solomon River	Lat $64^{\circ}41'56''$, long $164^{\circ}09'57''$, in $NE^{1}_{/4}$ $NE^{1}_{/4}$, sec. 24, T. 9 S., R 28 W. (Solomon C-5 quad), 100 ft upstream from Nome-Council Road, 0.2 mi upstream from mouth, and 25 mi southwest of Council.	1.33		7-17-01	5.9
15585000 Goldengate Creek near Nome	Norton Sound	Lat $64^{\circ}26'51''$, long $165^{\circ}03'14''$, in $SW^{1}/_{4}$, sec. 15, T. 12 S., R. 32 W. (Nome B-1 quad), 500 ft upstream from culvert on Nome-Council Road and 11 mi southeast of Nome.	1.55	†1965 1966 †1986-88 †1990-2000	7-18-01	.78
15624998 Arctic Creek above tributary near Nome	Cripple River	Lat 64°38′16″, long 165°42′42″, in NE¹/₄, sec. 8, T. 10 S., R. 35 W. (Nome C-2 quad), 300 ft upstream from Nome-Teller Road crossing, about 125 ft upstream from tributary entering left bank, 2 mi upstream from mouth, and 13 mi northwest of Nome.	1.13	† 1975, †1979-84, †1986-2000	7-16-01	4.0
15633000 Washington Creek near Nome	Sinuk River	Lat $64^{\circ}42'52''$, long $165^{\circ}49'13''$, in NW $^{1}/_{4}$, sec. 14, T. 9 S., R. 35 W. (Nome C-2 quad), 400 ft upstream from culvert on Nome-Teller Road, and 19 mi northwest of Nome.	6.34	†1964-66, †1968-78, †1980-2000	7-02-01	.76
15635000 Eldorado Creek near Teller	Tisuk River	Lat 64°57'38", long 166°11'59", in $NE^{1}/_{4}$ $NE^{1}/_{4}$, sec. 20, T.6 S., R.37 W. (Nome D-3 quad), 30 ft downstream from bridge at mi 46.3 of Nome-Teller Road, 0.5 mi upstream from mouth at Tisuk River and 21 mi south of Teller.	5.83	1986-87 ‡1988-90 1991 ‡1992-2000	10-04-00 7-02-01	9.8 26

			Drainage	Measured	Measurements		
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)	
		NORTHWEST ALASKAContinue	ed				
15746890 Competition Creek near Kivalina	Wulik River	Lat 68°08′05″, long 163°03′37″, in NW¹/₄, sec. 32, T. 32 N., R. 19 W. (DeLong Mts A-2 quad), 600 ft upstream from mouth, 7 mi northwest of Red Dog Mine mill site, 39 mi north of Noatak, and 48 mi northeast of Kivalina.	6.85		7-8-00 10-6-00 7-10-01	4.8 3.4 4.9	
15746980 Ikalukrok Creek above Red Dog Creek near Kivalina	Wulik River	Lat $68^{\circ}05'38''$, long $162^{\circ}56'47''$, in $SE^{1}/_{4}$, sec. 11, T. 31 N., R. 19 W. (DeLong Mts A-2 quad), 300 ft upstream from Red Dog Creek, 3 mi northwest of Red Dog Mine mill site, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco Station 9.	59.2	‡1991-92, 1993-2000	10-5-00 6-8-01 7-10-01 9-11-01 9-14-01	39 523 94 328 191	
15746983 Red Dog Mine Clean Water Ditch near Kivalina	Ikalukrok Creek	Lat $68^{\circ}04'28''$, long $162^{\circ}51'35''$, in $NE^{1}/_{4}$, sec. 19, T. 31 N., R. 18 W. (DeLong Mts A-2 quad), 500 ft downstream from outfall of clean water ditch, 300 ft northwest of Red Dog Mine mill site, 0.4 mi upstream from South Fork Red Dog Creek, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco station 140.	4.74 (total) 4.3 (contributing)	‡1991-92, 1993-2000	10-6-00 5-14-01 5-15-01 5-16-01 6-8-01 7-11-01 9-11-01	1.9 1.8 2.9 3.0 47 4.6	
1574698750 Red Dog Creek above North Fork Red Dog Creek near Kivalina	Ikalukrok Creek	Lat 68°04′58″, long 162°52′54″, in SW¹/4, sec. 19, T. 31 N., R. 18 W. (DeLong Mts A-2 quad), 500 ft upstream from North Fork Red Dog Creek, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco station 20.	9.3 (total) 5.5 (contributing)	1991-93	5-16-01	24	
15746988 North Fork Red Dog Creek near Kivalina	Ikalukrok Creek	Lat 68°05′03″, long 162°52′52″, in SW¹/₄, sec. 18, T. 31 N., R. 18 W. (DeLong Mts. A-2 quad), 500 ft upstream from mouth, 1.1 mi northwest of Red Dog Mine mill site, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco station 12.	15.9	‡1991-94, †1995-2000	10-6-00 6-4-01 6-5-01 6-6-01 6-8-01 7-11-01 9-10-01	12 336 287 326 215 12 54	
15746990 Red Dog Creek above Mouth near Kivalina	Ikalukrok Creek	Lat 68°05′20″, long 162°55′30″, in NW¹/4, sec. 13, T. 31 N., R. 19 W. (DeLong Mts. A-2 quad), 0.6 mi upstream from mouth, 2.3 mi northwest of Red Dog Mine mill site, 36 mi north of Noatak, and 50 mi northeast of Kivalina. Cominco Station 10.	24.6 (total) 20.8 (contributing)	‡1991-92, 1993-2000	10-5-00 10-8-00 7-10-01 7-11-01 9-14-01	28 8.3 31 16 73	
1574699020 Ikalukrok Creek 0.6 mi below Red Dog Creek near Kivalina	Wulik River	Lat 68°05′09″, long 162°58′07″, in NE¹/₄, sec. 15, T. 31 N., R. 19 W. (DeLong Mts. A-2 quad), Northwest Arctic Borough, 0.6 mi downstream from Red Dog Creek, 3 mi westnorthwest of Red Dog Mine, 36 mi north of Noatak, and 48 mi northeast of Kivalina. Cominco Station 150.	n		6-5-01 6-8-01 7-9-01 9-12-01	910 800 120 345	
15746994 Ikalukrok Creek below Dudd Creek near Kivalina	Wulik River	Lat 68°00′17″, long 163°02′26″, in NW¹/₄, sec. 16, T. 30 N., R. 19 W. (DeLong Mts. A-2 quad), Northwest Arctic Borough, 200 ft downstream from Dudd Creek, 30 mi north of Noatak, and 43 mi northeast of Kivalina. Cominco Station 7.		†1991-92 1999-2000	10-6-00 6-4-01 6-9-01 7-10-01 9-14-01	62 1320 933 165 387	

			Drainage	Measured	Measurements	
Stream	Tributary to	Location	area (mi ²)	previously (water years)	Date	Discharge (ft ³ /s)
		NORTHWEST ALASKAContinue	ed			
15746998 Tutak Creek near Kivalina	Wulik River	Lat 67°52′28″, long 163°40′14″, in NE¹/4, sec. 34, T. 29 N., R. 22 W. (Noatak D-4 quad), 1,000 ft upstream from mouth, 25 mi northeast of Kivalina, and 28 mi northwest of Noatak.	119	1991, †1992-2000	6-7-01 7-11-01 9-13-01	1180 32 165
		ARCTIC SLOPE ALASKA				
15904800 Atigun River near Pump Station 4	Sagavanirktok River	Lat $68^{\circ}12'54''$, long $149^{\circ}24'13''$, in $SW^{1}/_{4}$, sec. 20, T. 14 S., R. 12 E. (Phillip Smith Mts. B-4 quad), at mi 253.1 on Dalton Highway, and 15 mi south of Pump Station 4.	48.7	‡1991-95 1999-2000	11-7-00 4-17-01 6-7-01 6-12-01 6-21-01 8-1-01 9-5-01	2.4 0 365 183 238 92 34
15904900 Atigun River Tribu- tary near Pump Sta- tion 4	Atigun River	Lat 68°22′25″, long 149°18′48″, in SE¹/4, sec. 28, T. 12 S., R. 12 E. (Phillip Smith Mts. B-4 quad), 0.2 mi upstream from culvert at mi 265 on Dalton Highway, 0.9 mi upstream from mouth, and 4 mi south of Pump Station 4.	32.6	‡1977-86, †1987-91, †1994, †1996-99	6-8-01 6-20-01	211 91
15910300 Sagavanirktok River Tributary near Happy Valley Camp	Sagavanirktok River	Lat $69^{\circ}09'38''$, long $148^{\circ}49'40''$, in $NE^{1}/_{4}$, sec. 30, T. 3 S., R. 14 E. (Sagavanirktok A-4 quad), 500 ft upstream from culvert at mi 335.2 on Dalton Highway, 0.8 mi upstream from mouth, and 16 mi south of Sagwon.	12.7	†1997-2000	6-10-01 6-12-01	101 48
15918200 Sagavanirktok River Tributary near Deadhorse	Sagavanirktok River	Lat $69^{\circ}57'14''$, long $148^{\circ}43'48''$, in $NE^{1}/_{4}$, sec. 19, T. 1 N., R. 14 E. (Sagavanirktok D-3 quad), at mi 386.2 on Dalton Highway, 0.4 mi upstream from mouth, and 23 mi south of Deadhorse.	a 12	†1988-91, †1995-97 †1999-2000	6-10-01 6-20-01	14 1.6

FOOTNOTES

- † Operated as a crest-stage partial-record station
- ‡ Operated as a continuous-record station
- + See analysis of samples collected at miscellaneous water-quality sites
- * Operated as a stage-only partial-record station
- a Approximately
- b Ponded water but no flow
- d Channel dry
- e Estimated

- $f \quad \text{ Low-flow partial-record station}$
- g Not previously published
- h Previously published as 15052482 Jordan Creek at Trout Street Bridge near Auke Bay
- j Ice effect
- n To be determined
- p Peak flow
- r Revised

SOUTHEAST ALASKA

15049900 GOLD CREEK NEAR JUNEAU

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	TUR- BID- ITY (NTU) (00076)
NOV 15	1000	9	9	35.3	27	20	3044	130	7.6	8.0	3.0		. 2
JAN 02	0950	9	9	33.6	34	10	3044				4.0	5	. 2
FEB 08	1100	9	9	30.2	39	20	3044	139	7.8	1.0	1.5	<1	.3
MAR 08	0930	9	9	11.8	21	20	3044	162	7.6	4.0	3.0	<1	.3
MAY 31	0915	9	9	50.0	184	10	3044	85	7.4		4.0	<1	
JUL 18	1030	9	9	46.4	144	20	3044	77	7.1	17.0	6.0	<1	
AUG 13	1450	9	9	39.2	112	20	3044	69	7.3	36.5	11.0	<1	
15 SEP	1045	9	9	42.5	125	20	3044	70	7.3	12.0	6.5	<1	
10 25	1245 0900	9 9	9 9	32.5 45.0	91 146	10 10	3044 3044	109 81	7.1 7.6	15.0	9.0 10.5	<1 <1	
DATE	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	BROMIDE DIS- SOLVED (MG/L AS BR) (71870)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
NOV 15						32	38	31					
JAN 02		65	17.8	4.97	1.0				32.4	.8	<.2	.01	2.5
FEB 08		70	19.3	5.27	.9	34	42	34	33.3	.9	<.2	<.01	2.8
MAR 08	5.9	76	20.6	5.88	1.1	35	43	35	38.3	.9	<.2	<.01	2.5
MAY 31	1.8	40	11.8	2.52	.7	23	26	21	16.3	1.2	.1	<.01	2.0
JUL 18	. 4	37	10.7	2.51	.7	22	26	21	16.8	.5	<.01	<.01	1.7
AUG 13	20	32	9.33	2.03	.6	20	22	18	14.4	.3	.1	<.01	1.7
15 SEP	1.1	31	9.16	2.03	.6	19 29	22 33	18 27	14.7	. 4	.1	<.01	1.6
10 25	1.1	34 37	8.11 10.7	3.34 2.35	1.4	22	25 25	20	21.4	.6 	<.2	<.01	9.8 1.9
DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON, DIS- SOLVED (UG/L AS FE) (01046)
NOV 15													
JAN 02	90					<2.0	32.9	<1.00	<8.00	<.8	<13.0	<4.7	<10
FEB 08	95					<2.0	35.4	<1.00	<8.00	<.8	<13.0	<4.7	<10
MAR 08	101	<.006	.501		<.018	<2.0	33.7	<1.00	<8.00	<.8	<13.0	<4.7	<10
MAY 31	52	<.006	.271		<.020	<2.0	26.6	<1.00	<8.00	<.8	<13.0	<5.0	<10
JUL 18	48	E.005	.090		<.020	<2.0	22.1	<1.00	<8.00	<.8	<13.0	<5.0	<10
AUG 13 15	31 39	<.006 <.006	.080	E.022	 <.020	<2.0 <2.0	22.4 21.9	<1.00 <1.00	<8.00 <8.00	<.8 <.8	<13.0 <13.0	<5.0 <5.0	<10 <10
SEP 10	62	<.006	E.156	<.040	<.020	<2.0	21.9	<1.00	<8.00	<.8	<13.0	<5.0	70
25	50	.029	.498		<.020	<2.0	24.9	<.50	<8.00	<.8	<13.0	<6.0	<10

SOUTHEAST ALASKA

15049900 GOLD CREEK NEAR JUNEAU--Continued

DATE	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY DIS- SOLVED (UG/L AS HG) (71890)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)
NOV											
15											
JAN	T 00	.2.0	.2.0	<.23	<45.0	<53.0	D1 6	.1 6	04.6	.0.0	710
02 FEB	E.08	<3.9	<3.2	<.23	<45.0	<53.0	E1.6	<4.6	94.6	<8.0	E10
08	E.06	<3.9	<3.2	< . 23	<45.0	<53.0	E1.3	<4.6	103	<8.0	<20
MAR											
08	<.08	<3.9	<3.2	<.23	<45.0	<53.0	<2.4	<4.6	105	<8.0	<20
MAY	2.1	.1 0	.2 0		.50.0	.50 0	.0.0	0	F0 6	.0.0	-00
31 JUL	.31	<4.0	<3.0		<50.0	<50.0	<2.0	<5.0	58.6	<8.0	<20
18	<.08	<4.0	<3.0	<.01	<50.0	<50.0	<2.0	<5.0	55.8	<8.0	<20
AUG											
13	<.08	<4.0	<3.0	<.01	<50.0	<50.0	<2.0	<5.0	46.5	<8.0	<20
15	E.04	<4.0	<3.0	<.01	<50.0	<50.0	<2.0	<5.0	46.7	<8.0	<20
SEP 10	<.08	<4.0	13.6	<.01	<50.0	<50.0	<2.0	<5.0	29.4	<8.0	<20
25	.13	<4.0	<2.0	<.01	<50.0	<30.0	E1.0	<9.0	53.9	<8.0	<24
23		-1.0	-2.0		.50.0	.50.0	22.0	.,,,	55.5		-2-1

15052900 MENDENHALL RIVER AT BROTHERHOOD BRIDGE AT AUKE BAY

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	CALCIUM TOTAL RECOV- ERABLE (MG/L AS CA) (00916)	MAGNE- SIUM, TOTAL RECOV- ERABLE (MG/L AS MG) (00927)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)
JUN 06	0940	9	А	19	7.77	1.21	E.08	<.10	1.2	1460	<1	25	<3.0

	SILVER,	ZINC,
	TOTAL	TOTAL
	RECOV-	RECOV-
	ERABLE	ERABLE
DATE	(UG/L	(UG/L
	AS AG)	AS ZN)
	(01077)	(01092)
JUN		
05	- 40	-31

SOUTHEAST ALASKA

15109029 UPPER PETERSON CREEK NEAR AUKE BAY

		DIS- CHARGE, INST. CUBIC FEET	STREAM	BARO- METRIC PRES- SURE (MM	OXYGEN, DIS-	OXYGEN, DIS- SOLVED (PER- CENT	PH WATER WHOLE FIELD (STAND-	SPE- CIFIC CON- DUCT-	TEMPER- ATURE		
DATE	TIME	PER SECOND (00061)	WIDTH (FT) (00004)	OF HG) (00025)	SOLVED (MG/L) (00300)	SATUR- ATION) (00301)	ARD UNITS) (00400)	ANCE (US/CM) (00095)	WATER (DEG C) (00010)		
JUL 12	1220	2.1	8.20	760	12.2	117	6.5	52	13.5		
		151	09031 PE	TERSON	CREEK '	TRIBUTA	RY NUM	BER 8 NI	EAR AUKE BAY		
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)		
JUL 12	1240	.20	3.60	760	10.8	94	7.3	45	9.0		
		151	09033 PI	ETERSON	CREEK	TRIBUTA	RY NUM	BER 7 N	EAR AUKE BAY		
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	FIELD (STAND- ARD	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C) (00010)		
JUL 12	1300	.10	1.20	760	11.5	96	7.1	46	7.5		
15109035 PETERSON CREEK TRIBUTARY NUMBER 6 NEAR AUKE BAY											
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)		
JUL 12	1340	1.1	4.80	760	12.4	101	7.2	39	6.5		
		151	09039 PE	TERSON	CREEK	TRIBUTA	RY NUM	BER 4 NI	EAR AUKE BAY		
DATE	TIME	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)		
JUL 12	1440	.90	3.20	760	11.3	97	7.2	53	8.5		
		151	09041 PE	TERSON	CREEK	TRIBUTA	RY NUM	BER 3 NI	EAR AUKE BAY		
		DIS-		BARO-		OXYGEN,	PH				
DATE	TIME	CHARGE, INST. CUBIC FEET PER SECOND (00061)	STREAM WIDTH (FT) (00004)	METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)		
JUL 12	1520	.80	4.60	760	11.8	98	7.3	57	7.5		

SOUTH-CENTRAL ALASKA

601105149382400 EXIT GLACIER CREEK CHANNEL AT MI .1 HARDING TRAIL NEAR SEWARD

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
JUL 27 AUG	1330	9	9		21			43	7.2		3.5		13.5
06 20 SEP	1720 1100	9 9	9 9	16.6 13.5	25 11	10 70	8010 8010	24 52	7.5 7.8	20.5	2.0	752 737	12.5 13.2
11 25	1430 1400	9 9	9 9	5.00 9.00	1.1	70 70	8010 8010	83 87	7.6 7.9	10.5	4.0 4.0	746 736	12.2
DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)									
JUL 27		<1	<1	<1									
AUG 06 20	92 101	<1 E3	<1 <1	E2 									
SEP 11 25	95 	<1 E1	<1 <1	E1 									

601105149385100 EXIT GLACIER CREEK TRIBUTARY AT MILE .6 HARDING TRAIL NEAR SEWARD

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
JUL	1105		•		0.4	1.0	2045	2.2				540	10.1
27 AUG	1135	9	9		8.4	10	3045	89	7.9		7.1	748	12.1
06 20 SEP	1650 1350	9 9	9 9	15.0 14.0	5.7 7.0	10 70	8010 8010	85 91	7.7 8.1	14.5 12.0	7.5 6.5	752 	10.3 12.1
11 25	1400 1320	9 9	9 9	14.5 13.0	3.0 4.2	70 70	8010 8010	113 109	7.9 7.8	10.5	6.0 5.5	 725	12.8 9.4
DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)
JUL 27 AUG	102	<1	<1	<3	42	15.5	.854	1.2	38	.11	49	.0	38
06	87	E1	<1	<1									
20 SEP		E3	E1	E2									
11 25	 78	<1	<1	<1									
		E33	<1	E3									

SOUTH-CENTRAL ALASKA

601105149385100 EXIT GLACIER CREEK TRIBUTARY AT MILE .6 HARDING TRAIL NEAR SEWARD--Continued

DATE	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)
JUL													
27 AUG	5.9	.7	<.2	4.5	59	53	<.001	.028	.002	E.06	<.10	E.004	<.006
06													
20													
SEP 11													
25													
DATE	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)									
JUL 27	<.007	<10	<3.0	E.21									
AUG													
06 20													
SEP													
11													
25													

601143149353400 EXIT GLACIER CREEK DISTRIBUTARY AT MILE 8.5 EXIT GLACIER ROAD NEAR SEWARD

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)
JUL 17 17	1230 1300	9 H	9 9	8.40	5.4	10	3045	98 	7.3	4.0	761 	13.1	100
DATE	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
JUL 17 17	44	15.9	1.04	1.1	36 	.27	47 	36 	6.6	1.3	<.2	1.8	56
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	ALDRIN, SED, BM WS,<2MM DW, REC (UG/KG) (49319)
JUL 17 17	51 	.001	.074	.003	.10	<.10	.312	<.006	<.007	<10	17.8	1.4	 <1
DATE	CHLORO- NEB, SED, BM WS,<2MM DW, REC (UG/KG) (49322)	DCPA, SED, BM WS,<2MM DW, REC (UG/KG) (49324)	DIEL- DRIN, SED, BM WS,<2MM DW, REC (UG/KG) (49331)	ENDRIN, SED, BM WS,<2MM DW, REC (UG/KG) (49335)	HEPTA- CHLOR, SED, BM WS,<2MM DW, REC (UG/KG) (49341)	HEPTA- CHLOR EPOXIDE SED, BM WS,<2MM DW, REC (UG/KG) (49342)	BENZENE HEXA- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49343)	ISODRIN SED, BM WS,<2MM DW, REC (UG/KG) (49344)	LINDANE SED, BM WS,<2MM DW, REC (UG/KG) (49345)	MIREX, SED, BM WS,<2MM DW, REC (UG/KG) (49348)	OXY- CHLOR- DANE, SED, BM WS,<2MM DW, REC (UG/KG) (49318)	PENTA- CHLORO- ANISOLE SED, BM WS,<2MM DW, REC (UG/KG) (49460)	PCB, SED, BM WS,<2MM DW, REC (UG/KG) (49459)
JUL 17 17	 <5	 <5	 <1	<2	 <1	 <1	 <1	 <1	 <1	 <1	 <1	 <1	 <50

SOUTH-CENTRAL ALASKA

601143149353400 EXIT GLACIER CREEK DISTRIBUTARY AT MILE 8.5 EXIT GLACIER ROAD NEAR SEWARD-- Continued

DATE	TOXA- PHENE SED, BM WS,<2MM DW, REC (UG/KG) (49351)	ENDO- SULFAN I, SED, BM WS,<2MM DW, REC (UG/KG) (49332)	ALPHA- BHC, SED, BM WS,<2MM DW, REC (UG/KG) (49338)	ALPHA- BHC, D6 SURROGT SED, BM WS,<2MM DW, REC PERCENT (49275)	BETA- BHC, SED, BM WS,<2MM DW, REC (UG/KG) (49339)	CIS- CHLOR- DANE, SED, BM WS,<2MM DW, REC (UG/KG) (49320)	CIS- NONA- CHLOR, SED, BM WS,<2MM DW, REC (UG/KG) (49316)	CIS- PER- METHRIN SED, BM WS,<2MM DW, REC (UG/KG) (49349)	O, P'- DDD, SED, BM WS,<2MM DW, REC (UG/KG) (49325)	O, P'- DDE, SED, BM WS,<2MM DW, REC (UG/KG) (49327)	O, P'- DDT, SED, BM WS,<2MM DW, REC (UG/KG) (49329)	METHOXY CHLOR, O,P'-, SED, BM WS,<2MM DW, REC (UG/KG) (49347)	P, P'- DDD, SED, BM WS,<2MM DW, REC (UG/KG) (49326)
JUL 17 17	 <200	 <1	 <1	 88	 <1	 <1	 <1	 <5	 <1	 <1	<2	 <5	<1
DATE	P, P'- DDE, SED, BM WS,<2MM DW, REC (UG/KG) (49328)	P, P'- DDT, SED, BM WS,<2MM DW, REC (UG/KG) (49330)	METHOXY CHLOR P,P'-, SED, BM WS,<2MM DW, REC (UG/KG) (49346)	TRANS- CHLOR- DANE, SED, BM WS,<2MM DW, REC (UG/KG) (49321)	TRANS- NONA- CHLOR, SED, BM WS,<2MM DW, REC (UG/KG) (49317)	TRANS- PER- METHRIN SED, BM WS,<2MM DW, REC (UG/KG) (49350)	ALUM- INUM BOT MAT <63U WS FIELD PERCENT (34790)	ANTI- MONY BOT MAT <63U WS FIELD (UG/G) (34795)	ARSENIC BOT MAT <63U WS FIELD (UG/G) (34800)	BARIUM BOT MAT <63U WS FIELD (UG/G) (34805)	BERYL- LIUM BOT MAT <63U WS FIELD (UG/G) (34810)	BISMUTH BOT MAT <180UWS FIELD (UG/G) (34816)	CADMIUM BOT MAT <63U WS FIELD (UG/G) (34825)
JUL 17 17	 <1	<2	 <5	<1	<1	 <5	7.9	2.3	18	710	1.1	<1	. 2
DATE	CHRO- MIUM BOT MAT <63U WS FIELD (UG/G) (34840)	COPPER BOT MAT <63U WS FIELD (UG/G) (34850)	CALCIUM BOT MAT <63U WS FIELD PERCENT (34830)	COBALT BOT MAT <63U WS FIELD (UG/G) (34845)	CERIUM BOT MAT <63U WS FIELD (UG/G) (34835)	EURO- PIUM BOT MAT <63U WS FIELD (UG/G) (34855)	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)	HOLMIUM BOT MAT <63U WS FIELD (UG/G) (34875)	IRON BOT MAT <63U WS FIELD PERCENT (34880)	LANTHA- NUM BOT MAT <63U WS FIELD (UG/G) (34885)	LEAD BOT MAT <63U WS FIELD (UG/G) (34890)	LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)
JUL 17 17	99	 68	1.6	 17	 58	1	<1	 16	<1	3.8	30	13	40
DATE	MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900)	MANGA- NESE BOT MAT <63U WS FIELD (UG/G) (34905)	MERCURY BOT MAT <63U WS FIELD (UG/G) (34910)	MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) (34915)	NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920)	NICKEL BOT MAT <63U WS FIELD (UG/G) (34925)	NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)	PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	SILVER BOT MAT <63U WS FIELD (UG/G) (34955)	SODIUM BOT MAT <63U WS FIELD PERCENT (34960)	STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)
JUL 17 17	1.4	 670	 .06	.7	 29	 44	11	.160	 16	.3	. 2	2.5	 370
DATE	SULFUR BOT MAT <63U WS FIELD PERCENT (34970)	TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)	THORIUM BOT MAT <63U WS FIELD (UG/G) (34980)	TIN BOT MAT <63U WS FIELD (UG/G) (34985)	TITA- NIUM, SED, BM WS,<63U DRY WGT REC PERCENT (49274)	URANIUM BOT MAT <63U WS FIELD (UG/G) (35000)	VANA- DIUM BOT MAT <63U WS FIELD (UG/G) (35005)	YTTRIUM BOT MAT <63U WS FIELD (UG/G) (35010)	YTTER- BIUM BOT MAT <63U WS FIELD (UG/G) (35015)	ZINC BOT MAT <63U WS FIELD (UG/G) (35020)	CARBON, ORGANIC SED, BM WS,<63U DW, REC (PER- CENT) (49266)	CARBON, INORG, SED, BM WS,<63U DW, REC (PER- CENT) (49269)	CARBON, ORG + INORG, SED, BM WS,<63U DW, REC PERCENT (49267)
JUL 17 17	.09	 <1	 6	2	.520	1.6	130	 19	 2	 93	.38	.21	 .59
DATE	CARBON, ORG + INORG SED, BM WS,<2MM DW, REC (G/KG) (49272)	CARBON, INORG, SED, BM WS,<2MM DW, REC (G/KG) (49270)	CARBON, ORGANIC SED, BM WS,<2MM DW, REC (G/KG) (49271)	BENZENE 124TRI- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49438)	BENZENE O-DI- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49439)	NAPTHAL ENE, 12 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49403)	BENZENE M-DI- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49441)	BENZENE P-DI- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49442)	NAPTHAL ENE, 16 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49404)	9H-FLU- ORENE, 1METHYL SED, BM WS,<2MM DW, REC (UG/KG) (49398)	PHENAN THRENE 1METHYL SED, BM WS,<2MM DW, REC (UG/KG) (49410)	PYRENE, 1- METHYL, SED, BM WS,<2MM DW, REC (UG/KG) (49388)	2,2'-BI QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49391)
JUL 17 17	3.5	. 2	3.3	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50

SOUTH-CENTRAL ALASKA

601143149353400 EXIT GLACIER CREEK DISTRIBUTARY AT MILE 8.5 EXIT GLACIER ROAD NEAR SEWARD-- Continued

DATE	NAPTHAL ENE,236 TRIMETH SED, BM WS,<2MM DW, REC (UG/KG) (49405)	TOLUENE 2,4-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49395)	NAPTHAL ENE, 26 DIMETHL SED, BM WS,<2MM DW, REC (UG/KG) (49406)	TOLUENE 2,6-DI- NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49396)	NAPTHAL ENE, 2- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49407)	PHENOL, 2CHLORO BED MAT WS <2MM DRY WGT REC (UG/KG) (49467)	NAPTHAL ENE, 2- ETHYL- SED BM WS <2MM DW REC (UG/KG) (49948)	ANTHRA- CENE, 2- METHYL- SED, BM WS, < 2MM DW, REC (UG/KG) (49435)	3,5- XYLENOL SED, BM WS,<2MM DW, REC (UG/KG) (49421)	4-BROMO PHNPHNL ETHER SED, BM WS,<2MM DW, REC (UG/KG) (49454)	M-CRE- SOL, 4- CHLORO- SED, BM WS,<2MM DW, REC (UG/KG) (49422)	4CHLORO PHNPHN LETHER SED, BM WS,<2MM DW, REC (UG/KG) (49455)	4HCYPEN PHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG) (49411)
JUL 17 17	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50
17	130	130	130	130	130	130	130	130	130	130	130	130	130
DATE	ACENAPH THENE SED, BM WS,<2MM DW, REC (UG/KG) (49429)	ACENAPH THYLENE SED, BM WS,<2MM DW, REC (UG/KG) (49428)	ACRI- DINE SED, BM WS,<2MM DW, REC (UG/KG) (49430)	ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG) (49434)	9,10- ANTHRA- QUINONE SED, BM WS,<2MM DW, REC (UG/KG) (49437)	AZO- BENZENE SED, BM WS,<2MM DW, REC (UG/KG) (49443)	BENZ(A) ANTHRA- CENE SED, BM WS,<2MM DW, REC (UG/KG) (49436)	BENZO (A) PYRENE SED, BM WS,<2MM DW, REC (UG/KG) (49389)	BENZOB FLUOR- ANTHENE SED, BM WS,<2MM DW, REC (UG/KG) (49458)	BENZOCI NNOLINE BED MAT WS < 2MM DRY WGT REC (UG/KG) (49468)	BENZO(G HI)PERY LENE SED, BM WS,<2MM DW, REC (UG/KG) (49408)	BENZO K FLUOR- ANTHENE SED, BM WS,<2MM DW, REC (UG/KG) (49397)	PHTHALA TE,BIS2 ETHHEXL SED, BM WS,<2MM DW, REC (UG/KG) (49426)
JUL 17 17	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50
DATE	PHTHALA TEBUTYL BENZYL- SED, BM WS,<2MM DW, REC (UG/KG) (49427)	PHENOL C8- ALKYL- SED, BM WS,<2MM DW, REC (UG/KG) (49424)	CARBA- ZOLE SED, BM WS,<2MM DW, REC (UG/KG) (49449)	CHRY- SENE SED, BM WS,<2MM DW, REC (UG/KG) (49450)	PHTHAL- ATE, DIBUTYL SED, BM WS,<2MM DW, REC (UG/KG) (49381)	PHTHAL ATE, D IOCTYL SED, BM WS,<2MM DW, REC (UG/KG) (49382)	DIBENZ (AH), AN THRACEN SED, BM WS,<2MM DW, REC (UG/KG) (49461)	THIOPH ENE,DI- BENZO- SED, BM WS,<2MM DW, REC (UG/KG) (49452)	PHTHAL- ATE, D IETHYL SED, BM WS,<2MM DW, REC (UG/KG) (49383)	PHTHAL- ATE,DI- METHYL SED, BM WS,<2MM DW, REC (UG/KG) (49384)	FLUOR- ANTHENE BED MAT WS <2MM DRY WGT REC (UG/KG) (49466)	9H-FLU- ORENE SED, BM WS,<2MM DW, REC (UG/KG) (49399)	INDENO 123-CD PYRENE SED, BM WS,<2MM DW, REC (UG/KG) (49390)
JUL 17													
17	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
DATE	ISOPHOR ONE SED, BM WS,<2MM DW, REC (UG/KG) (49400)	ISO- QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49394)	DPROPYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) (49431)	DIPHNYL AMINE,N NITROSO SED, BM WS,<2MM DW, REC (UG/KG) (49433)	NAPHTH- ALENE, SED, BM WS,<2MM DW, REC (UG/KG) (49402)	BENZENE NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49444)	BENZENE PNTCHLR NITRO- SED, BM WS,<2MM DW, REC (UG/KG) (49446)	PHENAN THRENE SED, BM WS,<2MM DW, REC (UG/KG) (49409)	PHENAN- THRI- DINE SED, BM WS,<2MM DW, REC (UG/KG) (49393)	PHENOL SED, BM WS,<2MM DW, REC (UG/KG) (49413)	PYRENE, SED, BM WS,<2MM DW, REC (UG/KG) (49387)	QUINO- LINE, SED, BM WS,<2MM DW, REC (UG/KG) (49392)	METHANE 2CHLORO ETHOXY SED, BM WS,<2MM DW, REC (UG/KG) (49401)
JUL 17 17	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50	 <50

BIS2CHL BIS2CHL ETHYL P-ETHER CRESOL SED, BM SED, BM WS,<2MM WS,<2MM DW, REC DW, REC (UG/KG) (UG/KG) (49456) (49451) DATE

JUL
17... -- -17... <50 E40
Remark codes used in this report:
< -- Less than
E -- Estimated value

SOUTH-CENTRAL ALASKA

594734151142900 ANCHOR RIVER NEAR BALD MOUNTAIN NEAR HOMER

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
APR 24	1530	9	9	56.0	382	10	3045	1006	61	7.4	6.5	3.0	741
DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
APR 24	12.7	97	22	4.58	2.61	3.8	25	1.29	30	24	.6	2.8	<.2
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
APR 24	21.0	60	53	.002	.210	.019	.28	.21	.110	.035	.030	510	68.6
DATE	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	NITRO- GEN,PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)							
APR 24	4.6	2.0	.172	82	85	62							

SOUTH-CENTRAL ALASKA

594507151290000 BEAVER CREEK 2 MILE ABOVE MOUTH NEAR BALD MOUNTAIN NEAR HOMER

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
APR 19	1300	9	9	14.0	26	10	3045	1006	72	7.4	8.0	1.0	750
AUG 29	1145	D	9			8010	8010	1006					
29	1250	9	9	16.5	25	10	3045	1006			15.0	8.5	733
DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	WATER DIS IT FIELD	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
APR 19	13.6	97	24	5.45	2.60	3.7	31	1.62	38	31	. 6	3.7	<.2
AUG 29													
29													
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)		NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)		PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
19 AUG	24.8	81	63	.003	.238	.003	.39	.20	.071	.037	.029	900	113
29				.003	.134	.012	 .42	 .38	.099	.081	 .065		
DATE	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, INORG +	NITRO- GEN,PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)		PERI-	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT	PHEO- PHYTIN A, PERI- PHYTON (MG/M2) (62359)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. * FINER THAN .062 MM (70331)	.005		
APR 19	5.3	.6	.053					10	.70	88			
AUG 29 29				.6	37.7	38.7	.3						

SOUTH-CENTRAL ALASKA

15239840 ANCHOR RIVER ABOVE TWITTER CREEK NR HOMER

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
AUG 20 20	1625 1720	D 9	9 9	 48.0	233	8010 10	8010 3045	1006 1006	 65	 7.4	 17.0	10.0	 742
DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2) (70957)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M (00572)	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M (00573)
AUG 20 20	10.5	 96	.002	.084	.027	.34	.28	.109	.056	.041	1.0	40.3	41.6
DATE	PHEO- PHYTIN A, PERI- PHYTON (MG/M2) (62359)												
AUG 20 20	. 4 												

$595126151391000\,$ CHAKOK RIVER 7.5 MILE ABOVE MOUTH NEAR ANCHOR POINT

TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
1140	9	9	16.0	126	10	3045	1006	50	7.1	8.5	1.0	741
1629 1740	D 9	9	15.0	16	8010 10	8010 3045	1006 1006	70	7.2	16.0	12.5	741
OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
13.3 8.8	96	18	4.02	1.88	2.8	20	1.49	24	19	.3	2.2	<.2
	1140 1629 1740 OXYGEN, DIS- SOLVED (MG/L) (00300) 13.3	OXYGEN, DIS- SOLVED OXYGEN, DIS- SOLVED OXYGEN, ATION O0300) OX301) 13.3 96	TIME CODE TYPE 1140 9 9 1629 D 9 1740 9 9 OXYGEN, DIS- HARD- SOLVED NESS OXYGEN, CENT (MG/L) SOLVED SATUR- AS (MG/L) ATION) CACO3) (00300) (00301) (00900) 13.3 96 18	TIME CODE TYPE WIDTH (FT) (00004) 1140 9 9 16.0 1629 D 9 1740 9 9 15.0 OXYGEN, DIS- HARD- SOLVED NESS CALCIUM OXYGEN, PER- TOTAL DIS- DIS- CENT (MG/L SOLVED SOLVED SATUR- AS (MG/L SOLVED (MG/L) ATION) CACO3) AS CA) (00300) (00301) (00900) (00915) 13.3 96 18 4.02	MEDIUM SAMPLE STREAM CUBIC C	MEDIUM SAMPLE STREAM FEET PLING CODE CODE	MEDIUM SAMPLE STREAM FEET PLING SAMPLER TIME CODE TYPE WIDTH PER METHOD, TYPE (FT) SECOND CODES (CODE) (EDS) (ED	MEDIUM SAMPLE STREAM FEET PLING SAMPLER SITE FET PLING SAMPLER SITE SECOND CODES CODE CODE	MEDIUM SAMPLE STREAM FEET PLING SAMPLER SITE DUCT-	MEDIUM SAMPLE STREAM FEBT PLING SAMPLE STREAM FEBT PLING SAMPLE STREAM FEBT PLING SAMPLE STREAM FEBT PLING SAMPLE STREAM STREAM FEBT PLING SAMPLE STREAM STREAM FEBT PLING SAMPLE STREAM STAMPLE STREAM STAMPLE STREAM STAMPLE STREAM STAMPLE STREAM STAMPLE STAMPL	MEDIUM SAMPLE STREAM FEET PLING SAMPLER STTE DUCT (STAND ATURE CODE CODE (D0004) (00061) (82398) (84164) (50280) (00095) (00400) (00020)	MEDIUM

SOUTH-CENTRAL ALASKA

50512/151201000 CHAROK BIVED 7.5 MH F ADOVE MOUTHINEAD ANCHOR DOINT CONT.

	5951	26151391	000 CHA	KOK RIV	ER 7.5 M	ILE ABO	VE MOU'	TH NEAR	ANCHO	R POINT-	Continue	ed	
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
APR 24 AUG	14.8	52	41	.001	.086	.005	.46	.25	.125	.025	.016	870	101
23				.001	.029	.014	.36	.22	.142	.064	.049		
DATE	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	NITRO- GEN,PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2) (70957)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M (00572)	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M (00573)	PHEO- PHYTIN A, PERI- PHYTON (MG/M2) (62359)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)			
APR 24	7.2	1.4	.132					44	15	65			
AUG 23 23				2.1	37.8	39.2	1.3						
				1524000	00 ANCH	OR RIVE DIS- CHARGE,	R AT AN	CHOR PC	INT	SPE-	PH WATER		
DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	GAGE HEIGHT (FEET) (00065)	INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	CIFIC CON- DUCT- ANCE (US/CM) (00095)	WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)
APR 16	1600	9	9	106	10.39	690	10	3045	1006	72	7.9	6.5	3.0
AUG 20 20	1135 1220	D 9	9 9	93.5		 513	8010 10	8010 3045	1006 1006	 68	7.4	12.0	10.0
DATE	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)
APR 16 AUG	751	12.9	97	23	5.17	2.49	4.4	26	1.62	32	27	.5	3.8
20 20	 747	 11.1	100										
DATE	FLUO- RIDE, DIS- SOLVED (MG/L	SILICA, DIS- SOLVED (MG/L AS	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED	NITRO- GEN, NITRITE DIS- SOLVED (MG/L	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L	PHOS- PHORUS TOTAL (MG/L	PHOS- PHORUS DIS- SOLVED (MG/L	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L	IRON, DIS- SOLVED (UG/L

(MG/L

AS N)

(00631)

.059

.073

PERT-

BIOMASS

PHYTON

ASH WEIGHT

G/SQ M (00572)

40.5

SOLVED

(MG/L)

(70301)

NITRO-

GEN, PAR TICULTE

WAT FLT

SUSP (MG/L

AS N) (49570)

.119

SOLVED

(MG/L)

(70300)

68

CARBON, INORG + ORGANIC

PARTIC.

TOTAL (MG/L

AS C)

(00694)

1.4

AS N)

(00613)

.002

.002

CHLOR-A

PERI-PHYTON

CHROMO-

GRAPHIC FLUOROM

(MG/M2)

(70957)

AS F)

(00950)

<.2

MANGA-

NESE, DIS-

SOLVED (UG/L

AS MN)

(01056)

111

DATE

APR 16...

AUG 20... 20...

DATE

APR 16...

ATIG

20...

SIO2)

(00955)

19.4

CARRON

DIS-

SOLVED (MG/L AS C)

5.5

ORGANIC

AS N)

(00625)

.30

.44

PHEO-

PHYTIN

A, PERI-PHYTON

(MG/M2) (62359)

. 3

AS N)

(00623)

SEDI-

MENT.

SUS-PENDED

(MG/L)

30

.20

AS P)

(00665)

.087

.156

SEDI-

MENT, DIS-

CHARGE.

SUS-PENDED

(T/DAY)

(80155)

56

(MG/L

AS N)

(00608)

.003

.013

PERI-

PHYTON BIOMASS

TOTAL

G/SQ M (00573)

DRY WEIGHT

AS P)

(00666)

.033

.051

SED.

SUSP.

DIAM.

.062 MM (70331)

80

상 FINER THAN (MG/L

(00671)

.026

.034

AS P)

(UG/L

AS FE)

(01046)

880

SOUTH-CENTRAL ALASKA

595506151403300 STARISKI CREEK 2 MILE BELOW UNNAMED TRIBUTARY NEAR NINILCHIK

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
APR 20 AUG	1250	9	9	18.3	48	10	3045	1006	68	7.4	6.0	2.0	759
24 24	1341 1440	D 9	9 9	 15.0	 22	8010 10	8010 3045	1006 1006	 72	7.2	 16.0	10.0	 749
DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
APR 20 AUG	13.6	99	24	5.18	2.70	3.3	31	1.40	38	30	. 4	2.6	<.2
24 24	10.2	 92											
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
APR 20	22.1	74	58	.002	.102	.004	.37	.19	.116	.040	.034	810	81.7
AUG 24													
24				.003	.162	.013	. 27	. 22	.103	.077	.069		
DATE	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2) (70957)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M (00572)	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M (00573)	PHEO- PHYTIN A, PERI- PHYTON (MG/M2) (62359)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)			
APR 20	5.1	1.8	.153					33	4.2	72			
AUG 24 24				3.5	37.7	39.2	1.4						
			1	5240300	CTADICK	T CDEEK	NEADA	NCHOR I	POINT				
				3240300	S II II III	CKLLIN	TILLING I	пченок	Onvi				
DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
APR 17	1520	9	9	29.0	166	10	3045	1006	54	7.7	6.0	2.0	757
AUG 25 25	1324 1420	D 9	9 9	 26.0	 34	8010 10	8010 3045	1006 1006	 82	7.3		12.5	 750
	-120		-										. 50
DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
APR 17	12.3	90	19	4.32	1.93	3.4	22	1.16	26	21	. 2	2.5	<.2
AUG 25 25	 9.9	 94											
45	9.9	94											

SOUTH-CENTRAL ALASKA

15240300 STARISKI CREEK NEAR ANCHOR POINT--Continued

APR 17 13.3 54 41 .001 .029 .007 .48 .24 .128 .032 .023 1250 161 AUG .25002 .106 .015 .015 .29 .23 .121 .081 .071	DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	PHOS- PHORUS TOTAL (MG/L AS P)	PHOS- PHORUS DIS- SOLVED (MG/L AS P)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P)	IRON, DIS- SOLVED (UG/L AS FE)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)
17		(00955)	(70300)	(70301)	(00613)	(00631)	(00608)	(00625)	(00623)	(00665)	(00666)	(00671)	(01046)	(01056)
AUG 25 25 CARBON, NITRO- CHLOR-A PERI- PHYTON PHEO- MENT, SUSP. ORGANIC ORGANIC TICULTE PHYTON PHYTON BIOMASS PHYTIN SEDI- DIS- SIEVE DIS- PARTIC. WAT FLT CHROMO- SUSP GRAPHIC ASH DRY OAS C) AS C) AS N) (MG/M2) G/SQ M G/SQ M (MG/M2) (MG/L) (T/DAY) .062 MM (00681) (00694) (49570) (70957) (00572) (00573) (62359) (80154) (80155) (70331) APR 17 7.6 2.1 1.167 9 46.2 47.4 9														
25		13.3	54	41	.001	.029	.007	. 48	.24	.128	.032	.023	1250	161
CARBON, INORG + GEN, PAR PERI- PHYTON PHEO- MENT, SUSP. ORGANIC ORGANIC TICLUTE PHYTON PHYTON BIOMASS PHYTIN SEDI- DIS- SIEVE DIS- PARTIC. WAT FLT CHROMO- BIOMASS TOTAL A, MENT, CHARGE, DIAM. SOLVED TOTAL SUSP GRAPHIC ASH DRY PERI- SUS- SUS- FINER (MG/L (MG/L (MG/L FLUOROM WEIGHT WEIGHT PHYTON PENDED PENDED THAN (00681) (00694) (49570) (70957) (00572) (00573) (62359) (80154) (80155) (70331) APR 17 7.6 2.1 .167 130 58 50 AUG 25 9 46.2 47.4 .9	25													
CARBON, INORG + GEN,PAR PERI PERI PHYTON PHEO MENT, SUSP.	25				.002	.106	.015	. 29	.23	.121	.081	.071		
17 7.6 2.1 .167 130 58 50 AUG 259 46.2 47.4 .9	DATE	ORGANIC DIS- SOLVED (MG/L AS C)	INORG + ORGANIC PARTIC. TOTAL (MG/L AS C)	GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N)	PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2)	PHYTON BIOMASS ASH WEIGHT G/SQ M	PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M	PHYTIN A, PERI- PHYTON (MG/M2)	MENT, SUS- PENDED (MG/L)	MENT, DIS- CHARGE, SUS- PENDED (T/DAY)	SUSP. SIEVE DIAM. % FINER THAN .062 MM			
259 46.2 47.4 .9	17	7.6	2.1	.167					130	58	50			
25					. 9	46.2	47.4	. 9						

600107151112800 NORTH FORK DEEP CREEK 4 MILE ABOVE MOUTH NEAR NINILCHIK

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
APR 25	1340	9	9	21.0	32	10	3045	1006	72	7.8	8.5	3.0	722
30 30	1305 1500	D 9	9 9	21.5	 31	8010 10	8010 3045	1006 1006	 63	 7.6	13.0	 9.5	
DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
APR 25	12.6	99	28	5.39	3.55	3.4	35	1.38	42	35	.7	1.2	E.1
AUG 30 30	 												
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	AT 180	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
APR 25	27.4	82	64	<.001	.013	<.002	E.05	<.10	.023	.019	.018	50	22.7
AUG 30				 -	 .				 -	 .	 -		
30				<.001	.006	.003	E.08	.11	.022	.020	.015		
DATE	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2) (70957)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M (00572)	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M (00573)	PHEO- PHYTIN A, PERI- PHYTON (MG/M2) (62359)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)				
APR 25	1.7	E.2	E.026					2	.17				
AUG 30				1.4	46.0	49.6	1.8						
30													

SOUTH-CENTRAL ALASKA

600204151401800 DEEP CREEK 0.6 MILE ABOVE STERLING HIGHWAY NEAR NINILCHIK

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
APR 18	1640	9	9	80.0	285	10	3045	1006	70	7.5	5.5	3.0	763
AUG 21 21	1602 1700	D 9	9 9	 57.0	 258	8010 10	8010 3045	1006 1006	 64	 7.6	 18.0	12.5	 752
DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	DIS-	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CACO3	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
APR 18	13.0	96	25	5.43	2.88	3.3	32	1.36	39	32	.6	2.1	<.2
21 21	 9.4	 89											
DATE	DIS-	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	CONSTI-	DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)		NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
APR 18	21.2	75	57	.002	.067	.004	.54	.17	.215	.033	.027	640	63.6
AUG 21 21				<.001	.017	<.002	 .27	.21	.064	.040	.029		
DATE	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	CHLOR-A PERI- PHYTON CHROMO- GRAPHIC FLUOROM (MG/M2) (70957)	PERI- PHYTON BIOMASS ASH WEIGHT G/SQ M (00572)	PERI- PHYTON BIOMASS TOTAL DRY WEIGHT G/SQ M (00573)	PHEO- PHYTIN A, PERI- PHYTON (MG/M2) (62359)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)			
APR 18	4.4	3.8	. 268					220	169	53			
AUG 21 21				4.1	40.3	42.6	1.7						

600945151210900 NINILCHIK RIVER 1.5 MILE BELOW TRIBUTARY 1 NEAR NINILCHIK

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
APR													
23 AUG	1450	9	9	99.5	171	70	3045	1006	47	7.4	.5	747	11.4
23	1340	9	9	9.50	17	10	3045	1006	89	7.0	8.0	742	9.0
DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
APR 23 AUG	81	18	4.15	1.75	2.5	23	1.42	27	22	. 2	1.1	<.2	14.1
23	78												

SOUTH-CENTRAL ALASKA

600945151210900 NINILCHIK RIVER 1.5 MILE BELOW TRIBUTARY 1 NEAR NINILCHIK--Continued

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)
APR 23 AUG 23	45	40	.001	<.005	.004	.28	.23	.097	.058	.051	930	99.2	6.7
DATE	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	NITRO- GEN,PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)									
APR 23 AUG 23	. 6	.056	10	4.6									

600321151325000 NINILCHIK RIVER BELOW TRIBUTARY 3 NEAR NINILCHIK

DIS- CHARGE, INST. CUBIC SAM- PURPOSE CON- TIME CODE TYPE WIDTH PER METHOD, TYPE VISIT, ANCE AR (FT) SECOND CODES (CODE) (CODE) (US/CM) UNIT (00004) (00061) (82398) (84164) (50280) (00095) (0048)	E PRES- D TEMPER- TEMPER- SURE D- ATURE ATURE (MM AIR WATER OF S) (DEG C) (DEG C) HG)
18 1150 9 9 41.0 225 10 3045 1006 76 7.	6.0 .5 759
21 1110 D 9 8010 8010 1006 21 1250 9 9 30.0 113 10 3045 1006 91 7.	760 19.5 11.0 749
OXYGEN	Y CHLO- FLUO- IS SULFATE RIDE, RIDE, I DIS- DIS- DIS- D SOLVED SOLVED SOLVED AS (MG/L (MG/L (MG/L) 3 AS SO4) AS CL) AS F)
APR 18 12.7 88 27 6.19 2.84 3.9 34 1.75 42 34	.2 1.9 <.2
AUG 21	
21 9.1 84	
SOLIDS, SOLIDS, NITRO- NITRO	S ORTHO, IRON, NESE, - DIS- DIS- DIS- ED SOLVED SOLVED L (MG/L (UG/L (UG/L) AS P) AS FE) AS MN)
APR 18 19.1 85 58 .002 .037 .018 .55 .26 .198 .0	4 .045 1110 191
AUG	
21	 0 .061
CARBON, NITRO- CHLOR-A PERI- PHYTON PHEO- MENT, SU ORGANIC ORGANIC TICULTE PHYTON PHYTON BIOMASS PHYTIN SEDI- DIS- SIE DIS- PARTIC. WAT FLT CHROMO- BIOMASS TOTAL A, MENT, CHARGE, DIS- SOLVED TOTAL SUSP GRAPHIC ASH DRY PERI- SUS- SUS- \$ FI DATE (MG/L (MG/L FLUOROM WEIGHT WEIGHT PHYTON PHYDON PENDED TH AS C) AS N) (MG/MZ) G/SQ M G/SQ M (MG/M2) (MG/L) (T/DAY) .062 (00681) (00694) (49570) (70957) (00572) (00573) (62359) (80154) (80155) (703	P. E M. ER N
	1)
APR	1)
	1)

SOUTH-CENTRAL ALASKA

15273040 RABBIT CREEK AT PORCUPINE TRAIL ROAD NEAR ANCHORAGE

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
JUL 05 05	0955 1855	9 9	9 9	17.2	56 58	10 10	3045 3045	1099 1006	68 63	7.1 7.7	6.0 6.7	738 738	11.4 11.1
DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	P,P' DDE DISSOLV (UG/L) (34653)
JUL 05 05	95 94	<.004 <.004	<.002 <.002	<.007 <.007	<.005 <.005	<.010 <.010	<.002 <.002	<.020 <.020	<.041 E.004	<.005 <.005	<.018 <.018	<.003 <.003	<.003 <.003
DATE	DEETHYL ATRA- ZINE, WATER, DISS, EC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	FONOFOS WATER DISS REC (UG/L) (04095)	LINDANE DIS- SOLVED (UG/L) (39341)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	MALA- THION, DIS- SOLVED (UG/L) (39532)	METO- LACHLOR WATER DISSOLV (UG/L) (39415)
05 05	<.006 <.006	<.005 <.005	<.005 <.005	<.002 <.002	<.021 <.021	<.009 <.009	<.005 <.005	<.002 <.002	<.003 <.003	<.004 <.004	<.035 <.035	<.027 <.027	<.013 <.013
DATE	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	PARA- THION, DIS- SOLVED (UG/L) (39542)	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	PER- METHRIN CIS WAT FLT 0.7 U GF, REC (UG/L) (82687)	WATER FLTRD 0.7 U GF, REC (UG/L)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)
JUL 05 05	<.006 <.006	<.050 <.050	<.002 <.002	<.007 <.007	<.007 <.007	<.006 <.006	<.002 <.002	<.010 <.010	<.006 <.006	<.011 <.011	<.010 <.010	<.015 <.015	<.004 <.004
DATE	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)	TEBU- THIURON WATER FLTRD 0.7 U GF, REC (UG/L) (82670)	TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681)							
JUL 05 05	<.023 <.023	<.011 <.011	<.016 <.016	<.034 <.034	<.017 <.017	<.005 <.005							

SOUTH-CENTRAL ALASKA

15273097 LITTLE RABBIT CREEK AT GOLDENVIEW DRIVE NEAR ANCHORAGE

DATE JUL	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
05 05	1110 1925	9 9	9 9	13.0	16 11	10 10	3045 3045	1099 1006	113 112	8.1 8.1	7.5 8.0	738 738	10.6 10.5
DATE	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	ACETO- CHLOR, WATER FLTRD REC (UG/L) (49260)	ALA- CHLOR, WATER, DISS, REC, (UG/L) (46342)	ATRA- ZINE, WATER, DISS, REC (UG/L) (39632)	ALPHA BHC DIS- SOLVED (UG/L) (34253)	BEN- FLUR- ALIN WAT FLD 0.7 U GF, REC (UG/L) (82673)	BUTYL- ATE, WATER, DISS, REC (UG/L) (04028)	CARBO- FURAN WATER FLTRD 0.7 U GF, REC (UG/L) (82674)	CAR- BARYL WATER FLTRD 0.7 U GF, REC (UG/L) (82680)	CHLOR- PYRIFOS DIS- SOLVED (UG/L) (38933)	CYANA- ZINE, WATER, DISS, REC (UG/L) (04041)	DCPA WATER FLTRD 0.7 U GF, REC (UG/L) (82682)	P,P' DDE DISSOLV (UG/L) (34653)
JUL 05 05	91 92	<.004 <.004	<.002	<.007 <.007	<.005 <.005	<.010 <.010	<.002	<.020 <.020	E.008 E.002	<.005 <.005	<.018 <.018	<.003	<.003
DATE	DEETHYL ATRA- ZINE, WATER, DISS, REC (UG/L) (04040)	DI- AZINON, DIS- SOLVED (UG/L) (39572)	DI- ELDRIN DIS- SOLVED (UG/L) (39381)	2,6-DI- ETHYL ANILINE WAT FLT 0.7 U GF, REC (UG/L) (82660)	DISUL- FOTON WATER FLTRD 0.7 U GF, REC (UG/L) (82677)	ETHAL- FLUR- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82663)	ETHO- PROP WATER FLTRD 0.7 U GF, REC (UG/L) (82672)	EPTC WATER FLTRD 0.7 U GF, REC (UG/L) (82668)	FONOFOS WATER DISS REC (UG/L) (04095)	DIS- SOLVED (UG/L)	LIN- URON WATER FLTRD 0.7 U GF, REC (UG/L) (82666)	DIS-	METO- LACHLOR WATER DISSOLV (UG/L) (39415)
JUL 05 05	<.006 <.006	<.005 <.005	<.005 <.005	<.002 <.002	<.021 <.021	<.009 <.009	<.005 <.005	<.002	<.003 <.003	<.004 <.004	<.035 <.035	<.027 <.027	<.013 <.013
DATE	METRI- BUZIN SENCOR WATER DISSOLV (UG/L) (82630)	METHYL AZIN- PHOS WAT FLT 0.7 U GF, REC (UG/L) (82686)	MOL- INATE WATER FLTRD 0.7 U GF, REC (UG/L) (82671)	NAPROP- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82684)	DIS-	METHYL PARA- THION WAT FLT 0.7 U GF, REC (UG/L) (82667)	PEB- ULATE WATER FILTRD 0.7 U GF, REC (UG/L) (82669)	PENDI- METH- ALIN WAT FLT 0.7 U GF, REC (UG/L) (82683)	0.7 U	WATER FLTRD 0.7 U GF, REC (UG/L)	PROPA- CHLOR, WATER, DISS, REC (UG/L) (04024)	PRO- METON, WATER, DISS, REC (UG/L) (04037)	PRON- AMIDE WATER FLTRD 0.7 U GF, REC (UG/L) (82676)
JUL 05 05	<.006 <.006	<.050 <.050	<.002 <.002	<.007 <.007	<.007 <.007	<.006 <.006	<.002 <.002	<.010 <.010	<.006 <.006	<.011 <.011	<.010 <.010	<.015 <.015	<.004 <.004
DATE JUL 05	PRO- PARGITE WATER FLTRD 0.7 U GF, REC (UG/L) (82685)	SI- MAZINE, WATER, DISS, REC (UG/L) (04035)		TER- BACIL WATER FLTRD 0.7 U GF, REC (UG/L) (82665)	TER- BUFOS WATER FLTRD 0.7 U GF, REC (UG/L) (82675)	THIO- BENCARB WATER FLTRD 0.7 U GF, REC (UG/L) (82681) <.005							
05	<.023	<.011	<.016	<.034	<.017	<.005							

15273900 SOUTH FORK CAMPBELL CREEK AT CANYON MOUTH NEAR ANCHORAGE

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)
JAN													
18 FEB	1445	9	9	22	70	8010	1099	97	7.9	1.0	.00		
09	1330	9	9	18	70	8010	1099	90	8.1	.00	.00	755	13.3
DATE JAN	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	E COLI, MTEC MF WATER (COL/ 100 ML) (31633)	ENTERO- COCCI, ME MF, WATER (COL/ 100 ML) (31649)									
18		E8	E4	<1									
FEB 09	92	E2	E1	E3									

SOUTH-CENTRAL ALASKA

15274796 SOUTH BRANCH OF SOUTH FORK CHESTER CREEK AT TANK TRAIL NEAR ANCHORAGE

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM L BANK) (00009)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	PURPOSE SITE VISIT, (CODE) (50280)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)
OCT 31	1440	Н	9	7.00	10.0	3.0	4.4	8010	8010	3003	113	7.9	. 5
DATE	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	ALUM- INUM BOT MAT <63U WS FIELD PERCENT (34790)	ANTI- MONY BOT MAT <63U WS FIELD (UG/G) (34795)	ARSENIC BOT MAT <63U WS FIELD (UG/G) (34800)	BARIUM BOT MAT <63U WS FIELD (UG/G) (34805)	BERYL- LIUM BOT MAT <63U WS FIELD (UG/G) (34810)	BISMUTH BOT MAT <180UWS FIELD (UG/G) (34816)	CADMIUM BOT MAT <63U WS FIELD (UG/G) (34825)	CHRO- MIUM BOT MAT <63U WS FIELD (UG/G) (34840)	COPPER BOT MAT <63U WS FIELD (UG/G) (34850)
OCT 31	1.5	739	13.9	102	6.7	.8	17	550	1.0	<1	.2	200	42
DATE	CALCIUM BOT MAT <63U WS FIELD PERCENT (34830)	COBALT BOT MAT <63U WS FIELD (UG/G) (34845)	CERIUM BOT MAT <63U WS FIELD (UG/G) (34835)	EURO- PIUM BOT MAT <63U WS FIELD (UG/G) (34855)	GOLD BOT MAT <63U WS FIELD (UG/G) (34870)	GALLIUM BOT MAT <63U WS FIELD (UG/G) (34860)	HOLMIUM BOT MAT <63U WS FIELD (UG/G) (34875)	IRON BOT MAT <63U WS FIELD PERCENT (34880)	LANTHA- NUM BOT MAT <63U WS FIELD (UG/G) (34885)	LEAD BOT MAT <63U WS FIELD (UG/G) (34890)	LITHIUM BOT MAT <63U WS FIELD (UG/G) (34895)	MAGNE- SIUM BOT MAT <63U WS FIELD PERCENT (34900)	MANGA- NESE BOT MAT <63U WS FIELD (UG/G) (34905)
OCT 31	2.1	20	34	1	<1	15	<1	4.6	18	12	25	1.4	1500
		20	24	Τ.	< ±	13					37		
DATE	MERCURY BOT MAT <63U WS FIELD (UG/G) (34910)	MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) (34915)	NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920)	NICKEL BOT MAT <63U WS FIELD (UG/G) (34925)	NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)	PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	SELE- NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	SILVER BOT MAT <63U WS FIELD (UG/G) (34955)	SODIUM BOT MAT <63U WS FIELD PERCENT (34960)	STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	SULFUR BOT MAT <63U WS FIELD PERCENT (34970)	TANTA- LUM BOT MAT <63U WS FIELD (UG/G) (34975)
DATE OCT 31	BOT MAT <63U WS FIELD (UG/G)	MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G)	NEODYM- IUM BOT MAT <63U WS FIELD (UG/G)	NICKEL BOT MAT <63U WS FIELD (UG/G)	NIOBIUM BOT MAT <63U WS FIELD (UG/G)	PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G)	NIUM BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD (UG/G)	BOT MAT <63U WS FIELD PERCENT	STRON- TIUM BOT MAT <63U WS FIELD (UG/G)	SULFUR BOT MAT <63U WS FIELD PERCENT	LUM BOT MAT <63U WS FIELD (UG/G)
OCT	BOT MAT <63U WS FIELD (UG/G) (34910)	MOLYB- DENUM BOT MAT <63U WS FIELD (UG/G) (34915)	NEODYM- IUM BOT MAT <63U WS FIELD (UG/G) (34920)	NICKEL BOT MAT <63U WS FIELD (UG/G) (34925)	NIOBIUM BOT MAT <63U WS FIELD (UG/G) (34930)	PHOS- PHORUS BOT MAT <63U WS FIELD PERCENT (34935)	SCAN- DIUM BOT MAT <63U WS FIELD (UG/G) (34945)	NIUM BOT MAT <63U WS FIELD (UG/G) (34950)	BOT MAT <63U WS FIELD (UG/G) (34955)	BOT MAT <63U WS FIELD PERCENT (34960)	STRON- TIUM BOT MAT <63U WS FIELD (UG/G) (34965)	SULFUR BOT MAT <63U WS FIELD PERCENT (34970)	LUM BOT MAT <63U WS FIELD (UG/G) (34975)

SOUTH-CENTRAL ALASKA

15283550 MOOSE CREEK ABOVE WISHBONE HILL NEAR SUTTON

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	COLOR (PLAT- INUM- COBALT UNITS) (00080)	SAM- PLING METHOD, CODES (82398)	STREAM WIDTH (FT) (00004)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C) (00010)
MAR 27	1030	9	9	8.7	5	10	28.0	713	12.9	95	7.8	129	. 3
JUN 19	1100	9	9	254		10		737	12.4	102	7.1	51	5.5
19	1100			234		10		737	12.4	102	7.1	31	3.3
DATE	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)
MAR 27	52	17.9	1.82	.52	4.6	32	33	38	6.5	<.2	6.2	15.6	82
JUN 19	22	7.42	.725	. 29	.8	18	19	23	. 4	< . 2	3.5	4.6	43
17	22	7.12	. 723	.25	.0	10	10	23		1.2	3.3	1.0	15
DATE	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)
MAR 27	73	.014	E.06	E.05	.328	.001	<.022	<.006	E.005	E.002	< . 1	<.1	.36
JUN												·	
19	29	.002	.12	<.08	.076	<.001	<.022	<.006	<.007	.019	. 2		.57
DATE	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) (01105)	ARSENIC TOTAL (UG/L AS AS) (01002)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) (01007)	BERYL- LIUM, TOTAL RECOV- ERABLE (UG/L AS BE) (01012)	CADMIUM WATER UNFLTRD TOTAL (UG/L AS CD) (01027)	CHRO-MIUM, TOTAL RECOV- ERABLE (UG/L AS CR) (01034)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) (01042)	CYANIDE TOTAL (MG/L AS CN) (00720)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) (01045)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) (01051)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
MAR 27	<.1	<28	E1	33.3	<2.50	<.11	<1	<1.8	<.01	<10	<10	<1	<3.2
JUN 19		212	E1	22.3	<2.50	<.10	<1	1.2	<.01	<10	220	<1	<3.0
17		212	ĒΪ	44.3	\4.5U	·.10	~ ±	1.4	∼. ∪⊥	/T0	220	ν 1	\3. 0
DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN) (01055)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG) (71900)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI) (01067)	SELE- NIUM, TOTAL (UG/L AS SE) (01147)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	PURPOSE SITE VISIT, (CODE) (50280)	SAMPLER TYPE (CODE) (84164)			
MAR 27	<3	<.14	<2	<2.6	< .43	<31	<1		1099	3045			
JUN 19	5	.01	<2	<3.0	<.40	<31	17	12	1099	3045			

SOUTHWEST ALASKA

604504152514600 TLIKAKILA RIVER NEAR SUMMIT LAKE NEAR PORT ALSWORTH

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
SEP 2001 17	1530	9	9	739	12.1	100	7.2	58	6.0	22	8.24	.438	1.44
DATE	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	H-2 / H-1 STABLE ISOTOPE RATIO PER MIL (82082)
SEP 17	. 8	19	20	25	.3	<.2	3.2	5.1	29	32	40	12.0	-146
DATE	O-18 / O-16 STABLE ISOTOPE RATIO PER MIL (82085)												
SEP 17	-19.17												

604529152520600 GLACIER FORK NEAR SUMMIT LAKE NEAR PORT ALSWORTH

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
SEP 17	1600	9	9	739	12.2	99	7.4	48	5.3	23	8.37	.469	1.33
DATE	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	H-2 / H-1 STABLE ISOTOPE RATIO PER MIL (82082)
SEP 17	.7	17	18	22	.2	<.2	2.8	6.9	56	32	30	3.3	-147
DATE	O-18 / O-16 STABLE ISOTOPE RATIO PER MIL (82085)												
SEP 17	-19.59												

604011153081400 TLIKAKILA RIVER ABOVE NORTH FORK TLIKAKILA RIVER NEAR PORT ALSWORTH

				BARO-		OXYGEN,	PH						
				METRIC		DIS-	WATER	SPE-		HARD-		MAGNE-	POTAS-
				PRES-		SOLVED	WHOLE	CIFIC		NESS	CALCIUM	SIUM,	SIUM,
				SURE	OXYGEN,	(PER-	FIELD	CON-	TEMPER-	TOTAL	DIS-	DIS-	DIS-
		MEDIUM	SAMPLE	(MM	DIS-	CENT	(STAND-	DUCT-	ATURE	(MG/L	SOLVED	SOLVED	SOLVED
DATE	TIME	CODE	TYPE	OF	SOLVED	SATUR-	ARD	ANCE	WATER	AS	(MG/L	(MG/L	(MG/L
				HG)	(MG/L)	ATION)	UNITS)	(US/CM)	(DEG C)	CACO3)	AS CA)	AS MG)	AS K)
				(00025)	(00300)	(00301)	(00400)	(00095)	(00010)	(00900)	(00915)	(00925)	(00935)
SEP		_	_										
17	1245	9	9	744	12.7	101	7.0	47	4.7	20	7.32	.486	1.23

SOUTHWEST ALASKA

604011153081400 TLIKAKILA RIVER ABOVE NORTH FORK TLIKAKILA RIVER NEAR PORT ALSWORTH--Continued

DATE	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	H-2 / H-1 STABLE ISOTOPE RATIO PER MIL (82082)
SEP 17	. 8	17	18	22	. 4	<.2	3.7	4.9	30	30	30	5.8	-146
DATE	O-18 / O-16 STABLE ISOTOPE RATIO PER MIL (82085)												
SEP 17	-19.35												

604015153082300 NORTH FORK TLIKAKILA RIVER AT MOUTH NEAR PORT ALSWORTH

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
SEP 17	1220	9	9	745	12.6	100	6.8	45	4.8	18	6.46	.561	1.01
		ALKA-	ANC	BICAR-					SOLIDS,	SOLIDS,			H-2 /
	SODIUM, DIS-	LINITY WAT DIS TOT IT	WATER UNFLTRD FET	BONATE WATER DIS IT	CHLO- RIDE, DIS-	FLUO- RIDE, DIS-	SILICA, DIS- SOLVED	SULFATE DIS-	RESIDUE AT 180 DEG. C	SUM OF CONSTI- TUENTS,	IRON, DIS-	MANGA- NESE, DIS-	H-1 STABLE ISOTOPE
DATE	SOLVED (MG/L	FIELD MG/L AS	FIELD MG/L AS	FIELD MG/L AS	SOLVED (MG/L	SOLVED (MG/L	(MG/L AS	SOLVED (MG/L	DIS- SOLVED	DIS- SOLVED	SOLVED (UG/L	SOLVED (UG/L	RATIO PER
	AS NA) (00930)	CACO3 (39086)	CACO3 (00410)	HCO3 (00453)	AS CL) (00940)	AS F) (00950)	SIO2) (00955)	AS SO4) (00945)	(MG/L) (70300)	(MG/L) (70301)	AS FE) (01046)	AS MN) (01056)	MIL (82082)
SEP													
17	.7	16	17	21	.3	<.2	3.6	4.7	29	28	30	3.2	-147
DATE SEP 17	O-18 / O-16 STABLE ISOTOPE RATIO PER MIL (82085)												

603205153315900 TLIKAKILA RIVER 12 MILE ABOVE MOUTH NEAR PORT ALSWORTH

				BARO-		OXYGEN,	PH						
				METRIC PRES-		DIS- SOLVED	WATER WHOLE	SPE- CIFIC		HARD- NESS	CALCIUM	MAGNE- SIUM,	POTAS- SIUM,
				SURE	OXYGEN,	(PER-	FIELD	CON-	TEMPER-	TOTAL	DIS-	DIS-	DIS-
		MEDIUM	SAMPLE	(MM	DIS-	CENT	(STAND-	DUCT-	ATURE	(MG/L	SOLVED	SOLVED	SOLVED
DATE	TIME	CODE	TYPE	OF	SOLVED	SATUR-	ARD	ANCE	WATER	AS	(MG/L	(MG/L	(MG/L
				HG)	(MG/L)	ATION)	UNITS)	(US/CM)	(DEG C)	CACO3)	AS CA)	AS MG)	AS K)
				(00025)	(00300)	(00301)	(00400)	(00095)	(00010)	(00900)	(00915)	(00925)	(00935)
SEP													
17	1320	9	9	754	12.3	99	7.1	54	5.8	22	7.78	.580	1.24

SOUTHWEST ALASKA

603205153315900 TLIKAKILA RIVER 12 MILE ABOVE MOUTH NEAR PORT ALSWORTH--Continued

DATE	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	H-2 / H-1 STABLE ISOTOPE RATIO PER MIL (82082)
SEP 17	. 9	18	19	23	.5	<.2	4.3	5.1	35	32	30	4.9	-144
DATE	O-18 / O-16 STABLE ISOTOPE RATIO PER MIL (82085)												
SEP 17	-19.18												

15297970 TLIKAKILA RIVER AT MOUTH NEAR PORT ALSWORTH

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	TEMPER- ATURE WATER (DEG C) (00010)	H-2 / H-1 STABLE ISOTOPE RATIO PER MIL (82082)	O-18 / O-16 STABLE ISOTOPE RATIO PER MIL (82085)
SEP 17	1400	9	9	757	12.1	101	7.1	60	7.1	-142	-19.03

15300700 ALAGNAK RIVER BELOW NONVIANUK RIVER NEAR IGIUGIG

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (00004)	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK) (72103)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER- ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)	BARO- METRIC PRES- SURE (MM OF HG) (00025)
FEB 27	1520	0	0	251		1420	20	3044	43	7. 2	_		715
27	1530 1542	9 9	9 9	251	12.0	1420	20	3044	43	7.3 7.1	.5	.5	715 715
27	1542	9	9		68.0				42	7.1		1.0	715
27	1544	9	9		77.0				39	7.2		.5	715
27	1548	9	9		116.0				40	7.2		1.0	715
27	1550	9	9		154.0				40	7.2		1.0	
27	1552	9	9		231.0				40	7.3		.5	715
DATE	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)
FEB													
27			15	4.78	.829	2.0	12	.30	14	11	5.7	1.5	<.2
27	14.3	106											
27 27	14.2	106											
27	14.9	112											
27													
27	14.2	105											

SOUTHWEST ALASKA

15300700 ALAGNAK RIVER BELOW NONVIANUK RIVER NEAR IGIUGIG--Continued

DATE	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
FEB													
27	4.3	22	26	.001	.028	.003	.08	.11	E.003	<.006	<.007	M	<3.2
27 27													
27													
27													
27													
27													
DATE	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)									
FEB	0.4	. 0	-	2.0									
27 27	.84	<.2	1	3.8									
27													
27													
27													
27													
27													

15300730 ALAGNAK RIVER 27 MILES ABOVE MOUTH NEAR MCCORMICK NEAR LEVELOCK

DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT)	DIS- CHARGE, INST. CUBIC FEET PER SECOND	SAM- PLING METHOD, CODES	SAMPLER TYPE (CODE)	TEMPER- ATURE AIR (DEG C)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS TOTAL (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)
				(00004)	(00061)	(82398)	(84164)	(00020)	(00010)	(00025)	(00300)	(00900)	(00915)
FEB 28	1540	9	9	163	1420	20	3044	-4.5	.00	739	12.5	16	4.54
DATE	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)
FEB 28	1.05	2.2	16	. 34	18	15	5.3	1.9	<.2	6.0	31	30	<.001
DATE	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS-PHORUS ORTHO, DIS-SOLVED (MG/L AS P) (00671)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)
FEB 28	.011	<.002	.10	<.10	.014	E.004	<.007	20	8.4	.91	.3	9	35

YUKON ALASKA

15389000 PORCUPINE RIVER NEAR FORT YUKON

DATE	TIME	SAMPLE LOC- ATION, CROSS SECTION (FT FM R BK)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS)	TEMPER- ATURE WATER (DEG C)	BARO- METRIC PRES- SURE (MM OF HG)	OXYGEN, DIS- SOLVED (MG/L)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION)					
		(72103)	(00095)	(00400)	(00010)	(00025)	(00300)	(00301)					
JUN 30 30 30 30 JUL	1726 1728 1730 1737 1739	160.0 330.0 525.0 725.0 940.0	174 175 174 173 173	7.2 7.1 7.2 7.3 7.3	16.5 16.5 16.5 16.5	734 734 734 734 734	8.9 9.1 8.8 8.8 8.8	95 97 94 94 95					
16 16 16 16	1446 1448 1449 1450 1451	970.0 744.0 532.0 346.0 163.0	154 152 154 155 155	7.3 7.3 7.3 7.3 7.3	16.0 16.0 16.0 16.0	752 752 752 752 752	9.0 8.9 9.0 9.0 8.9	92 92 92 92 92					
07 07 07 07 27 27 27 27	1441 1443 1444 1445 1446 1538 1542 1544 1546	929.0 718.0 520.0 255.0 183.0 1025 850.0 664.0 483.0 276.0	244 244 244 244 244 223 224 225 225	8.0 7.9 7.9 8.0 8.0 7.7 7.6 7.6 7.6	13.2 13.1 13.1 13.1 11.5 11.5 11.5 11.5	 752 752 752 752 752	10.5 10.5 10.6 10.5 10.4 10.2 10.2 10.2	 95 95 95 95 96					
SEP 17 17 17 17	1544 1545 1547 1548 1549	268.0 465.0 655.0 840.0	183 182 183 182 181	7.7 7.7 7.7 7.7 7.7	7.0 7.0 7.0 7.0 7.0	756 756 756 756 756	11.6 11.6 11.6 11.6	96 96 96 96 96					
DATE	TIME	MEDIUM CODE	SAMPLE TYPE	STREAM WIDTH (FT) (0004)	GAGE HEIGHT (FEET) (00065)	DIS- CHARGE, INST. CUBIC FEET PER SECOND (00061)	SAM- PLING METHOD, CODES (82398)	SAMPLER TYPE (CODE) (84164)	QUALITY ASSUR- ANCE DATA INDICA- TOR CODE (99111)	SPE- CIFIC CON- DUCT- ANCE (US/CM)	PH WATER WHOLE FIELD (STAND- ARD UNITS) (00400)	TEMPER - ATURE AIR (DEG C) (00020)	TEMPER- ATURE WATER (DEG C) (00010)
MAR													
29 JUN	1630	9	9			1090	20	3044	30	376	7.6	-21.0	.00
30 JUL	1600	9	9	1210	14.05	20500	20	3055	100	173	7.7	24.0	16.5
16 AUG	1400	9	9	1250	14.45	24200	20	3055	30	154	7.3	19.5	16.0
07 27	1330 1500	9 9	7 9	1160 1190	13.44	16700 18800	20 20	3055 3055	100 30	244 224	7.9 7.6	14.0	13.1 11.2
SEP 17	1320	9	9	1200	13.58	18900	20	3055	30	182	7.7		7.2
DATE	TUR- BID- ITY (NTU) (00076)	TURBID- ITY LAB HACH 2100AN (NTU) (99872)	UV ABSORB- ANCE 254 NM, WTR FLT (UNITS /CM) (50624)	UV ABSORB- ANCE 280 NM, WTR FLT (UNITS /CM) (61726)	BARO- METRIC PRES- SURE (MM OF HG) (00025)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	ANC WATER UNFLTRD FET FIELD MG/L AS CACO3 (00410)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)
MAR	_				950		2.5	0.00	50.5	10 -			
29 JUN	. 5	3.9	.047	.034	758	5.2	36	200	58.9	12.1	4.5	141	.57
JUL		17	.377	.276	734	8.9	95	86	26.1	5.15	2.2	58	.54
16													
AUG		18			752	9.0	92	78	22.8	5.00	2.0	50	.48
	 	18 10 14	 .185 .237	 .135 .173	752 752	9.0 10.5 10.2	92 94	78 120 110	22.8 33.7 31.8	5.00 7.72 7.13	2.0 2.9 2.3	50 74 71	.48 .52 .42

YUKON ALASKA

15389000 PORCUPINE RIVER NEAR FORT YUKON--Continued

DATE	BICAR- BONATE WATER DIS IT FIELD MG/L AS HCO3 (00453)	CAR- BONATE WATER DIS IT FIELD MG/L AS CO3 (00452)	ALKA- LINITY WAT DIS TOT IT FIELD MG/L AS CACO3 (39086)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L) (70300)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, NITRITE DIS- SOLVED (MG/L AS N) (00613)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N) (00631)	NITRO- GEN, AMMONIA DIS- SOLVED (MG/L AS N) (00608)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)
MAR 29	171		141	35.1	4.2	<.2	4.1	233	205	<.001	.204	.008	E.07
JUN 30	68	.0	55	23.0	.8	E.1	3.2	131	95	.002	.017	.003	.36
JUL 16	59	.0	49	22.9	.6	<.2	3.6	125	87	.001	.014	.005	.42
AUG 07 27	89 84	.0	73 69	44.6 39.0	1.1	<.2 E.1	3.2 3.6	144 168	138 127	.001	.013	<.002	.22
SEP 17	70	.0	58	33.2	.8	<.2	4.6	142	109	.002	.029	.007	.34
DATE	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) (00623)	PHOS- PHORUS TOTAL (MG/L AS P) (00665)	PHOS- PHORUS DIS- SOLVED (MG/L AS P) (00666)	PHOS- PHORUS ORTHO, DIS- SOLVED (MG/L AS P) (00671)	NITRO- GEN, TOTAL, SEDIMNT SUSP, (WEIGHT PERCNT (62845)	PHOS- PHORUS SEDI- MENT SUSP. PERCENT (30292)	ALUM- INUM SED, SUS PERCENT (30221)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) (01106)	AN- TIMONY SED. SUSP. (UG/G) (29816)	ANTI- MONY, DIS- SOLVED (UG/L AS SB) (01095)	ARSENIC SED. SUSP. (UG/G) (29818)	ARSENIC DIS- SOLVED (UG/L AS AS) (01000)	BARIUM SED. SUSP. (UG/G) (29820)
MAR 29	E.08	E.003	<.006	<.007				2		.05		.2	
JUN 30 JUL	.28	.037	.007	<.007		.11	8.6	32	1.8	.13	17	. 4	1000
16 AUG	.32	.030	.007	<.007		.12	7.8	49	1.7	.11	17	.4	1200
07 27	.18	.016 .024	<.006 E.004	<.007 <.007		.12	7.6 7.9	24 25	1.8	.09	26 20	.3	1100 1000
SEP 17	.32	.032	E.005	<.007	.44	.12	8.4	103	2.0	.10	20	.3	1500
DATE	BARIUM, DIS- SOLVED (UG/L AS BA) (01005)	BERYL- LIUM SED. SUSP. (UG/G) (29822)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE) (01010)	BORON, DIS- SOLVED (UG/L AS B) (01020)	CADMIUM SED. SUSP. (UG/G) (29826)	CADMIUM DIS- SOLVED (UG/L AS CD) (01025)	CHRO- MIUM SED. SUSP. (UG/G) (29829)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR) (01030)	COBALT SEDI- MENT SUSP. (UG/G) (35031)	COBALT, DIS- SOLVED (UG/L AS CO) (01035)	COPPER SED. SUSP. (UG/G) (29832)	COPPER, DIS- SOLVED (UG/L AS CU) (01040)	IRON SEDI- MENT SUSP. PERCENT (30269)
MAR 29	90.9		<.06	10		<.04		<.8		.12		.7	
JUN 30 JUL	53.8	2	<.06	E6	.8	<.04	130	E.4	19	.09	34	2.4	4.3
16 AUG	57.5	2	<.06	7	.6	E.03	160	E.6	22	.09	37	2.8	4.5
07 27	66.5 57.5	2 2	<.06 <.06	9 E7	1.4	<.04 <.04	170 170	<.8 E.6	26 21	.08	39 33	1.9 1.6	4.9 4.8
SEP 17	51.5	3	<.06	E4	1.6	E.03	140	E.6	25	.15	41	2.9	5.2
DATE	IRON, DIS- SOLVED (UG/L AS FE) (01046)	LEAD SED. SUSP. (UG/G) (29836)	LEAD, DIS- SOLVED (UG/L AS PB) (01049)	LITHIUM SEDI- MENT SUSP. (UG/G) (35050)	LITHIUM DIS- SOLVED (UG/L AS LI) (01130)	MAN- GANESE SED. SUSP. (UG/G) (29839)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)	MERCURY SED. SUSP. (UG/G) (29841)	MOLYB- DENUM SED. SUSP. (UG/G) (29843)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO) (01060)	NICKEL SED. SUSP. (UG/G) (29845)	NICKEL, DIS- SOLVED (UG/L AS NI) (01065)	SELE- NIUM SED. SUSP. (UG/G) (29847)
MAR 29	10		<.08		6.2		10.9			.6		.69	
JUN 30			.22	65	3.1	940	2.7	.22	4	.4	81	2.04	1
	190	22		0.5									
JUL 16	190 220	26	.10	73	2.9	890	2.7	.19	7	.3	100	2.36	2
16 AUG 07	220 70	26 37	.10 E.06	73 59	2.9 4.1	890 1300	2.4	.16	8	.5	110	2.36	2
16 AUG	220	26	.10	73	2.9	890						2.36	2

YUKON ALASKA

15389000 PORCUPINE RIVER NEAR FORT YUKON--Continued

DATE	SELE- NIUM, DIS- SOLVED (UG/L AS SE) (01145)	SILVER SED. SUSP. (UG/G) (29850)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM SEDI- MENT SUSP. (UG/G) (35040)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	THAL- LIUM SUS SED (UG/G) (49955)	TITA- NIUM SEDI- MENT SUSP. PERCENT (30317)	VANA- DIUM SED. SUSP. (UG/G) (29853)	VANA- DIUM, DIS- SOLVED (UG/L AS V) (01085)	ZINC SED. SUSP. (UG/G) (29855)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	URANIUM SEDI- MENT SUSP. (UG/G) (35046)	URANIUM NATURAL DIS- SOLVED (UG/L AS U) (22703)
MAR													
29 JUN	. 4		<1.0		155				1.0		2		.74
30 JUL	<.3 <	:1	<1.0	150	76.7	<100	.470	200	.5	240	1	<100	.32
16 AUG	<.3	1	<1.0	140	73.8	<100	.470	220	.3	310	2	<100	.24
07 27 SEP		:1 :1	<1.0 <1.0	140 150	127 104	<100 <100	.470 .470	220 210	E.2	340 250	1 2	<100 <100	.43
17	E.2	<.500000	<1.0	160	82.2	<50	.460	260	.5	480	3	< 50	.29
DATE	CARBON, ORGANIC DIS- SOLVED (MG/L AS C) (00681)	CARBON, INOR- GANIC, PARTIC. TOTAL (MG/L AS C) (00688)	CARBON, ORGANIC PARTIC- ULATE TOTAL (MG/L AS C) (00689)	CARBON, INORG + ORGANIC PARTIC. TOTAL (MG/L AS C) (00694)	CARBON SED. SUSP. PERCENT (30244)	CARBON, ORGANIC SUS- PENDED, TOTAL PERCENT (50465)	NITRO- GEN, PAR TICULTE WAT FLT SUSP (MG/L AS N) (49570)	SEDI- MENT SUSP., FLOW- THROUGH CENTRIF (MG/L) (50279)	SEDI- MENT, SUS- PENDED (MG/L) (80154)	SEDI- MENT, DIS- CHARGE, SUS- PENDED (T/DAY) (80155)	SED. SUSP. SIEVE DIAM. % FINER THAN .062 MM (70331)		
MAR 29	1.9	<.1	<.1	<.1			<.022		<1				
JUN 30	11	<.1	. 9	. 9	4.1		.060	21	24	1330	94		
JUL 16	13	<.1	. 6	. 6	4.2		.022	21	25	1630	95		
AUG													
07 27	6.0 6.8	<.1 <.1	1.0	1.0			.133 .052	11 14	12 15	541 761	97 94		
SEP 17	12	<.1	1.2	1.2	5.0	4.7	.060	18	26	1330	97		

Figure 3. Locations of ground-water observation wells.

Location of Mendenhall Valley wells.

JUNEAU

582125134342401. Local number, CD04006631DBAD1022.

LOCATION.--Lat $58^{\circ}21'25$ ", long $134^{\circ}34'24$ ", in $NE^{1}_{/4}$ $NW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located on Juneau International Airport property in Jordan Creek streambed, about 50 ft downstream from culvert under Crest Street, and 300 ft south of intersection of Crest Street and Yandukin Drive, Juneau. Owner: Juneau International Airport.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25 in., depth 3.06 ft, screened 0.06 to 3.06 ft, well point driven into streambed.

INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land-surface datum is 12.32 ft above sea level (determined by levels survey). Measuring point: top of steel casing 3.94 ft above land-surface datum.

REMARKS.--Observation well installed by U.S. Geological Survey, designated as Duck Creek #19 (Airport Well). Well is in a stream channel and is intermittently flooded.

PERIOD OF RECORD.-June 1999 to current year.

EXTREMES FOR PERIOD OF RECORD.-Highest water level measured, 1.83 ft above land-surface datum, April 10, 2001; lowest measured, 1.63 ft above land-surface datum, June 29, 1999.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	WATER
DATE	LEVEL
APR 10	-1.83

Minus sign indicates that the water level was above land-surface datum.

582131134343101. Local number, CD04006631ACDC2002.

LOCATION.--Lat $58^{\circ}21'31''$, long $134^{\circ}34'31''$, in $SE^{1}_{/4}$ $SW^{1}_{/4}$ $NE^{1}_{/4}$ sec. 31, T. 40 S., R 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Jordan Creek stream channel, 30 ft upstream from culvert under Yandukin Drive, and 300 ft west of the intersection of Yandukin Drive and Creek Street, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25 in., depth 3.15 ft, screened 0.15 to 3.15 ft, well point driven into streambed.

INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey personnel.

DATUM.--Elevation of land-surface datum is 15.72 ft above sea level (determined by levels survey). Measuring point: top of steel casing 3.85 ft above land-surface datum.

REMARKS.--Observation well installed by U.S. Geological Survey, designated as Duck Creek #20 (Yandunkin Well). Well is in a stream channel and is intermittently flooded.

PERIOD OF RECORD.-June 1999 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.37 ft above land-surface datum, June 29, 1999; lowest measured, 0.35 ft below land-surface datum, March 14, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL
APR 10	-1 35

Minus sign indicates that the water level was above land-surface datum.

JUNEAU-CONTINUED

582136134344802. Local number, CD04006631ACBC1015.

LOCATION.--Lat $58^{\circ}21'36''$, long $134^{\circ}34'48''$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ NE $^{1}/_{4}$ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located about 20 ft southeast of a trail running between the intersection of Jordan Avenue and Teal Street, about 50 ft south of Teal Street, and about 20 ft northeast of a footbridge over Jordan Creek, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25 in., depth 8 ft, screened 6 to 8 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological, University of Alaska-Southeast, or U.S. Forest Service personnel.

DATUM.--Elevation of land-surface datum is 19.84 ft above sea level (determined by levels survey). Measuring point: top of steel casing, 0.6 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #2 (Jordan Avenue Well). Area near well is intermittently flooded.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 1.1 ft above land-surface datum, July 13, 1997; lowest measured, 3.28 ft below land-surface datum, March 12, 1998.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
OCT 27	1.05	APR 12	2.50
NOV 4	1.22	APR 24	2.79
APR 10	2.47	AUG 15	2.41

582146134351701. Local number, CD04006631BBDD1016.

LOCATION.--Lat $58^{\circ}21'46''$, long $134^{\circ}35'17''$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located near the left bank of Duck Creek, about 10 ft northwest of the intersection of Cessna Drive and Alex Holden Way, Juneau. Owner: City and Borough of Juneau.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2 in., depth 12 ft, screened 10 to 12 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast, or U.S. Forest Service personnel.

DATUM.--Elevation of land-surface datum is 25.35 ft above sea level (determined by levels survey). Measuring point: top of casing 0.88 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #3 (Cessna Drive Well).

PERIOD OF RECORD .-- June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 6.9 ft below land-surface datum, July 13, 1997; lowest measured, 10.06 ft below land-surface datum, March 21, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 27	8.14	APR 12	9.33
NOV 4	8.24	24	9.86
APR 10	9.27	AUG 15	8.94

JUNEAU-CONTINUED

582147134351401. Local number, CD04006631BBDB1017.

LOCATION.--Lat $58^{\circ}21'47''$, long $134^{\circ}35'14''$, in $SE^{1}/_{4}$ $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located near the right bank of Duck Creek, about 70 ft downstream of the Berners Avenue crossing, Juneau. Owner: City and Borough of Juneau.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2 in., depth 8.8 ft, screened 6.8 to 8.8 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast or U.S. Forest Service personnel.

DATUM.--Elevation of land-surface datum is 19.52 ft above sea level (determined by levels survey). Measuring point: Top of PVC pipe casing 1.9 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #4 (Berners Avenue Well). Water from well was sampled for water quality on September 5, 1997, January 29, 1998, and September 3, 1998. PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.20 ft below land-surface datum, September 3, 1998; lowest measured, 4.12 ft below land-surface datum, March 21, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
OCT 27	1.60	APR 12	3.41
NOV 4	1.80	APR 24	3.92
APR 10	3.25	AUG 14	2.75

582150134344501. Local number, CD04006631BAAD1021.

LOCATION.--Lat $58^{\circ}21'50''$, long $134^{\circ}34'45''$, in $NE^{1}_{/4}$ $NW^{1}_{/4}$ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Jordan Creek channel, near right bank, 10 ft upstream from footbridge, about 200 ft downstream from Trout Street bridge, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25 in., depth 6 ft, screened 3 to 6 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey or University of Alaska-Southeast personnel.

DATUM.--Elevation of land-surface datum is 23.65 ft above sea level (determined by levels survey). Measuring point: Top of steel pipe casing 1.00 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #21 (Trout Street Well).

PERIOD OF RECORD.--March 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.-- Highest water level measured, 4.61 ft below land-surface datum, April 12, 2001; lowest measured, dry, March 14, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	WATER
DATE	LEVEL
APR 12	4 61

JUNEAU-CONTINUED

582154134350501. Local number, CD04006630CDCB1027.

LOCATION.--Lat $58^{\circ}21'54''$, long $134^{\circ}35'05''$, in $SW^{1}/_{4}$ $SE^{1}/_{4}$ $SW^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is about 15 ft east of a tributary to Duck Creek and about 1,200 ft northwest of Jordan Creek, 90 ft southwest of the First Church of God on Ka-See-An Drive, Juneau. Owner: First Church of God.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25 in., depth 17.5 ft, screened 15.5 to 17.5 ft using a sandpoint.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast, or U.S. Forest Service personnel.

DATUM.--Elevation of land-surface datum is 26.30 ft above sea level (determined by levels survey). Measuring point: top of casing 2.05 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #5 (Ka-See-An Drive Church Well). PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.41 ft below land-surface datum, October 23, 1999; lowest measured, 9.62 ft below land-surface datum, March 12, 1998.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
OCT 27	6.06	APR 12	8.67
NOV 4	6.31	APR 24	9.45
APR 10	8.60	AUG 15	8.05

582156134351701. Local number, CD04006631BBBA1018.

LOCATION.--Lat $58^{\circ}21'56''$, long $134^{\circ}35'17''$, in $NW^{1}/_{4}$ $NW^{1}/_{4}$ sec. 31, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Duck Creek channel about 90 ft downstream from driveway crossing to Federal Aviation Administration building, about 50 ft southwest of Old Glacier Highway, Juneau. Owner: Federal Aviation Administration. AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25 in., depth 11 ft, screened 9 to 11 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast or U.S. Forest Service personnel.

DATUM.--Elevation of land-surface datum is 18.48 ft above sea level (determined by levels survey). Measuring point: top of casing 1.86 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #6 (FAA Downstream Well). Well is in stream channel and is intermittently flooded.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, unknown, stream stage was higher than top of well casing during numerous periods since May 1997; lowest measured, 3.62 ft below land-surface datum, March 13, 1998.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
OCT 27	X	APR 12	2.55
NOV 4	X	APR 24	3.37
APR 10	2.54		

X surface-water affected, stream stage was higher than top of well casing

JUNEAU-CONTINUED

582158134344101. Local number, CD04006630DCCC1034.

LOCATION.--Lat $58^{\circ}21'58''$, long $134^{\circ}34'41''$, in $SW^{1}/_{4}SW^{1}/_{4}SE^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Jordan Creek channel about 3 ft downstream from downstream footbridge crossing about 50 ft downstream of Egan Expressway, Juneau. Owner: City and Borough of Juneau.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25 in., depth 5.4 ft, screened 2.4 to 5.4 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey or University of Alaska-Southeast personnel.

DATUM.-Elevation of land-surface datum is 23.78 ft above sea level (determined by levels survey). Measuring point: top of casing 1.60 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #22. Well is in stream channel and is intermittently flooded.

PERIOD OF RECORD.--August 1999 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, unknown, stream stage was higher than top of well casing during numerous periods since August 1999; lowest measured, dry, March 14, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR AUGUST 1999 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL
*DEC 30, 1999	1.13	APR 10, 2001	3.50
* MAR 14, 2000	D	APR 12, 2001	3.58

^{*} Not previously published.

D Dry

582158134352001. Local number, CD04006630CCCD2017.

LOCATION.--Lat $58^{\circ}21'58''$, long $134^{\circ}35'20''$, in $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Duck Creek channel, 20 ft upstream from driveway crossing to Federal Aviation Administration building, about 50 ft southwest of Old Glacier Highway, Juneau. Owner: Federal Aviation Administration. AOUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25 in., depth 12 ft, screened 10 to 12 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast, or U.S. Forest Service personnel.

DATUM.--Elevation of land-surface datum is 19.62 ft above sea level (determined by levels survey). Measuring point: top of steel casing 1.2 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #7 (FAA Upstream Well). Well is in stream channel and is intermittently flooded.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, unknown, stream stage was higher than top of well casing during many periods since 1997; lowest measured, 3.63 ft below land-surface datum, July 2, 1998.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 27	X	APR 12	1.81
NOV 4	X	APR 24	2.94
APR 10	1.62		

X surface-water affected, stream stage was higher than top of well casing

JUNEAU-CONTINUED

582203134351601. Local number, CD04006630CCDB1028.

LOCATION.--Lat $58^{\circ}22'03''$, long $134^{\circ}35'16''$, in $SE^{1}_{/4}SW^{1}_{/4}SW^{1}_{/4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 quad), Hydrologic Unit 19010301. Well is located on left bank of Duck Creek about 55 ft downstream from Del Rae Road crossing, 25 ft from Mendenhall Loop Road, and 0.25 mi. south of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5 in., depth 14 ft, screened 12 to 14 ft.

INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast or U.S. Forest Service personnel.

DATUM.--Elevation of land-surface datum is 23.10 ft above sea level (determined by levels survey). Measuring point: top of steel casing 1.56 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #10 (Del Rae Road Well).

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, unknown, stream stage was above top of well casing on December 26, 1999; lowest measured, 7.59 ft below land-surface datum, March 12, 1998.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 27 NOV 4	1.93 2.15	APR 10	5.90

582203134351701. Local number, CD04006630CCBD3015.

LOCATION.--Lat $58^{\circ}22'03''$, long $134^{\circ}35'17''$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ scc. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located on left bank of Duck Creek, 30 ft downstream from Del Rae Road crossing, and 0.25 mi. south of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER.--Sand and gravel of the Quaternary System.
WELL CHARACTERISTICS.--Diameter 1.5 in., depth 11 ft, slotted 9 to 11 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast or U.S. Forest Service personnel.

DATUM.--Elevation of land-surface datum is 22.14 ft above sea level (determined by levels survey). Measuring point: Top of PVC casing 1.3 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #9 (Del Rae Road Well, mid-channel downstream). Well is near stream channel and is intermittently flooded.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, unknown, stream stage was higher than top of well during many periods since May 1997; lowest measured, 8.39 ft below land-surface datum, May 6, 1997.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
OCT 27	0.64	APR 24	7.57
APR 10	5.14	AUG 17	4.61
APR 12	5.34		

JUNEAU-CONTINUED

582203134351901. Local number, CD04006630CCBD2015.

LOCATION.--Lat $58^{\circ}22'03''$, long $134^{\circ}35'19''$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located on right bank of Duck Creek, 75 ft downstream from Del Rae Road crossing and 0.25 mi. south of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2 in., depth 15 ft, screened 12 to 15 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast, or U.S. Forest Service personnel.

DATUM.--Elevation of land-surface datum is 33 ft above sea level (determined from topographic map). Measuring point: top of casing 1.66 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #8 (Del Rae Well). Well is near stream channel and is intermittently flooded.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, unknown, stream stage was higher than top of well casing during numerous periods since 1997; lowest measured, 9.09 ft below land-surface datum, March 21, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	WATER
DATE	LEVEL
APR 10	7.42
APR 12	7.51

582206134351401. Local number, CD04006630CCAC1029.

LOCATION.--Lat $58^{\circ}22'06''$, long $134^{\circ}35'14''$, in $NE^{1}_{/4}$ $SW^{1}_{/4}$ $SW^{1}_{/4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located in Duck Creek stream channel, 12 ft upstream from Del Rae Road crossing, 900 ft southwest of intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau. AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5 in., depth 12 ft, slotted 10 to 12 ft. Unknown debris placed inside well casing at about 3.6 ft below land surface sometime prior to March 12, 1998. Water levels cannot be determined below the obstruction, but water levels above the obstruction appear to representative of aquifer conditions.

INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast or U.S. Forest Service personnel.

DATUM.--Elevation of land-surface datum is 21.25 ft above sea level (determined by levels survey). Measuring point: Top of PVC casing 1.8 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #11 (Del Rae Road Well, 10 ft upstream from culvert). Well is in stream channel and is intermittently flooded.

PERIOD OF RECORD .-- May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 3.4 ft above land-surface datum (surface-water affected, stream stage was higher than top of well casing), July 13, 1997; lowest measured, 5.45 ft below land-surface datum, March 12, 1998.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 27	-0.43	APR 24	D
APR 10	D		
APR 12	O		

Minus sign indicates that the water level was above land-surface datum.

D Dry.

O Obstruction.

JUNEAU-CONTINUED

582208134351201. Local number, CD04006630CCAB1030.

LOCATION.--Lat $58^{\circ}22'08''$, long $134^{\circ}35'12''$, in NE 1 /₄ SW 1 /₄ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located mid-channel of Duck Creek, about 130 ft upstream from Del Rae Road crossing, and 700 ft southwest of the intersection of Mendenhall Loop Road and Egan Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5 in., depth 11 ft, slotted 7 to 10 ft.

INSTRUMENTATION.-- Measurement with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast, or U.S. Forest Service personnel.

DATUM.--Elevation of land-surface datum is 21.22 ft above sea level (determined by levels survey). Measuring point: top of PVC casing 2.14 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #12 (Del Rae Road Well, farthest upstream). Well is in stream channel and is intermittently flooded.

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level, unknown, stream stage was above top of well casing during many periods since 1997; lowest measured, 5.46 ft below land-surface datum, March 21, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 27	-0.61	APR 12	3.66
APR 10	3.26	APR 24	5.17

Minus sign indicates that the water level was above land-surface datum.

582208134352601. Local number, CD04006630CCBB1031.

LOCATION.--Lat $58^{\circ}22'08''$, long $134^{\circ}35'26''$, in $NW^{1}/_{4}$ $SW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is located near a church parking lot, 55 ft northeast of Del Rae Road, and 105 ft southeast of the Lutheran Church, Juneau. Owner: Lutheran Church.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25 in., depth 15 ft, screened 13 to 15 ft, casing has filled in with sediment to about 12.2 ft.

INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast, or U.S. Forest Service personnel.

DATUM.--Elevation of land-surface datum is 26.74 ft above sea level (determined by levels survey). Measuring point: top of steel coupling at top of casing 2.8 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #13 (Lutheran Church Well). PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level measured, 6.58 ft below land-surface datum, October 23, 1999; lowest measured, dry, March 21 and April 8, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
OCT 27	8.02	APR 24	12.19
NOV 4	8.67	AUG 17	10.04

JUNEAU-CONTINUED

582215134350501. Local number, CD04006630CBAD1032.

LOCATION.--Lat $58^{\circ}22'15''$, long $134^{\circ}35'05''$, in NE 1 /₄ NW 1 /₄ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 SW quad), Hydrologic Unit 19010301. Well is near right bank of Duck Creek, 20 ft upstream from a footbridge and 225 ft upstream from the intersection of Egan Drive and Mendenhall Loop Road, Juneau. Owner: City and Borough of Juneau.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25 in., depth 12 ft, screened 10 to 12 ft.

INSTRUMENTATION.--Intermittent measurements by U.S. Forest Service, U.S. Geological Survey or University of Alaska-Southeast personnel.

DATUM.-Elevation of land-surface datum is 25.04 ft above sea level (determined by levels survey). Measuring point: top of casing 0.70 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #14 (Superbear Well).

PERIOD OF RECORD.--May 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured 1.17 ft below land-surface datum, October 9, 1999; lowest measured, 3.80 ft below land-surface datum, March 21, 2000.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

DATE	WATER LEVEL	DATE	WATER LEVEL
OCT 27	1.39	APR 12	2.52
NOV 4	1.47	APR 24	2.82
APR 10	2.49	AUG 17	1.90

JUNEAU-CONTINUED

582240134344501. Local number, CD04006630BADA2033.

LOCATION.--Lat $58^{\circ}22'40''$, long $134^{\circ}34'45''$, in $SE^{1}_{/4}$ $NW^{1}_{/4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 NW quad) Hydrologic Unit 19010301, about 270 ft up a trail from the northern end of the road through Kodzoff #1 trailer Park, Juneau. Owner: Goldbelt Corporation

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2.0 in., depth 18.51 ft.

INSTRUMENTATION.-- Electronic data logger and submersible pressure transducer February 2001 to current year.

DATUM.--Elevation of land-surface datum is 40.57 ft above sea level (determined by levels survey). Measuring point: Top of casing 1.70 ft above land-surface datum.

REMARKS.--Record good. Well also known as Kodzoff Trailer Park Well.

PERIOD OF RECORD.--February 2001 to current year.

EXTREMES FOR CURRENT YEAR.--Highest water level recorded during period February 2001 to September 2001, 8.72 ft below land-surface datum, September 16 and 17, lowest recorded, 10.94 ft below land-surface datum, April 26.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					9.28	9.52	10.17	10.49	9.62	10.12	9.18	9.29
2					9.31	9.59	10.23	10.41	9.64	10.16	9.24	9.19
3					9.39	9.71	10.29	10.08	9.55	10.20	9.32	9.19
4					9.42	9.81	10.18	9.87	9.52	10.12	9.32	9.19
5					9.48	9.89	10.16	9.82	9.52	9.87	9.35	9.08
6					9.56	9.83	10.16	9.80	9.53	9.65	9.39	8.99
7					9.60	9.78	10.17	9.78	9.58	9.48	9.48	8.94
8					9.64	9.77	10.16	9.68	9.62	9.32	9.55	8.92
9					9.70	9.62	10.12	9.49	9.65	9.26	9.61	8.93
10					9.75	9.33	10.12	9.46	9.69	9.25	9.67	9.05
11					9.83	9.12	10.15	9.47	9.69	9.26	9.74	9.17
12					9.89	9.08	10.17	9.51	9.75	9.31	9.83	9.28
13					9.58	9.10	10.22	9.55	9.78	9.28	9.92	8.96
14					9.58	9.20	10.28	9.58	9.79	9.27	10.01	8.84
15					9.65	9.28	10.35	9.64	9.82	9.27	10.05	8.82
16					9.81	9.34	10.44	9.71	9.82	9.30	10.09	8.72
17					9.93	9.35	10.50	9.77	9.85	9.39	10.13	8.72
18					10.03	9.42	10.60	9.81	9.88	9.54	10.04	8.73
19					10.15	9.49	10.64	9.84	9.91	9.63	9.77	8.82
20					10.22	9.59	10.73	9.91	9.93	9.70	9.71	8.73
21					10.29	9.70	10.80	9.84	9.93	9.74	9.70	8.76
22					10.37	9.77	10.85	9.74	9.81	8.92	9.73	8.90
23					10.44	9.85	10.89	9.59	9.75	8.86	9.78	8.94
24					10.52	9.90	10.90	9.57	9.73	8.88	9.89	8.95
25					10.62	9.95	10.87	9.56	9.79	8.85	10.00	9.02
26					10.27	10.01	10.90	9.59	9.90	8.85	10.05	9.11
27					9.46	10.03	10.75	9.62	9.99	8.88	9.55	9.21
28					9.44	10.07	10.54	9.66	10.04	8.97	9.47	9.31
29						10.07	10.48	9.69	10.06	9.07	9.36	9.38
30						10.11	10.47	9.66	10.09	9.12	9.31	9.26
31						10.13		9.63		9.15	9.29	

JUNEAU-CONTINUED

582240134352901. Local number, CD04006630BBCB1036.

LOCATION.--Lat $58^{\circ}22'40''$, long $134^{\circ}35'29''$, in $SW^{1}_{/4}$ $NW^{1}_{/4}$ sec. 30, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301, City and Borough of Juneau, at northeast edge of baseball field for Riverbend School on Riverside Drive, Juneau. Owner: City and Borough of Juneau.

AQUIFRER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.-- Diameter 2.0 in., depth 15.9 ft, slotted 5 to 15 ft.

INSTRUMENTATION.-- Intermittent measurements with chalked steel tape by U.S. Geological Survey April 2001 to May 2001. Electronic data logger and submersible pressure transducer May 2001 to current year.

DATUM.-- Elevation of land-surface datum is 31.95 ft above sea level (determined by survey grade GPS). Measuring point: Top of casing 0.20 ft below land-surface datum.

REMARKS.-- Records good except for the period August 31 to September 30, which is poor. Well is also known as Riverbend School well.

PERIOD OF RECORD .-- April 2001 to current year.

EXTREMES FOR THE CURRENT YEAR.--Highest water level recorded during period April 2001 to September 2001, 4.44 ft below land-surface datum, September 21; lowest recorded, 7.83 ft below land-surface datum, May 24.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1									7.17	7.16	5.36	5.43
2									7.21	7.24	5.38	5.40
3									7.33	7.05	5.37	5.40
4									7.12	7.04	5.37	5.88
5									7.13	7.02	5.50	5.61
6									7.23	6.92	5.55	5.60
7									7.28	6.91	5.91	5.37
8									6.99	7.18	6.01	5.41
9									7.00	7.17	5.89	5.13
10									7.12	7.08	5.88	4.97
11									7.29	7.02	5.98	4.90
12									7.33	6.86	6.06	4.90
13									7.29	6.85	6.17	5.05
14									7.30	6.70	6.32	4.77
15									7.40	6.43	6.29	4.88
16									7.49	6.32	6.29	4.79
17							#6.97		7.50	6.35	6.37	4.55
18									7.37	6.51	6.49	4.47
19									7.22	6.48	6.50	4.49
20									7.17	6.45	5.90	4.53
21									7.30	6.44	5.91	4.44
22								7.55	7.31	6.47	6.21	4.51
23								7.63	7.15	6.62	6.36	4.59
24								7.80	7.16	6.61	6.42	4.45
25								7.56	7.19	6.53	6.36	4.62
26								7.12	7.11	6.12	6.38	4.62
27								7.12	6.94	5.91	6.39	4.70
28								7.07	6.98	5.81	6.60	4.77
29								7.06	7.39	5.77	6.43	4.77
29 30								7.47	7.39	5.77	6.05	5.03
31								7.47				
5 L								1.34		5.46	5.53	

[#] Result of tapedown

JUNEAU-CONTINUED

582256134340401. Local number, CD04006619DDBD1054.

LOCATION.--Lat $58^{\circ}22'56''$, long $134^{\circ}34'04''$, in $NW^{1}_{/4}$ SE $^{1}_{/4}$ sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301. Well is located at Glacier Valley School, at southwest corner of baseball field, 33 ft north of Evergreen Parkway, 120 ft southeast of a covered basketball court, and 460 ft east of Tongass Boulevard, Juneau. Owner: Glacier Valley School. AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2 in., depth 11.2 ft, screened 6.9 ft to 11.2 ft, casing has filled in with sediment to about 9.4 ft.

INSTRUMENTATION.--Intermittent measurements with chalked steel tape by U.S. Geological Survey or University of Alaska-Southeast personnel.

DATUM.-Elevation of land-surface datum is 39.33 ft above sea level (determined by levels survey). Measuring point: top of casing 1.8 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #16 (Glacier Valley School Well). PERIOD OF RECORD.--July 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.00 ft below land-surface datum, December 26, 1999; lowest measured, dry, March 21, 2000 and August 14, 2001.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
OCT 27	3.58	APR 17	4.70
NOV 4	3.44	APR 24	3.94
APR 10	4.25	MAY 22	3.78
APR 12	4.27	AUG 14	D

D Dry

JUNEAU-CONTINUED

582306134344001. Local number, CD04006619DBCB1056.

LOCATION.--Lat $58^{\circ}23'06''$, long $134^{\circ}34'40''$, in $SW^{1}_{/4}$ $NW^{1}_{/4}$ $SE^{1}_{/4}$ sec. 19, T.40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301, Well is the northernmost of two wells (southernmost has casing welded shut), located about 300 ft west of Duck Creek, about 300 ft north of Stephen Richards Drive, Juneau. Owner: Glacier View Trailer Park.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2.0 in., depth 52.7 ft.

INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey April 2000 to April 2001. Electronic data logger and submersible pressure transducer April 2001 to current year.

DATUM.--Elevation of land-surface datum is 45.4 ft above sea level (determined by survey-grade GPS). Measuring point: Top of casing 1.4 ft above land-surface datum.

REMARKS.--Record good. Well also known as Glacier View Well.

PERIOD OF RECORD.--April 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 5.78 ft below land-surface datum, July 22, 2001; lowest 9.07 ft below land-surface datum, April 26, 2001.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY HIGHEST WATER LEVEL

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1					#7.49			8.83	7.95	8.23	7.30	7.45
2								8.68	7.97	8.26	7.43	7.35
3								8.31	7.85	8.30	7.52	7.35
4								8.05	7.82	8.28	7.55	7.43
5								8.03	7.81	8.08	7.58	7.17
6								8.04	7.86	7.88	7.63	7.03
7								8.03	7.95	7.73	7.77	6.97
8								7.97	7.97	7.56	7.85	6.95
9								7.66	7.99	7.54	7.89	6.95
10								7.65	8.03	7.52	7.94	7.21
11								7.72	8.05	7.56	8.01	7.41
12								7.80	8.11	7.67	8.09	7.54
13								7.88	8.12	7.64	8.13	7.01
14								7.90	8.13	7.61	8.11	6.73
15								7.99	8.17	7.61	8.09	6.71
16								8.09	8.16	7.65	8.10	6.67
17							#8.86	8.14	8.19	7.73	8.18	6.68
18								8.21	8.19	7.86	8.18	6.76
19								8.22	8.18	7.92	7.97	6.94
20								8.30	8.18	7.90	7.88	6.86
21								8.22	8.16	7.87	7.89	6.89
22								8.13	8.07	5.78	7.93	7.06
23								7.93	7.98	6.79	8.01	7.08
24								7.87	7.97	6.82	8.12	7.07
25								7.86	8.07	6.78	8.19	7.20
26							#9.07	7.90	8.16	6.78	8.14	7.34
27								7.96	8.19	6.86	7.67	7.51
28							8.76	8.01	8.16	7.05	7.56	7.65
29							8.73	8.08	8.16	7.21	7.43	7.72
30							8.76	8.01	8.19	7.26	7.42	7.60
31								7.97		7.26	7.43	

Result of tapedown

JUNEAU-CONTINUED

582314134344801. Local number, CD04006619BDDD1055.

 $LOCATION.\text{--Lat }58^{\circ}23'14'', long \ 134^{\circ}34'48'', in \ SE^{1}_{/4} \ SE^{1}_{/4} \ NW^{1}_{/4} \ sec. \ 19, T. \ 40 \ S., R. \ 66 \ E. \ (Juneau \ B-2 \ NW \ quad), Hydrologic Unit 19010301, Near the northwest corner of garage at 9002 Gee Street, Juneau. Owner: Tim and Debbie Banaszak.$

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2.0 in., depth 44.2 ft.

INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey February 2001 to June 2001. Electronic data logger and submersible pressure transducer June 2001 to September 2001.

DATUM.--Elevation of land-surface datum is 46.4 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.80 ft above land-surface datum.

REMARKS.--Record good. Well also known as Banaszak well.

PERIOD OF RECORD.--February 2001 to current year.

EXTREMES FOR CURRENT YEAR.--Highest water level recorded during period February 2001 to September 2001, 6.10 ft below land-surface datum, September 15 and 16, lowest recorded, 7.86 ft below land-surface datum, February 7, result of tapedown.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1										7.68	6.70	6.91
2										7.73	6.85	6.86
3										7.76	6.95	6.86
4										7.76	6.97	6.98
5										7.56	7.00	6.74
6										7.35	7.04	6.55
7					#7.86					7.22	7.21	6.48
8									#7.52	7.04	7.31	6.45
9									7.54	7.03	7.34	6.45
10									7.57	7.03	7.40	6.73
11									7.59	7.07	7.46	6.95
12									7.66	7.20	7.54	7.08
13									7.65	7.18	7.56	6.56
14									7.65	7.14	7.51	6.15
15									7.68	7.14	7.50	6.10
16									7.67	7.17	7.50	6.10
17									7.67	7.23	7.60	6.12
18									7.66	7.35	7.62	6.22
19									7.64	7.39	7.41	6.39
20									7.64	7.32	7.31	6.41
21									7.60	7.28	7.33	6.43
22									7.51	6.64	7.36	6.62
23									7.41	6.23	7.45	6.62
24									7.39	6.24	7.57	6.61
25									7.51	6.22	7.66	6.73
26									7.63	6.21	7.60	6.89
27									7.64	6.28	7.13	7.07
28									7.61	6.49	6.98	7.25
29									7.61	6.67	6.83	7.32
30									7.64	6.70	6.82	7.23
31										6.69	6.86	

[#] Result of tapedown.

JUNEAU-CONTINUED

582314134351201. Local number, CD04006619BCDD2020.

 $LOCATION.\text{--Lat }58^{\circ}23'14'', long\ 134^{\circ}35121'', in\ SE^{1}/_{4}\ SW^{1}/_{4}\ NW^{1}/_{4}\ sec.\ 19, T.\ 40\ S., R.\ 66\ E.\ (Juneau\ B-2\ NW\ quad), Hydrologic\ Unit\ 19010301, Near the northwest corner of garage at 9220\ Gee\ Street, Juneau.\ Owner:\ Don\ Thomas$

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.5 in., depth 49.1 ft.

INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey April 2000 to January 2001. Electronic data logger and submersible pressure transducer January 2001 to current year.

DATUM.--Elevation of land-surface datum is 43.09 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.92 ft above land-surface datum.

REMARKS.--Record good. Well also known as Don's well.

PERIOD OF RECORD.--April 2000 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured 5.93 ft below land-surface datum, July 24, 2000; lowest, 10.20 ft below land-surface datum, February 26, 2001

EXTREMES FOR CURRENT YEAR.--Highest water level recorded during period January to September 2001, 5.95 ft below land-surface datum, September 15, lowest recorded, 10.20 ft below land-surface datum, February 26.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
					0.04	0 04	0.00	0 84	0.40	п 00	6 01	п оо
1					8.94	9.24	9.89	9.74	8.40	7.92	6.81	7.00
2			#9.11		8.94	9.28	9.97	9.58	8.41	7.95	7.08	7.02
3					9.09	9.45	9.89	9.37	8.28	8.00	7.15	7.02
4	#8.59		#9.12	#9.36	9.19	9.58	9.87	9.17	8.15	7.99	7.16	7.33
5					9.25	9.62	9.85	9.17	8.12	7.68	7.17	6.96
6		#8.81			9.31	9.61	9.87	9.11	8.18	7.42	7.22	6.68
7					9.29	9.59	9.88	9.09	8.26	7.28	7.47	6.67
8		#8.86			9.33	9.56	9.89	9.13	8.22	7.15	7.60	6.63
9			#8.56	#9.14	9.43	9.39	9.89	8.89	8.22	7.19	7.62	6.66
10				#8.40	9.53	9.13	9.89	8.85	8.23	7.26	7.68	7.21
				110.10	J.33	,.15	J.03	0.05	0.23	7.20	,,,,,	,
11		#8.91	#8.86	9.38	9.63	8.95	9.86	8.87	8.23	7.36	7.76	7.49
12		#8.74	#8.95	9.35	9.69	8.90	9.87	8.88	8.29	7.58	7.85	7.66
13		#8.76		9.38	9.60	8.93	9.93	8.92	8.24	7.58	7.74	6.72
14		#8.84		9.46	9.65	9.07	9.99	8.89	8.24	7.53	7.61	6.01
15			#9.28	9.27	9.71	9.08	9.97	8.94	8.21	7.53	7.58	5.95
16		#8.98	#9.38	9.18	9.72	9.10	9.93	9.00	8.18	7.57	7.58	6.14
17		#8.84		9.16	9.75	9.11	9.93	9.01	8.16	7.61	7.73	6.19
18		#8.81		9.10	9.80	9.19	10.01	8.99	8.11	7.74	7.75	6.39
19		#8.81		9.17	9.91	9.25	10.02	9.04	8.07	7.64	7.51	6.72
20		#8.82		9.21	9.95	9.43	10.01	9.09	8.00	7.45	7.37	6.94
21		#8.75		9.30	10.00	9.54	9.97	8.97	7.90	7.34	7.39	6.99
22	#8.26			9.34	10.02	9.56	9.92	8.91	7.77	6.68	7.39	7.28
23				9.27	10.05	9.60	9.89	8.76	7.59	6.26	7.53	7.20
24				9.22	10.06	9.59	9.89	8.69	7.58	6.29	7.73	7.19
25		#8.35		9.24	10.14	9.59	9.92	8.68	7.82	6.33	7.84	7.40
26				9.31	9.96	9.71	9.84	8.68	7.98	6.33	7.70	7.62
27		#8.64		9.13	9.34	9.72	9.80	8.70	7.90	6.47	7.07	7.89
28		#8.70		9.06	9.25	9.80	9.61	8.70	7.78	6.81	6.86	8.12
29				9.06		9.86	9.58	8.70	7.78	6.99	6.70	8.18
30				9.10		9.76	9.63	8.57	7.86	6.87	6.70	8.10
31				9.13		9.79		8.49		6.82	6.85	

[#] Result of Tapedown

JUNEAU-CONTINUED

582322134341001. Local number, CD04006619ACAB1050.

LOCATION.--Lat $58^{\circ}23'20''$, long $134^{\circ}34'17''$, in $NE^{1}/_{4}$ $SW^{1}/_{4}$ $NE^{1}/_{4}$ sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301. Well is located at 3737 North El Camino Street, 30 ft west of the southwest corner of the house and 70 ft from North El Camino Street, Juneau. Owner: Nicholas Hindman.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 2 in., depth drilled 15 ft, cased to 4.7 ft, screened 2.5 to 4.7 ft.

INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey, University of Alaska-Southeast or U.S. Forest Service personnel.

DATUM.--Elevation of land-surface datum is 43.87 ft above sea level (determined from levels survey). Measuring point: top of PVC casing 1.2 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #17 (Hindman Well). Well sampled for water quality, September 3, 1997, January 26, 1998, and September 3, 1998.

PERIOD OF RECORD.--July 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.40 ft below land-surface datum, October 23, 1999; lowest measured, 2.53 ft below land-surface datum, March 12, 1998.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
OCT 27	1.51	APR 12	1.88
NOV 4	1.45	APR 24	2.15
APR 10	1.89	AUG 14	2.16

582326134341901. Local number, CD04006619ADBA1011.

LOCATION.--Lat $58^{\circ}23'36''$, long $134^{\circ}34'19''$, in $NW^{1}/_{4}$ $SE^{1}/_{4}$ $NE^{1}/_{4}$ sec. 19, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301. Well is located 6 ft southeast of a bike path, 25 ft southeast of Mendenhall Loop Road, and about 450 ft southwest of intersection of Mendenhall Loop Road and Valley Boulevard, Juneau. Owner: Bruce B. Bigelow.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 1.25 in., depth 15 ft, screened 11 to 15 ft.

INSTRUMENTATION.--Intermittent measurement with chalked steel tape by U.S. Geological Survey or University of Alaska-Southeast personnel.

DATUM.--Elevation of land-surface datum is 45.76 ft above sea level (determined by levels survey). Measuring point: top of steel casing 1.3 ft above land-surface datum.

REMARKS.--Observation well drilled by U.S. Geological Survey, designated as Duck Creek #18 (Bigelow Well).

PERIOD OF RECORD.--June 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 0.01 ft above land-surface datum, July 25 and August 12, 1997; lowest measured, 2.55 ft below land-surface datum, April 23, 1999.

DEPTH BELOW LAND SURFACE (WATER LEVEL) (FEET), WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001

	WATER		WATER
DATE	LEVEL	DATE	LEVEL
0.077.07	0.70	4 DD 10	0.06
OCT 27	0.70	APR 12	0.96
NOV 4	0.65	APR 24	1.40
APR 10	0.78	AUG 14	1.53

JUNEAU-CONTINUED

582359134352103. Local number, CD04006618CBCA3019 85177.

LOCATION.--Lat $58^{\circ}23'59''$, long $134^{\circ}35'21''$, $SW^{1}/_{4}$ $NW^{1}/_{4}$ $SW^{1}/_{4}$ sec. 18, T. 40 S., R. 66 E. (Juneau B-2 NW quad), Hydrologic Unit 19010301, Mendenhall Loop Road, Juneau. Owner: Harlan Olsen.

AQUIFER .-- Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 6 in., depth 40 ft, screened 30 to 40 ft.

INSTRUMENTATION.--Continuous strip-chart recorder November 1983 to August 1984. Digital recorder August 1984 to April 1997. Electronic data logger and submersible pressure transducer August 1997 to September 1998. Electronic data logger and encoder used September 1998 to current year.

DATUM.--Elevation of land-surface datum is 50.53 ft above sea level (determined by levels survey). Measuring point: Top of casing 0.77 ft above land-surface datum.

REMARKS.--Record good. Well also known as Mendenhall well.

PERIOD OF RECORD.--November 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.—Highest water level recorded 4.89 ft below land-surface datum, September 25, 1990; lowest, 13.54 ft below land-surface datum, February 2, 1997.

EXTREMES FOR CURRENT YEAR.--Highest water level recorded, 6.58 ft below land-surface datum, October 14-15, lowest recorded, 11.49 ft below land-surface datum, April 25-26.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8.04	9.16	8.86	11.05	8.82	9.30	10.81	11.35	9.98	10.37	9.23	8.78
2	8.39	9.16	9.12	10.91	8.82	9.36	10.92	11.32	9.98	10.43	9.23	8.59
3	8.61	8.90	9.27	10.26	9.00	9.61	11.00	10.92	9.94	10.45	9.23	8.59
4	8.83	8.87	9.24	9.91	9.03	9.81	11.00	10.38	9.84	10.52	9.23	8.69
5	8.63	8.87	7.45	9.91	9.10	9.92	10.98	10.27	9.84	10.45	9.24	8.31
6	7.79	9.05	7.42	9.69	9.24	10.00	10.98	10.17	9.84	10.30	9.24	8.07
7	7.55	9.12	7.45	9.57	9.31	9.87	10.98	10.17	9.87	10.18	9.26	7.96
8	7.46	9.18	7.54	9.60	9.44	9.80	11.05	10.23	9.91	9.89	9.48	7.93
9	7.46	9.24	7.74	9.60	9.68	9.55	11.05	9.70	9.91	9.80	9.51	7.93
10	7.47	9.31	7.96	9.66	9.84	8.95	11.04	9.64	9.96	9.72	9.57	8.19
11	7.19	8.65	8.27	9.91	10.00	8.58	11.01	9.64	9.98	9.70	9.64	8.37
12	6.85	8.42	8.56	9.95	10.13	8.56	11.01	9.73	10.06	9.72	9.71	8.58
13	6.62	8.45	8.74	10.05	10.19	8.56	11.05	9.79	10.07	9.68	9.79	8.09
14	6.58	8.61	9.02	10.25	10.22	8.71	11.14	9.81	10.09	9.65	9.83	7.81
15	6.58	8.80	9.23	9.72	10.28	8.78	11.17	9.87	10.15	9.62	9.85	7.80
16	6.88	8.98	9.32	9.54	10.31	8.92	11.17	9.98	10.21	9.62	9.85	7.62
17	7.16	8.48	9.70	9.44	10.38	8.92	11.17	10.04	10.21	9.64	9.96	7.62
18	7.34	8.45	9.77	9.32	10.46	8.96	11.26	10.16	10.22	9.72	10.05	7.67
19	7.69	8.54	10.04	9.38	10.59	9.12	11.30	10.23	10.22	9.77	9.94	7.83
20	7.69	8.56	10.08	9.46	10.72	9.40	11.35	10.38	10.21	9.77	9.82	7.62
21	7.87	8.55	10.22	9.65	10.82	9.59	11.35	10.38	10.24	9.77	9.82	7.62
22	7.84	8.09	10.32	9.78	10.88	9.74	11.35	10.37	10.21	9.24	9.88	7.81
23	7.93	7.79	10.47	9.66	11.00	9.90	11.36	10.19	10.17	9.24	9.96	7.80
24	7.96	7.74	10.61	9.59	11.01	9.99	11.39	9.98	10.15	9.24	10.05	7.80
25	8.02	7.80	10.64	9.59	11.16	10.11	11.48	9.93	10.20	9.24	10.15	7.95
26	8.12	8.04	10.79	9.66	11.08	10.33	11.46	9.91	10.30	9.24	10.13	8.18
27	8.30	8.27	10.95	9.25	9.48	10.48	11.46	9.91	10.31	9.24	9.65	8.42
28	8.56	8.51	11.08	9.04	9.37	10.56	11.32	9.94	10.31	9.23	9.40	8.61
29	8.85	8.56	11.08	9.04		10.68	11.29	10.04	10.33	9.23	9.04	8.74
30	9.06	8.74	11.11	9.10		10.70	11.29	10.06	10.36	9.23	8.90	8.52
31	9.06		11.05	9.07		10.70		10.03		9.23	8.78	

SOUTH-CENTRAL ALASKA

MUNICIPALITY OF ANCHORAGE.

611725149335401. Local number, SB01400223BCCD1003.

LOCATION.--Lat $61^{\circ}17'26''$, long $149^{\circ}35'39''$, in SE $^{1}/4$ SW $^{1}/4$ SW $^{1}/4$ NW $^{1}/4$ sec.23, T.14 N., R.2 W.(Anchorage B-7SW quad), Hydrologic Unit 19020401, at Anchorage Regional Landfill, Glenn Highway and Hiland Road interchange, Anchorage. Owner: Municipality of Anchorage.

AQUIFER.--Sand and gravel of the Quaternary System.

WELL CHARACTERISTICS.--Diameter 6 in., depth 132 ft, cased to 118 ft, open hole. Casing perforated from 111 to 117 ft. Bedrock from 117 ft. Driller's log notes casing break at 80 ft.

INSTRUMENTATION.--Monthly measurement with chalked steel tape by U.S. Geological Survey personnel July 1997 to September 1999. electronic data logger from September 3, 1999 to current year.

DATUM.--Elevation of land surface datum is 542.56 ft above sea level (determined by level survey). Measuring point: Top of casing 3.4 ft above land-surface datum.

REMARKS.--Observation well drilled by Municipality of Anchorage, designated as KB-6.

PERIOD OF RECORD.--August 1986, July 1997 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 107.88 ft below land-surface datum, June 7, 2000; lowest, 114.25 ft below land-surface datum, Aug. 21, 1986.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 109.68 ft. below land-surface datum, June 27, July 4 and July 5; lowest, 110.61 ft. below land-surface datum, February 27 and March 12.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	110.24	110.13	110.28	110.43	110.50	110.53	110.56	110.08	109.87	109.69	110.03	110.37
2	110.25	110.11	110.30	110.38	110.50	110.54	110.47	110.06	109.86	109.69	110.03	110.37
3	110.26	110.14	110.27	110.39	110.50	110.54	110.50	110.06	109.86	109.69	110.05	110.38
4	110.23	110.10	110.25	110.43	110.49	110.52	110.57	110.05	109.85	109.68	110.06	110.38
5	110.22	110.13	110.27	110.45	110.48	110.52	110.57	110.03	109.84	109.68	110.08	110.40
6	110.26	110.12	110.33	110.40	110.47	110.52	110.54	110.00	109.84	109.69	110.10	110.40
7	110.24	110.14	110.33	110.40	110.49	110.56	110.54	110.00	109.83	109.70	110.13	110.41
8	110.30	110.15	110.32	110.47	110.46	110.52	110.56	110.00	109.81	109.72	110.13	110.42
9	110.27	110.12	110.31	110.48	110.49	110.54	110.57	109.98	109.80	109.72	110.14	110.42
10	110.23	110.11	110.31	110.47	110.48	110.52	110.52	109.97	109.80	109.73	110.16	110.42
11	110.27	110.16	110.35	110.42	110.48	110.51	110.51	109.97	109.79	109.74	110.17	110.41
12	110.24	110.16	110.33	110.44	110.50	110.58	110.54	109.94	109.78	109.75	110.19	110.42
13	110.22	110.13	110.32	110.47	110.51	110.57	110.53	109.95	109.77	109.76	110.20	110.44
14	110.23	110.20	110.34	110.42	110.49	110.53	110.52	109.93	109.77	109.77	110.21	110.46
15	110.24	110.18	110.32	110.46	110.49	110.55	110.49	109.94	109.76	109.78	110.23	110.45
16	110.23	110.17	110.34	110.44	110.48	110.57	110.46	109.94	109.75	109.79	110.24	110.44
17	110.23	110.17	110.34	110.44	110.48	110.57	110.46	109.94	109.75	109.79	110.24	110.44
18	110.22	110.10	110.33	110.42	110.50	110.55	110.40	109.93	109.74	109.81	110.28	110.40
19	110.21	110.20	110.37	110.51	110.50	110.53	110.44	109.93	109.72	109.83	110.25	110.47
20	110.18	110.19	110.34	110.31	110.51	110.58	110.41	109.93	109.71	109.85	110.23	110.47
20	110.10	110.20	110.51	110.10	110.52	110.50	110.50	100.01	100.72	103.03	110.27	110.10
21	110.13	110.19	110.38	110.49	110.52	110.56	110.35	109.91	109.72	109.86	110.31	110.46
22	110.16	110.22	110.38	110.49	110.51	110.56	110.32	109.91	109.70	109.88	110.31	110.47
23	110.19	110.23	110.39	110.51	110.50	110.54	110.30	109.92	109.69	109.90	110.32	110.46
24	110.14	110.21	110.38	110.51	110.51	110.52	110.29	109.93	109.70	109.91	110.33	110.47
25	110.12	110.25	110.36	110.49	110.47	110.53	110.26	109.91	109.70	109.93	110.33	110.49
26	110.14	110.26	110.43	110.48	110.43	110.54	110.19	109.90	109.69	109.94	110.34	110.49
27	110.14	110.27	110.41	110.52	110.45	110.55	110.19	109.89	109.68	109.95	110.34	110.49
28	110.14	110.27	110.39	110.50	110.53	110.56	110.17	109.89	109.69	109.96	110.33	110.49
29	110.12	110.27	110.37	110.50		110.55	110.14	109.91	109.70	109.98	110.36	110.49
30	110.11	110.27	110.39	110.46		110.54	110.13	109.88	109.69	109.99	110.35	110.51
31	110.15		110.45	110.45		110.56		109.88		110.01	110.37	
MEAN	110.20	110.18	110.34	110.46	110.49	110.55	110.42	109.95	109.76	109.81	110.22	110.44
MAX	110.20	110.18	110.34	110.40	110.49	110.55	110.42	110.08	109.76	110.01	110.22	110.44
MIN	110.30	110.27	110.45	110.32	110.33	110.56	110.37	10.08	109.67	109.68	110.37	110.31
1,1714	TT0.TT	110.10	110.23	110.50	110.13	110.51	110.13	107.00	107.00	107.00	110.03	±±0.57

YUKON ALASKA

FAIRBANKS NORTH STAR BOROUGH

644400147151501. Local number, FD00200224ABBB1001 51659.

LOCATION.--Lat 64°44′00″, long 147°15′15″, Hydrologic Unit 19040506, in road right-of-way at intersection of Nelson and Laurence Roads near North Pole. Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 4-in., depth 30 ft, screened from 27.5 to 30 ft using a 2-in. diameter well point.

INSTRUMENTATION.--Strip-chart recorder from June 1976 to May 1980. Digital recorder--1-hour punch interval, from November 1983 to June 1995. Electronic data logger from June 1995 to present.

DATUM.--Elevation of land-surface datum is 503.5 ft above sea level (determined by levels survey). Measuring point: Top of casing 2.97 ft above land-surface datum.

REMARKS.--Observation well drilled by the U.S. Army Corps of Engineers designated as P-251. Missing record from January 25 through March 1 due to equipment malfunction.

PERIOD OF RECORD.--June 1976 to May 1980 and November 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 4.84 ft below land-surface datum, June 7, 1992; lowest, 13.70 ft below land-surface datum, February 18-20, 1988.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 11.61 ft below land-surface datum, October 5; lowest, 13.26 ft below land-surface datum, April 9-12.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1 2 3 4 5	11.62 11.63 11.63 11.62 11.61	12.17 12.19 12.21 12.24 12.25	12.48 12.50 12.51 12.52 12.52	12.77 12.77 12.76 12.78 12.77		13.07 13.09 13.09 13.09	13.21 13.21 13.21 13.23 13.23	12.81 12.80 12.79 12.78 12.78	12.92 12.93 12.93 12.94 12.96	12.69 12.68 12.67 12.66 12.65	12.28 12.26 12.22 12.19 12.16	11.89 11.90 11.91 11.90 11.91
6 7 8 9 10	11.62 11.63 11.64 11.68 11.68	12.27 12.28 12.30 12.31 12.32	12.54 12.56 12.58 12.59 12.59	12.77 12.76 12.77 12.79 12.81		13.10 13.10 13.11 13.11 13.11	13.23 13.24 13.25 13.25 13.25	12.77 12.77 12.77 12.77 12.77	12.96 12.96 12.94 12.92 12.91	12.63 12.62 12.61 12.59 12.58	12.14 12.11 12.09 12.08 12.06	11.93 11.94 11.96 11.98 11.98
11 12 13 14 15	11.68 11.70 11.72 11.73 11.74	12.32 12.35 12.36 12.37 12.38	12.61 12.62 12.63 12.63 12.64	12.80 12.80 12.81 12.81 12.82	 	13.10 13.12 13.13 13.13 13.13	13.24 13.25 13.25 13.23 13.21	12.78 12.77 12.78 12.78 12.79	12.89 12.87 12.86 12.85 12.83	12.57 12.57 12.56 12.55 12.53	12.05 12.04 12.02 12.01 11.99	11.99 11.99 12.00 12.04 12.07
16 17 18 19 20	11.77 11.80 11.84 11.86 11.89	12.38 12.38 12.39 12.39 12.39	12.64 12.65 12.65 12.67 12.68	12.84 12.83 12.84 12.84 12.85		13.14 13.15 13.15 13.16 13.16	13.18 13.16 13.13 13.09	12.81 12.82 12.84 12.86 12.87	12.81 12.80 12.79 12.78 12.78	12.53 12.52 12.51 12.50 12.50	11.98 11.96 11.95 11.92	12.09 12.10 12.13 12.15 12.16
21 22 23 24 25	11.91 11.92 11.96 12.00 12.02	12.39 12.40 12.40 12.41 12.42	12.69 12.71 12.71 12.72 12.73	12.86 12.86 12.87 12.88	 	13.17 13.17 13.17 13.17 13.18	13.04 13.01 12.98 12.96 12.94	12.87 12.88 12.89 12.90 12.89	12.77 12.76 12.75 12.75 12.75	12.49 12.48 12.47 12.45 12.44	11.90 11.89 11.88 11.87 11.86	12.18 12.19 12.21 12.23 12.26
26 27 28 29 30 31	12.04 12.06 12.08 12.10 12.12	12.42 12.43 12.45 12.46 12.47	12.73 12.75 12.75 12.75 12.75 12.76			13.18 13.19 13.20 13.20 13.21 13.21	12.91 12.88 12.87 12.85 12.83	12.89 12.90 12.90 12.90 12.91 12.91	12.74 12.73 12.72 12.71 12.70	12.43 12.41 12.39 12.36 12.34	11.86 11.86 11.86 11.87 11.87	12.29 12.31 12.33 12.35 12.37

YUKON ALASKA

FAIRBANKS NORTH STAR BOROUGH—CONTINUED

644528147131201. Local number, FD00200307ACBD1001 51660.

LOCATION.--Lat 64°45′28″, long 147°13′12″, Hydrologic Unit 19040506, inside Corps of Engineers Chena Lakes Project fenced compound, 120 ft west of headquarters building and 2 mi northeast of the intersection of Laurence and Nelson Roads. Owner: U.S. Army Corps of Engineers.

AQUIFER .-- Chena Alluvium of Quaternary age.

WELL CHARACTERISTICS.--Diameter 4-in., depth 31 ft, screened from 28.5 to 31 ft using a 2-in. diameter well point.

INSTRUMENTATION.--Continuous strip-chart recorder from June 1976 to May 1980. Digital recorder--1-hour punch interval, from October 1985 to April 1995. Electronic data logger used from April 1995 to present.

DATUM.--Elevation of land-surface datum is 494.7 ft above sea level (determined by levels survey). Measuring point: Top of casing 2.91 ft above land-surface datum.

REMARKS.--Observation well drilled by the U.S. Army Corps of Engineers, designated as P-252. Water levels from water years 1986 through 1990 were not previously published and are available from WATSTORE.

PERIOD OF RECORD.--June 1976 to May 1980 and October 1985 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 2.85 ft below land-surface datum, June 8-9, 1992; lowest, 13.20 ft below land-surface datum September 15, 1976.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 8.26 ft below land-surface datum, October 6-7; lowest, 10.81 ft below land-surface datum, April 15-20.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	8.28	8.74	9.18	9.71	10.16	10.44	10.71	10.62	10.42	10.28	10.10	9.57
2	8.29	8.76	9.20	9.73	10.17	10.45	10.72	10.62	10.41	10.28	10.08	9.57
3	8.29	8.78	9.22	9.75	10.19	10.46	10.72	10.62	10.40	10.28	10.05	9.56
4	8.29	8.80	9.23	9.76	10.20	10.47	10.73	10.62	10.40	10.28	10.02	9.55
5	8.27	8.82	9.25	9.78	10.21	10.48	10.73	10.62	10.40	10.27	10.00	9.55
6	8.26	8.84	9.26	9.79	10.23	10.49	10.74	10.62	10.40	10.27	9.99	9.55
7	8.26	8.86	9.28	9.81	10.24	10.50	10.75	10.62	10.40	10.27	9.97	9.56
8	8.27	8.87	9.30	9.81	10.25	10.51	10.76	10.62	10.38	10.27	9.95	9.56
9	8.30	8.89	9.33	9.83	10.26	10.52	10.77	10.62	10.37	10.25	9.94	9.56
10	8.32	8.90	9.34	9.86	10.27	10.53	10.77	10.62	10.35	10.24	9.93	9.55
11	8.32	8.90	9.37	9.88	10.28	10.53	10.78	10.61	10.34	10.23	9.92	9.54
12	8.34	8.92	9.39	9.90	10.29	10.54	10.78	10.61	10.33	10.23	9.90	9.53
13	8.34	8.94	9.40	9.91	10.31	10.55	10.79	10.61	10.32	10.22	9.89	9.53
14	8.34	8.94	9.42	9.93	10.32	10.57	10.80	10.60	10.31	10.22	9.87	9.54
15	8.34	8.96	9.44	9.94	10.33	10.58	10.80	10.60	10.31	10.21	9.84	9.57
16	8.36	8.98	9.45	9.95	10.34	10.58	10.81	10.58	10.30	10.21	9.83	9.58
17	8.38	8.99	9.46	9.97	10.34	10.60	10.80	10.57	10.29	10.20	9.81	9.58
18	8.41	9.00	9.48	9.98	10.35	10.61	10.80	10.58	10.28	10.20	9.79	9.58
19	8.44	9.01	9.49	9.99	10.36	10.62	10.81	10.58	10.27	10.20	9.75	9.59
20	8.47	9.02	9.51	10.01	10.37	10.62	10.80	10.57	10.26	10.20	9.73	9.60
21	8.50	9.03	9.53	10.02	10.38	10.64	10.79	10.57	10.26	10.20	9.72	9.60
22	8.51	9.04	9.55	10.03	10.39	10.64	10.78	10.56	10.26	10.18	9.70	9.60
23	8.52	9.05	9.57	10.05	10.41	10.65	10.75	10.55	10.26	10.18	9.67	9.61
24	8.56	9.06	9.59	10.06	10.41	10.66	10.73	10.55	10.26	10.19	9.66	9.62
25	8.59	9.07	9.60	10.08	10.42	10.66	10.71	10.51	10.26	10.19	9.64	9.63
26	8.62	9.09	9.61	10.09	10.42	10.66	10.69	10.49	10.27	10.19	9.63	9.66
26 27	8.64	9.09	9.63	10.09	10.42	10.66	10.69	10.49	10.27	10.19	9.63	9.66
28	8.66	9.11	9.63	10.10	10.42	10.67	10.66	10.47	10.27	10.18	9.62	9.67
26 29	8.69	9.13	9.65	10.12		10.68	10.64	10.45	10.27	10.17	9.61	9.09
30	8.70	9.15	9.68	10.13		10.68	10.63	10.45	10.27	10.16	9.50	9.71
31	8.71	9.10	9.00	10.14		10.69	10.62	10.44		10.14	9.56	9.73
31	0./1		9.10	10.13		10.70		10.13		10.12	9.31	-

YUKON ALASKA

FAIRBANKS NORTH STAR BOROUGH—CONTINUED

645434147385101. Local number, FB00100113DDBC2001 50673.

LOCATION.--Lat 64°54′34″, long 147°38′51″, Hydrologic Unit 19040506, in road right-of-way at 2.3 mi McGrath Road, off Farmers' Loop Road near Fairbanks. Owner: U.S. Geological Survey.

AQUIFER.--Quartz-mica schist of pre-Jurassic age.

WELL CHARACTERISTICS.--Diameter 6-in., depth 100 ft, metal casing to 98.5 ft, perforated openings from 88.5 ft to 98.5 ft, and open hole to 100 ft.

INSTRUMENTATION.--Digital recorder, from October 1983 to June 1995. Electronic data logger from June 1995 to May 1996. Digital recorder, from May 1996 to September 1997. Electronic data logger from October 1997 to present.

DATUM.--Elevation of land-surface datum is 740 ft above sea level (determined from topographic map). Measuring point is top of casing 1.00 ft above land-surface datum.

REMARKS.--Observation well drilled by the U.S. Geological Survey, designated as McGrath Well, replaces old McGrath Estates well, 645429147383801. Missing record from Jan. 29 through Feb. 3 due to equipment malfunction. PERIOD OF RECORD.--June 1983 to current year.

EXTREMES FOR PERIOD OF RECORD.--Highest water level measured, 39.13 ft below land-surface datum, October 28, 1983; lowest, 44.85 ft below land-surface datum, July 3, 1990.

EXTREMES FOR CURRENT YEAR.--Highest water level measured, 42.33 ft below land-surface datum, September 13; lowest, 43.00 ft below land-surface datum, June 26.

DAY	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	42.89	42.70	42.64	42.50		42.60	42.62	42.61	42.54	42.73	42.58	42.46
2	42.96	42.66	42.64	42.58		42.65	42.70	42.56	42.58	42.73	42.55	42.51
3	42.93	42.65	42.67	42.42		42.66	42.52	42.55	42.56	42.69	42.52	42.48
4	42.83	42.72	42.64	42.44	42.69	42.71	42.52	42.56	42.71	42.65	42.53	42.49
5	42.71	42.75	42.48	42.54	42.71	42.66	42.60	42.56	42.62	42.66	42.59	42.46
6	42.70	42.75	42.49	42.56	42.62	42.65	42.64	42.63	42.59	42.61	42.61	42.51
7	42.70	42.71	42.69	42.40	42.62	42.60	42.64	42.53	42.57	42.63	42.65	42.57
8	42.74	42.72	42.72	42.40	42.53	42.64	42.73	42.53	42.55	42.68	42.67	42.58
9	42.88	42.69	42.62	42.47	42.52	42.56	42.77	42.56	42.52	42.66	42.60	42.60
10	42.76	42.58	42.50	42.65	42.58	42.55	42.68	42.56	42.54	42.56	42.57	42.50
11	42.75	42.58	42.54	42.60	42.54	42.47	42.58	42.54	42.61	42.56	42.56	42.44
12	42.68	42.63	42.66	42.49	42.57	42.50	42.59	42.54	42.60	42.58	42.57	42.34
13	42.68	42.60	42.59	42.48	42.64	42.61	42.68	42.53	42.56	42.60	42.56	42.33
14	42.63	42.60	42.58	42.56	42.65	42.67	42.75	42.46	42.56	42.61	42.48	42.38
15	42.63	42.65	42.55	42.54	42.62	42.57	42.81	42.46	42.62	42.61	42.49	42.52
16	42.65	42.66	42.53	42.57	42.52	42.57	42.71	42.48	42.62	42.64	42.47	42.52
17	42.71	42.64	42.52	42.46	42.48	42.63	42.67	42.50	42.55	42.71	42.50	42.54
18	42.75	42.64	42.45	42.46	42.54	42.74	42.67	42.50	42.59	42.70	42.50	42.51
19	42.79	42.70	42.50	42.45	42.64	42.78	42.72	42.54	42.60	42.66	42.53	42.51
20	42.74	42.67	42.55	42.51	42.66	42.74	42.68	42.64	42.56	42.66	42.45	42.45
21	42.71	42.57	42.55	42.57	42.71	42.74	42.66	42.58	42.56	42.68	42.47	42.39
22	42.65	42.57	42.58	42.58	42.70	42.72	42.66	42.50	42.74	42.66	42.51	42.35
23	42.70	42.65	42.57	42.57	42.64	42.61	42.62	42.49	42.62	42.70	42.46	42.39
24	42.83	42.67	42.56	42.58	42.64	42.54	42.62	42.54	42.58	42.72	42.46	42.51
25	42.74	42.67	42.40	42.58	42.51	42.48	42.62	42.52	42.70	42.71	42.49	42.56
26	42.73	42.72	42.40	42.51	42.45	42.50	42.61	42.49	42.87	42.66	42.50	42.56
27	42.72	42.77	42.48	42.46	42.35	42.53	42.51	42.51	42.75	42.65	42.54	42.56
28	42.75	42.78	42.55	42.51	42.36	42.58	42.51	42.55	42.68	42.61	42.53	42.56
29	42.79	42.70	42.44			42.65	42.53	42.65	42.68	42.58	42.47	42.54
30	42.67	42.68	42.42			42.59	42.57	42.65	42.75	42.60	42.41	42.52
31	42.67		42.45			42.58		42.54		42.58	42.41	

Page	Page
Alagnak River, 13 miles above mouth near	Jordan Creek above Yandukin Ave near 371
Lower Barge near Levelock	Jordan Creek at Amalga St near 370
27 mi above mouth near McCormick	Jordan Creek at Jennifer St near370
near Levelock	Jordan Creek at Nancy St near
below Nonvianuk River near Igiugig 380, 408	Jordan Creek below Egan Dr near 66, 371
Aleknagik, Moody Creek at	Jordan Creek below Thunder Mtn Trailer
Alsek River near Yakutat	Park near
Analyses of samples collected at miscellaneous	Jordan Creek near371
sites387	Jordan Creek Tributary at Thunder Mtn
Anchorage, Municipality of, ground water levels 434	Trailer Park near
Anchorage, Chester Creek at Arctic Blvd at 212	Mendenhall River at Brotherhood
Little Rabbit Creek at Goldenview	Bridge at371, 388
Dr near	Mendenhall River near70
Rabbit Creek at Porcupine Trail Rd	Montana Creek near
near	Montana Creek at mouth near 371
Ship Creek near	North Fork Peterson Creek near358, 375
South Branch of South Fork Chester	Nugget Creek above diversion near 69
Creek at tank trail near	Peterson Creek below North Fork near 135
South Fork Campbell Creek near 205	Peterson Creek tributary No 2 near 375
South Fork Campbell Creek At Canyon	Peterson Creek tributary No 3 near 375, 389
Mouth near	Peterson Creek tributary No 4 near 375, 389
Anchor Point, Anchor River at	Peterson Creek tributary No 6 near 375, 389
Anchor River near	Peterson Creek tributary No 7 near 374, 389
Chakok River 7.5 mi above mouth	Peterson Creek tributary No 8 near 374, 389
near377, 396	Upper Peterson Creek near
Stariski Creek near	
Anchor River, above Twitter Creek	Banner Creek at Richardson
near Homer	Barrow, Nunavak Creek near
at Anchor Point	Battle Creek diversion above Bradley Lake
Chakok River 7.5 mi above mouth near 396	near Homer161
near Anchor Point	Beaver Creek 2 mi above mouth near Bald
near Bald Mountain near Homer 377, 394	Mtn near Homer
Angoon, Favorite Creek near	Berry Creek near Dot Lake
Aniak, Kuskokwim River at	Big Boulder Creek at mi 135 near Haines 372
Antler River below Antler Lake near Auke Bay74	Big Delta, Central Creek near308
Anvik River near Anvik	Goodpaster River near
Arctic Creek above tributary near Nome 367, 384	Liese Creek near
Arctic Slope Alaska, crest-stage partial-record	Sonora Creek near
stations in	Sonora Creek above Tributary near 304
discharge measurement at miscellaneous	Upper West Creek near
sites in	Bonanza Creek tributary near Prospect
gaging-station records for350	Camp
Atigun River near Pump Station 4	Boulder Creek (Copper River basin) near
Atigun River tributary near Pump Station 4 368, 386	Tiekel
Auke Bay, Antler River below Antler Lake near74	Boulder Creek (Yukon River basin) near
Duck Creek above Kodzoff Trailer	Central
Park near	Bradley River, below dam near Homer 166
Duck Creek at Duran St near	Middle Fork, below North Fork Bradley
Duck Creek at Mendenhall Blvd near 371	River near Homer
Duck Creek at Steven Richards Blvd near 372	Middle Fork, near Homer
Duck Creek at Taku Blvd near	near Homer
Duck Creek below Nancy St near 73, 372	near tidewater near Homer

Pa	ige		Page
Camp Creek near Sheep Mtn Lodge247	7 I	Donnelly, Ruby Creek above Richardson	
Cantwell, Slime Creek near 364, 383	3	Highway near	364
Central Creek near Big Delta308	8 I	Oorothy Lake outlet near Juneau	. 55
Central, Boulder Creek near	1 I	Oot Lake, Berry Creek near 364,	382
Quartz Creek near363, 382	2 I	Oragonfly Creek near Healy365,	383
Chakok River, 7.5 mi above mouth near 377, 396		Ory Creek (Copper River basin) near	
near Anchor Point377	7	Glennallen	376
Chena River, at Fairbanks	6 I	Duck Creek, above Kodzoff Trailer Park	
below Hunts Creek near Two Rivers 382	2	near Auke Bay	372
below Moose Creek Dam383	3	at Duran St near Auke Bay	372
near Two Rivers	3	at Mendenhall Blvd near Auke Bay	371
Chester Creek at Arctic Blvd at Anchorage 212	2	at Steven Richards Blvd near Auke Bay	372
Chichagof Island, stream on, gaging-station		at Taku Blvd near Auke Bay	371
records for	7	below Nancy St near Auke Bay 73,	372
Chicken, Wade Creek Tributary near289	9		
Chikat River near Klukwan372	2 I	Eagle, Yukon River at	290
Chinkelyes Creek Tributary near	I	Eklutna Lake near Palmer	244
Pedro Bay	O I	Eldorado Creek near Teller	384
Chiroskey River near Unalakleet 367, 384	4 I	Etta Creek near Council	384
Chulitna River near Port Alsworth (southwest) 380	0 I	Exit Glacier Channel at mi 0.1 of Harding Trail	
Coffman Creek near Cold Bay	3	near Seward	390
Cold Bay, Frosty Creek near	0 I	Exit Glacier Creek Tributary at mi 0.6 of Harding	
Russell Creek near	7	Trail near Seward 376,	390
Stapp Creek near	9 I	Exit Glacier Distributary at Exit Glacier Road	
Coldfoot, Slate Creek at	3	near Seward	391
Competition Creek near Kivalina	5 I	Explanation of the records	. 14
Cooper Creek at mouth near Cooper Landing 183	1		
Cooper Landing, Cooper Creek at mouth near 181	1 F	Fairbanks, Chena River at	316
Kenai River at	9	ground-water levels	
Cordova, Nicolet Creek near146	6	Little Chena River near	314
Cottonwood Creek near Wasilla	9	Tanana River at	312
Council, Etta Creek near	4 F	Favorite Creek near Angoon	126
Crest-stage partial-record stations	8 I	Fish Creek (on Revillagigedo Island) near	
Crooked Creek, Kuskokwim River at		Ketchikan	
Cupola Peak Creek at Bear Cove		Fort Yukon, Porcupine River near	
near Sitka		Fritz Creek near Homer	
Currant Creek at mouth near Port Alsworth 380	0 I	Frosty Creek near Cold Bay	380
Dahl Creek near Kobuk	3 (Glacier Creek at Bruno Road near Seward360,	377
Deadhorse, Kuparuk River near	2 (Glacier Fork near Summit Lake near	
Sagavanirktok River tributary near 368, 386	6	Port Alsworth	406
Deep Creek 0.6 mi above Sterling Highway	(Glennallen, Dry Creek near359,	
near Ninilchik	0	Tazlina River near	376
Definition of terms	0 (Globe Creek near Livengood 365,	383
Denali, Raft Creek near	9 (Gold Creek, (Southeast) at Juneau	. 63
Dennison Fork near Tetlin Junction	1	near Juneau370,	387
Deshka River near Willow	2 (Gold Creek, (South-central), Susitna River at	258
Discontinued surface-water discharge or		Gold Creek (Southwest) at Takotna 362,	
stage-only stations xii		Goldengate Creek near Nome	
Discontinued surface-water-quality stations xxiv		Goodpaster River near Big Delta	
Dome Creek, King Creek near	1 (Green Lake (on Baranof Island) near Sitka	123

Page	Page
Greens Creek (on Admiralty Island) at Greens	Indian River (Southeast), above CBC Pumphouse
Creek Mine near Juneau	near Sitka
Ground-water level data, selected wells 417	at Sitka
City and Borough of Juneau417	near Sitka
Fairbanks-North Star Borough435	Diversion to Sheldon Jackson College at
Municipality of Anchorage	Sawmill Creek Road at Sitka 374
Grouse Creek at Grouse Lake outlet near	Indian River (Yukon), at Utopia 366, 384
Seward	International Boundary, Yukon Territory,
Gulkana River, at Gulkana	Porcupine River near
at Sourdough	International Gaging Station Network,
Gustavus, Kahtaheena River near	description
Kahtaheena River above upper falls near78	records
Haines, Big Boulder Creek at mi 135 near 372	Johnson River above Lateral Glacier near
Kakuhan Creek near	Tuxedni Bay
Halfmile Creek above diversion near Klawock 97	Jordan Creek, above Yandunkin Ave near
Halfmile Creek below Highway near Klawock 373	Auke Bay
Happy Valley Camp, Sagavanirktok River	at Amalga St near Auke Bay 370
tributary near	at Jennifer St near Auke Bay 370
Harding River near Wrangell	at Nancy St near Auke Bay
Healy, Dragonfly Creek near	below Egan Dr near Auke Bay 66, 371
Lignite Creek above mouth near	below Thunder Mtn Trailer Park near
Healy Creek at Suntrana near Healy	Auke Bay
Homer, Anchor River above Twitter	near Auke Bay
Creek near	Tributary at Thunder Mtn Trailer Park
Anchor River near Bald Mtn near 377, 394	near Auke Bay
Battle Creek diversion above Bradley	Juneau, Dorothy Lake outlet near55
Lake near	Gold Creek at
Beaver Creek 2 mi above mouth near	Gold Creek near
Bald Mtn near	Greens Creek at Greens Creek Mine near 124
Bradley River below dam near 166	Salmon Creek near
Bradley River near	Taku River near
Bradley River near Tidewater near	ground-water levels
Fritz Creek near	ground water revers
Middle Fork Bradley River below North	Kadashan River (on Chichagof Island) above
Fork Bradley River near	Hook Creek near Tenakee
Middle Fork Bradley River near	Kahtaheena River near Gustavus
Upper Bradley River near Nuka Glacier near 163	Kahtaheena River above upper falls near Gustavus
	Kakuhan Creek near Haines
Upper Nuka River near park boundary near 159	Kandik River near Nation
Hope, Sixmile Creek near	Kasaan, Old Tom Creek near
Hydaburg, Reynolds Creek below Lake Mellen near98	
Metien flear98	Kenai River, at Cooper Landing
Initialization Albaniala Discontratory National Discontratory	at Soldotna
Igiugig, Alagnak River below Nonvianuk River	below mouth of Killey River near Sterling 190
near	below Skilak Lake Outlet near Sterling 184
Ikalukrok Creek 0.6 mi below Red Dog Creek	Ketchikan, Fish Creek near
near Kivalina	Swan Lake near
Ikalukrok Creek, below Dudd Creek near Kivalina 385	Kiana, Kobuk River near
above Red Dog Creek near Kivalina 385	Kijik River at mouth near Port Alsworth
below Red Dog Creek near Kivalina 347	King Creek near Dome Creek
Iliamna River near Pedro Bay280	Kivalina, Competition Creek near

Page	Page
Ikialukrok Creek 0.6 mi below Red Dog	McCarthy Creek at McCarthy359, 376
Creek near	McCarthy, McCarthy Creek at 359, 376
Ikalukrok Creek above Red Dog Creek near . 385	Mendenhall River at Brotherhood Bridge
Ikalukrok Creek below Dudd Creek near385	at Auke Bay
Ikalukrok Creek below Red Dog Creek near . 347	Mendenhall River above Montana Creek
North Fork Red Dog Creek near 368, 385	near Auke Bay371
Red Dog Creek above North Fork Red Dog	Mendenhall River near Auke Bay70
Creek near	Middle Fork Bradley River, below North Fork
Red Dog Mine clean water ditch near 385	Bradley River near Homer 169
Red Dog Mine above mouth near385	Middle Fork Bradley River near Homer167
Tutak Creek near	Middle Basin Creek near Tenakee
Wulik River above Ferric Creek near345	Mineral Creek near Valdez
Wulik River below Tutak Creek near348	Miscellaneous sites, discharge at
Klawock, Halfmile Creek above Diversion near 97	Montana Creek, at mouth near Auke Bay371
Halfmile Creek below Highway near373	near Auke Bay72
North Fork Staney Creek near	Moody Creek at Aleknagik
Staney Creek near92	Moose Creek, above Wishbone Hill near
Threemile Creek below Hwy near 373	Sutton
Threemile Creek near	near Palmer250
Threemile Creek Tributary near	Moose Creek Dam, Chena River below 383
Threemile Tributary Creek below Canyon	Municipal Reserve Creek at Pilot Station 366, 384
near372	Myrtle Creek near Kodiak
Klukwan, Chilkat River near372	
Knik River near Palmer245	Nabesna, Little Jack Creek near
Kobuk, Dahl Creek near	Nancy Lake tributary near Willow 361, 379
Kobuk River near Kiana	Nation, Nation River near
Kodiak, Myrtle Creek near	Kandik River near
Terror River at mouth near	Nation River near Nation
Kodiak Island, streams on, crest-stage partial-	Nenana, Tanana River at
record stations on	Nicolet Creek near Cordova
gaging-station records for272	Ninilchik, Deep Creek 0.6 mi above Sterling
Kuparuk River near Deadhorse352	Highway near Ninilchik 378, 400
Kuskokwim River, at Aniak	Ninilchik River at
at Crooked Creek	Ninilchik River 1.5 mi below tributary
at Liskys Crossing near Stony River 284	near
	Ninilchik River below tributary 3 near 378, 401
Lake Clark outlet near Port Alsworth	North Fork Deep Creek 4 mi above
Lawing, Wolverine Creek near	mouth near
Levelock, Alagnak River 13 mi above	Stariski Creek 2 mi below unnamed
mouth near lower barge near	tributary near
Alagnak River 27 miles above mouth	Nome, Arctic Creek above tributary near 367, 384
near McCormick near	Goldengate Creek near
Liese Creek near Big Delta301	Washington Creek near
Lignite Creek above mouth near Healy330	North Fork Deep Creek 4 mi above mouth
Little Chena River near Fairbanks	near Ninilchik
Little Jack Creek near Nabesna	North Fork Peterson Creek near Auke Bay 358, 375
Little Rabbit Creek, at Goldenview Drive	North Fork Red Dog Creek near Kivalina 368, 385
near Anchorage	North Fork Staney Creek near Klawock
Little Susitna River near Palmer	(on Prince of Wales Island) 88
Livengood, Globe Creek near	North Fork Tlikakila River near Port Alsworth 407
Matanuska River near Palmer	

Page	Page
Northwest Alaska, crest-stage partial-record	Portage, Twentymile River below Glacier
stations in	River near
discharge measurements at miscellaneous	Portage Creek at Portage Lake outlet near
sites in	Whittier
gaging-station records for340	Premier Creek near Sutton
Noyes Slough at Minnie Street Bridge 383	Prince of Wales Island, streams on, gaging-
Nugget Creek (Southeast) above diversion	station records for
near Auke Bay69	Prospect Camp, Bonanza Creek tributary
Nugget Creek (Yukon) near Wiseman 365, 383	near
Nunavak Creek near Barrow350	Prospect Creek near
	Prospect Creek near Prospect Camp
Old Tom Creek (on Prince of Wales Island) near	Ptarmigan Creek tributary near Valdez 359, 376
Kasaan	Pump Station 4, Atigun River tributary near . 368, 386
Ophir Creek, at Airport Rd at Yakutat	Atigun River near
near Yakutat	Pump Station 10, Suzy Q Creek near 364, 382
tributary at confluence near Yakutat375	
•	Quality of ground water
Palmer, Eklutna Lake near	Southcentral
Knik River near	Southeast
Little Susitna River near256	Yukon
Matanuska River near	Quartz Creek near Central
Moose Creek near	Quality Officer from Community (1977)
Wasilla Creek near	Rabbit Creek, at Porcupine Trail Road
Partial-record stations	near
Paxson, Phelan Creek near	Raft Creek near Denali
Pedro Bay, Chinkelyes Creek tributary near 362, 380	Ray River tributary near Stevens Village 363, 382
Iliamna River near	Red Dog Creek, above mouth near Kivalina 385
Peterson Creek, below North Fork near Auke Bay. 135	above North Fork Red Dog Creek near
Tributary No 2 near Auke Bay	Kivalina
Tributary No 3 near Auke Bay 375, 389	Red Dog Mine clean water ditch near Kivalina 385
Tributary No 4 near Auke Bay 375, 389	Revillagigedo Island, streams on, gaging-station
Tributary No 6 near Auke Bay	records for
Tributary No 7 near Auke Bay	Reynolds Creek below Lake Mellen near
Phelan Creek near Paxson	Hydaburg
Pilot Station, Municipal Reserve Creek at 366, 384	Richardson, Banner Creek at
Porcupine River, at Pilot Station	Ruby Creek above Richardson Highway near
near Fort Yukon	Donnelly
near International Boundary, Yukon	Russell Creek near Cold Bay
Territory	Russen creek near cold Bay
Port Alsworth, Chulitna River near380	Sagavanirktok River, tributary near
Currant Creek at mouth near	Deadhorse
Glacier Fork near Summit Lake near	tributary near Happy Valley Camp 368, 386
Kijik River at mouth near	Salcha River near Salchaket
Lake Clark outlet near	Salchaket, Salcha River near
North Fork Tlikakila River near	Salmon Creek (Southeast) near Juneau
Tanalian River at mouth near	Sawmill Creek near Sitka
Tlikakila River 12 mi above mouth near 407	Seward, Exit Glacier channel at mi 0.1 of
Tlikakila River above North Fork	Harding Trail near
Tlikakila River near	Exit Glacier Creek Tributary at mi 0.6 of
Tlikakila River at mouth near380, 408	Harding Trail near
Tlikakila River near Summit Lake near 406	Exit Glacier Distributary at Exit Glacier
Threath Terror from Summit Lake flour 700	Road near
	1.000 1.001

Page	Page
Glacier Creek at Bruno Rd near 360, 377	Southwest Alaska, crest-stage partial-record
Grouse Creek at Grouse Lake outlet near 155	stations in
Snow River near	discharge measurements at miscellaneous
Spruce Creek near	sites in
Shakespeare Creek at Whittier	gaging-station records for277
Sheep Mountain Lodge, Camp Creek near 247	Special networks and programs
Ship Creek near Anchorage	Spruce Creek near Seward
Silver Bay Tributary at Bear Cove near Sitka122	Staney Creek (on Prince of Wales Island) near
Sitka, Cupola Peak Creek at Bear Cove near . 358, 374	Klawock
Green Lake near	Stapp Creek near Cold Bay
Indian River above CBS Pumphouse near 373	Stariski Creek, 2 mi below unnamed tributary
Indian River at114	near Ninilchik
Indian River near	near Anchor Point
Indian River Diversion to Sheldon Jackson	Sterling, Kenai River below mouth of Killey
College at Sawmill Creek Rd at 374	River near
Sawmill Creek below Upper Tailrace near374	Kenai River below Skilak Lake outlet near 184
Sawmill Creek near	Stevens Village, Ray River tributary near363, 382
Silver Bay Tributary at Bear Cover near 122	Yukon River near
Swan Lake outlet at	Stikine River near Wrangell
Wrinklemouth Creek at mouth at	Stony River, Kuskokwim River at Liskys
Situk River near Yakutat	Crossing near
Sixmile Creek near Hope	Summary of hydrologic conditions
Skagway River at Skagway	Sunrise Lake Outlet near Wrangell
Slate Creek at Coldfoot	Susitna River at Gold Creek
Slime Creek near Cantwell	Sutton, Moose Creek above Wishbone
Snow River near Seward	Hill near
Snowden Creek near Wiseman	Premier Creek near
Soldotna, Kenai River at	Suzy Q Creek near Pump Station 10
Solomon Gulch, at top of falls near Valdez 150	Swan Lake (on Revillagigedo Island)
near Valdez	near Ketchikan
tailrace near Valdez	Swan Lake outlet at Sitka
Solomon Lake near Valdez	Tel. 4 Cell Ceel 4
Sonora Creek near Big Delta	Takotna, Gold Creek at
Sonora Creek above Tributary near Big Delta 304	Tatalina River near
Sourdough, Gulkana River at	Taku River near Juneau
South-central Alaska, crest-stage partial-record	Talkeetna River near Talkeetna
stations in	Tanalian River at mouth near Port Alsworth 380
discharge measurements at miscellaneous	Tanana River, at Fairbanks
sites in	at Nenana
gaging-station records for145	near Tok Junction
Southeast Alaska, crest-stage partial-record	Tatalina River near Takotna
stations in	Tazlina River near Glennallen
discharge measurements at miscellaneous	Teller, Eldorado Creek near
sites in	Tenakee, Kadashan River above Hook Creek near. 127
gaging-station records for50	Middle Creek Basin Creek near
South Branch of South Fork Chester Creek, at	Terror River at mouth near Kodiak 272
Boniface Parkway near Anchorage 304, 340	Tetlin Junction, Dennison Fork near362, 381
at tank trail near Anchorage 304, 338	Threemile Creek, below Highway near
South Fork Campbell Creek near Anchorage 189	Klawock
South Fork Campbell Creek At Canyon	near Klawock
Mouth Near Anchorage	Tributary below Canyon near Klawock 372
	Tributary near Klawock

Page	Page
Tiekel, Boulder Creek near	Woronkofski Island, Streams on, gaging station
Tlikakila River, 12 mi above mouth near	records for
Port Alsworth	Wrangell, Harding River near
above North Fork Tlikakila River near	Stikine River near54
Port Alsworth	Sunrise Lake Outlet near
at mouth near Port Alsworth380, 408	Tyee Lake outlet near 50
near Summit Lake near Port Alsworth406	Wulik River, above Ferric Creek near Kivalina 345
Tok Junction, Tanana River near	below Tutak Creek near Kivalina348
Tutak Creek near Kivalina	
Tuxedni Bay, Johnson River above Lateral	Yakutat, Alsek River near
Glacier near	Ophir Creek at Airport Rd at
Twentymile River below Glacier River near	Ophir Creek near
Portage	Ophir Creek Tributary at Confluence
Two Rivers, Chena River below Hunts	near
Creek near	Situk River near
Chena River near	Situation four
Tyee Lake Outlet near Wrangell	Yukon Alaska, crest-stage partial-record
Tyce Lake Outlet hear Winingen	stations in
Unalakleet, Chirosky River near	discharge measurements at miscellaneous
Unalakleet River above Chirosky	sites in
River near	gaging-station records for
Unalakleet River above Chirosky River near	Yukon River, at Eagle
Unalakleet	at Pilot Station
Upper Bradley River near Nuka Glacier near	near Stevens Village
Homer	ileal Stevens vinage
Upper Nuka River near park boundary near	
Homer	
Upper Peterson Creek near Auke Bay 374, 389	
Upper West Creek near Big Delta	
Utopia, Indian River at	
Utopia Creek at	
Utopia Creek at Utopia	
Valdez, Mineral Creek near	
Ptarmigan Creek tributary near 359, 376	
Solomon Gulch at top of falls near	
Solomon Gulch near	
Solomon Gulch tailrace near	
Solomon Lake near	
Wada Craak Tributary noor Chiakan 290	
Wade Creek Tributary near Chicken	
Washington Creek near Nome	
Wasilla Creek near Palmer	
Wasilla, Cottonwood Creek near	
Whittier, Portage Creek at Portage Lake	
outlet near	
Shakespeare Creek at	
Willow, Deshka River near	
Nancy Lake Tributary near	
Willow Creek near	
Wiseman, Nugget Creek near	
Snowden Creek near	
Wolverine Creek near Lawing	

CONVERSION FACTORS AND VERTICAL DATUM

Multiply	Ву	To obtain	
	Length		
inch (in.)	$2.54 \times 10^{1} $ 2.54×10^{-2}	millimeter meter	
foot (ft)	3.048×10^{-1}	meter	
mile (mi)	1.609×10^{0}	kilometer	
	Area		
acre	4.047×10^3	square meter	
	4.047×10^{-1}	square hectometer	
	4.047×10^{-3}	square kilometer	
square mile (mi ²)	2.590×10^{0}	square kilometer	
Volume			
gallon (gal)	3.785×10^{0}	liter	
	3.785×10^{0}	cubic decimeter	
	3.785×10^{-3}	cubic meter	
million gallons (Mgal)	3.785×10^3	cubic meter	
	3.785×10^{-3}	cubic hectometer	
cubic foot (ft ³)	2.832×10^{1}	cubic decimeter	
	2.832×10^{-2}	cubic meter	
cubic-foot-per-second day [(ft ³ /s) d]	2.447×10^3	cubic meter	
	2.447×10^{-3}	cubic hectometer	
acre-foot (acre-ft)	1.233×10^3	cubic meter	
	1.233×10^{-3}	cubic hectometer	
	1.233×10^{-6}	cubic kilometer	
	Flow		
cubic foot per second (ft ³ /s)	2.832×10^{1}	liter per second	
1	2.832×10^{1}	cubic decimeter per second	
	2.832×10^{-2}	cubic meter per second	
gallon per minute (gal/min)	6.309×10^{-2}	liter per second	
	6.309×10^{-2}	cubic decimeter per second	
	6.309×10^{-5}	cubic meter per second	
million gallons per day (Mgal/d)	4.381×10^{1}	cubic decimeter per second	
	4.381×10^{-2}	cubic meter per second	
Mass			
ton (short)	9.072×10^{-1}	megagram or metric ton	

Sea level: In this report "sea level" refers to the National Geodetic Vertical Datum of 1929 (NGVD of 1929)—a geodetic datum derived from a general adjustment for the first-order level nets of both the United States and Canada, formerly called Sea Level Datum of 1929.